Skip to main content

Advertisement

Log in

Structural elucidation of Leuprolide and its analogues in solution: insight into their bioactive conformation

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Leuprolide [dLeu6, NHEt10]GnRH, a potent gonadotropin-releasing hormone (GnRH) agonist, is used in a wide variety of hormone-related diseases like cancer and endometriosis. In this report, the conformational behaviour of Leuprolide and its linear synthetic analogues, namely [Tyr5(OMe), dLeu6, Aze9, NHEt10]GnRH (1) and [Tyr5(OMe), dLeu6, NHEt10]GnRH (2) have been studied in DMSO and H2O solutions by means of 2D nuclear magnetic resonance (NMR) experiments and detailed molecular dynamics (MD) simulations. The aim was to identify the conformational requirements of GnRH analogues for agonistic activity. This approach is of value as no crystallographic data are available for the GnRH receptor (G protein-coupled receptor, GPCR). The NOE data indicate the existence of a β-turn type I in the 2–5 segments of Leuprolide and its linear analogues in the case of using DMSO-d6 as solvent, whereas a β-turn type II in the 3–6 segments is indicated using D2O as solvent. The final structures fulfil the conformational requirements that are known, in the literature, to play a significant role in receptor recognition and activation. Finally, the linear analogues (1) and (2) are biologically active when tested against the human breast cancer cell line, MCF-7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GnRH:

Gonadotropin releasing hormone

NMR:

Nuclear magnetic resonance

MD:

Molecular dynamics

References

  • Discovery Studio v2.0 (2005), Molecular Modeling Systems, supplied by Accelrys Software Inc., Cerius2 Modeling Environment, Release 4.8. Accelrys Software Inc, San Diego

  • Ayub M, Levell MJ (1990) Suppression of plasma androgens by the antiandrogen flutamide in prostatic cancer patients treated with Zoladex, a GnRH analogue. Clin Endocrinol 32:329–339

    Article  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comp Chem 4:187–217

    Article  CAS  Google Scholar 

  • Chen J, Wonpil I, Brooks CL (2006) Balancing solvation and intramolecular interactions: toward a consistent generalized born force field. J Am Chem Soc 128(11):3373–3728

    Google Scholar 

  • Conn PM, Crowley WF (1991) Gonadotropin-releasing hormone and its analogues. N Engl J Med 324(2):93–103

    Article  CAS  PubMed  Google Scholar 

  • Coy DH, Coy EJ, Schally AV (1975) Research Methods in Neurochemistry. In: Marks N, Rodnight R (eds), Plenum, New York, pp 393–404

  • Hazum E, Conn PM (1988) Molecular mechanism of gonadotropin releasing hormone (GnRH) action, I: the GnRH receptor. Endocr Rev 9:379–386

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann M, Jonat W, Kleeberg U, Eiermann W, Janicke F, Hilfrich J, Kreienberg R, Albrecht M, Weitzel HK, Schmid H, Strunz P, Schachner-Wunschmann E, Bastert G, Maass H (1989) Goserelin, a depot gonadotropin-releasing hormone agonist in the treatment of pre-menopausal patients with metastatic breast cancer. J Clin Oncol 7:1113–1119

    CAS  PubMed  Google Scholar 

  • Keramida M, Matsoukas J, Panagiotopoulos D, Alexopoulos K, Matsoukas E, Cladas J, Tzigounis V, Cardamakis E, Maia H, Pati D, Habibi H (1996) Design and synthesis of a gonadotropin-releasing hormone (GnRH) analogue, [Tyr(OMe)5, d-Glu6, Aze9]GnRH: receptor binding, gonadotropin release and ovulation studies. Lett Pept Sci 3:257

    Article  CAS  Google Scholar 

  • Keramida M, Tselios T, Mantzourani E, Papazisis K, Mavromoustakos T, Klaussen C, Agelis G, Deraos S, Friligou I, Habibi H, Matsoukas J (2006). Design, synthesis, and molecular modeling of a novel amide-linked cyclic GnRH analogue cyclo(4-9)[Lys4,d-Trp6,Glu9]GnRH: stimulation of gonadotropin gene expression. J Med Chem 49(1):105–110

    Google Scholar 

  • Laskowski R, McArtur M, Moss D, Thornton J (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Mantzourani ED, Tselios TV, Golič Grdadolnik S, Platts JA, Brancale A, Deraos G, Matsoukas JM, Mavromoustakos TM (2006) Comparison of proposed putative active conformations of myelin basic protein epitope 87–99 linear altered peptide ligands by spectroscopic and modelling studies: the role of positions 91 and 96 in T-cell receptor activation. J Med Chem 49:6683–6691

    Article  CAS  PubMed  Google Scholar 

  • Mantzourani ED, Platts JA, Brancale A, Mavromoustakos TM, Tselios TV (2007) Molecular dynamics at the receptor level of immunodominant myelin basic protein epitope 87–99 implicated in multiple sclerosis and its antagonists altered peptide ligands: triggering of immune response. J Mol Graph Model 26:471–481

    Article  CAS  PubMed  Google Scholar 

  • Mantzourani ED, Blokar K, Tselios TV, Matsoukas JM, Platts JA, Mavromoustakos TM, Grdadolnik SG (2008) A combined NMR and molecular dynamics simulation study to determine the conformational properties of agonists and antagonists against experimental autoimmune encephalomyelitis. Bioorg Med Chem 16:2171–2182

    Article  CAS  PubMed  Google Scholar 

  • Matsoukas J, Keramida M, Panagiotopoulos D, Mavromoustakos T, Maia HLS, Bigam G, Pati D, Habibi HR, Moore GJ (1997) Structure elucidation and conformational analysis of gonadotropin releasing hormone and its novel synthetic analogue [Tyr(OMe)5, d-Lys6, Aze9NHEt]GnRH: the importance of aromatic clustering in the receptor binding activity. Eur J Med Chem 32:927–940

    Article  CAS  Google Scholar 

  • Matsoukas J, Apostolopoulos V, Kalbacher H, Papini AM, Tselios T, Chatzantoni K, Biagioli T, Lolli F, Deraos S, Papathanassopoulos P, Troganis A, Mantzourani E, Mavromoustakos T, Mouzaki A (2005) Design and synthesis of a novel potent myelin basic protein epitope 87–99 cyclic analogue: enhanced stability and biological properties of mimics render them a potentially new class of immunomodulators. J Med Chem 48:1470–1480

    Article  CAS  PubMed  Google Scholar 

  • Meyer JD, Manning MC, Vander DG (2002) Velde, characterization of the solution conformations of leuprolide acetate. J Peptide Res 60:159–168

    Article  CAS  Google Scholar 

  • Millar RP, King JA (1983) Synthesis, luteinizing hormone-releasing activity, and receptor binding of chicken hypothalamic luteinizing hormone-releasing hormone. Endocrinology 113:1364–1369

    Article  CAS  PubMed  Google Scholar 

  • Millar RP, King JA (1988) Evolution of gonadotropin-releasing hormone: multiple usage of a peptide. N Physiol Sci 3:49–53

    CAS  Google Scholar 

  • Millar RP, Milton RC, Follett BK, King JA (1986) Receptor binding and gonadotropin-releasing activity of a novel chicken gonadotropin-releasing hormone ([His5, Trp7, Tyr8]GnRH) and a d-Arg6 analogue. Endocrinology 119:224–231

    Article  CAS  PubMed  Google Scholar 

  • Millar RP, Flanagan CA, Milton RC, King JA (1989) Chimeric analogues of vertebrate gonadotropin-releasing hormones comprising substitutions of the variant amino acids in positions 5, 7, and 8 Characterization of requirements for receptor binding and gonadotropin release in mammalian and avian pituitary gonadotropes. J Biol Chem 264:21007–21013

    CAS  PubMed  Google Scholar 

  • Momany FA (1976) Conformational energy analysis of the molecule, luteinizing hormone-releasing hormone, 2: tetrapeptide and decapeptide analogues. J Am Chem Soc 98:2990–3000

    Article  CAS  PubMed  Google Scholar 

  • Momany FA (1978) Conformational analysis of the molecule luteinizing hormone-releasing hormone, 3: Analogue inhibitors and antagonists. J Med Chem 21:63–68

    Article  CAS  PubMed  Google Scholar 

  • Morikis D, Roy M, Sahu A, Troganis A, Jennings PA, Tsokos GC, Lambris JD (2002) The structural basis of compstatin activity examined by structure-function-based design of peptide analogs and NMR. J Biol Chem 277:14942–14953

    Article  CAS  PubMed  Google Scholar 

  • Muske LE (1993) Evolution of gonadotropin-releasing hormone (GnRH) neuronal systems. Brain Behav Evol 42:215–230

    Article  CAS  PubMed  Google Scholar 

  • Nicklaus MC, Wang S, Driscoll JS, Milne GW (1995) Conformational changes of small molecules binding to proteins. Bioorg Med Chem 3:411

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran GN, Sasisekharan V (1968) Conformations of polypeptides and proteins. Adv Protein Chem 23:283–437

    Google Scholar 

  • Ramakrishhan C, Ramachandran GN (1965) Stereochemical criteria for polypeptide and protein chain conformations, II: allowed conformations for a pair of peptide units. Biophys J 5:909–933

    Article  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Scambia G, Panici PB, Baiocchi G, Perrone L, Gaggini C, Iacobelli S, Mancuso S (1988) Growth inhibitory effect of LH-RH analogs on human breast cancer cells. Anticancer Res 8:187–190

    CAS  PubMed  Google Scholar 

  • Sica G, Iacopino F, Marini L, Robustelli della Cuna G (1992) Antiproliferative effect of leuprorelin acetate, alone or combined with tamoxifen or medroxyprogesterone acetate, on human breast cancer cell lines. Clin Ther 14:87–96

    PubMed  Google Scholar 

  • Söderhäll JA, Polymeropoulos EE, Pqulini K, Gunther E, Kuhne R (2005) Antagonist and agonist binding models of the human gonadotropin-releasing hormone receptor. Biochem Biophys Res Commun 333:568–582

    Article  PubMed  Google Scholar 

  • Stephenson SL, Kenny AJ (1988) The metabolism of neuropeptides: hydrolysis of peptides by the phosphoramidon-insensitive rat kidney enzyme endopeptidase 2 and by rat microvillar membranes. Biochem J 255:45–51

    CAS  PubMed  Google Scholar 

  • Tselios T, Daliani I, Probert L, Deraos S, Matsoukas E, Roy S, Pires J, Moore G, Matsoukas J (2000a) Treatment of experimental allergic encephalomyelitis (EAE) induced by guinea pig myelin basic protein epitope 72–85 with a human MBP(87–99) analogue and effects of cyclic peptides. Bioorg Med Chem 8:1903–1909

    Article  CAS  PubMed  Google Scholar 

  • Tselios T, Daliani I, Deraos S, Thymianou S, Matsoukas E, Troganis A, Gerothanassis I, Mouzaki A, Mavromoustakos T, Probert L, Matsoukas J (2000b) Treatment of experimental allergic encephalomyelitis (EAE) by a rationally designed cyclic analogue of myelin basic protein (MBP) epitope 72–85. Bioorg Med Chem Lett 10:2713–2717

    Article  CAS  PubMed  Google Scholar 

  • Vignon F, Bouton MM, Rochefort H (1987) Antiestrogens inhibit the mitogenic effect of growth factors on breast cancer cells in the total absence of estrogens. Biochem Biophys Res Commun 146(3):1502–1508

    Article  CAS  PubMed  Google Scholar 

  • Vilchez-Martinez LA, Coy DH, Coy EJ, Schally AV, Arimura A (1975) Anti-luteinizing hormone (LH)-releasing activity of several analogues of LH-releasing hormone. Fertil Steril 26:554–559

    CAS  PubMed  Google Scholar 

  • Wuthrich R (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

Despina Laimou is thankful for being supported by University of Patras (Grand K. Karatheodoris).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anastassios N. Troganis or Theodore V. Tselios.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 592 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laimou, D.K., Katsara, M., Matsoukas, MT.I. et al. Structural elucidation of Leuprolide and its analogues in solution: insight into their bioactive conformation. Amino Acids 39, 1147–1160 (2010). https://doi.org/10.1007/s00726-010-0549-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0549-8

Keywords

Navigation