Skip to main content

Advertisement

Log in

Role of N-terminus of tyrosine hydroxylase in the biosynthesis of catecholamines

  • Basic Neurosciences, Genetics and Immunology - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Tyrosine hydroxylase (TH) catalyzes the conversion of l-tyrosine to l-dopa, which is the initial and rate-limiting step in the biosynthesis of catecholamines [CA; dopamine (DA), noradrenaline, and adrenaline], and plays a central role in the neurotransmission and hormonal actions of CA. Thus, TH is related to various neuro-psychiatric diseases such as TH deficiency, Parkinson’s disease (PD), and schizophrenia. Four isoforms of human TH (hTH1–hTH4) are produced from a single gene by alternative mRNA splicing in the N-terminal region, whereas two isoforms exist in monkeys and only a single protein exist in all non-primate mammals. A catalytic domain is located within the C-terminal two-thirds of molecule, whereas the part of the enzyme controlling enzyme activity is assigned to the N-terminal end as the regulatory domain. The catalytic activity of TH is end product inhibited by CA, and the phosphorylation of Ser residues (Ser19, Ser31, and especially Ser40 of hTH1) in the N-terminus relieves the CA-mediated inhibition. Ota and Nakashima et al. have investigated the role of the N-terminus of TH enzyme in the regulation of both the catalytic activity and the intracellular stability by producing various mutants of the N-terminus of hTH1. The expression of the following three enzymes, TH, GTP cyclohydrolase I, which synthesizes the tetrahydrobiopterin cofactor of TH, and aromatic-l-amino acid decarboxylase, which produces DA from l-dopa, were induced in the monkey striatum using harmless adeno-associated virus vectors, resulting in a remarkable improvement in the symptoms affecting PD model monkeys Muramatsu (Hum Gene Ther 13:345–354, 2002). Increased knowledge concerning the amino acid sequences of the N-terminus of TH that control enzyme activity and stability will extend the spectrum of the gene-therapy approach for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AADC:

Aromatic l-amino acid decarbxylase

BH4:

(6R)-l-erythro-5,6,7,8-tetrahydrobiopterin

DA:

Dopamine

hTH1–hTH4:

Human tyrosine hydroxylase types 1–4

PD:

Parkinson’s disease

TH:

Tyrosine hydroxylase

References

  • Abate C, Joh TH (1991) Limited proteolysis of rat brain tyrosine hydroxylase defines as N-terminal region required for regulation of cofactor binding and directing substrate specificity. J Mol Neurosci 2:203–215

    CAS  PubMed  Google Scholar 

  • Alterio J, Mallet J, Biguet NF (2001) Multiple complexes involved in tyrosine hydroxylase mRNA stability in rat adrenal medulla, after reserpine stimulation. Mol Cell Neurosci 17:179–189

    Article  CAS  PubMed  Google Scholar 

  • Blau N, Erlandsen H (2004) The metabolic and molecular bases of tetrahydrobiopterin-responsive phenylalanine hydroxylase deficiency. Mol Genet Metab 82:101–111

    Article  CAS  PubMed  Google Scholar 

  • Brand MP, Hyland K, Engle T, Smith I, Heales SL (1996) Neurochemical effects following peripheral administration of tetrahydrobioptein derivatives to the hph-1 mouse. J Neurochem 66:1150–1156

    CAS  PubMed  Google Scholar 

  • Choi HJ, Jang YJ, Kim HJ, Hwang O (2000) Tetrahydrobiopterin is released from and causes preferential death of catecholaminergic cells by oxidative stress. Mol Pharmacol 58:633–640

    CAS  PubMed  Google Scholar 

  • Czyzyk-Krzeska MF, Paulding WR, Beresh JE, Kroll SL (1997) Post-transcriptional regulation of tyrosine hydroxylase gene expression by oxygen in PC12 cells. Kidney Int 51:585–590

    Article  CAS  PubMed  Google Scholar 

  • Døskeland AP, Flatmark T (2002) Ubiquitination of soluble and membrane-bound tyrosine hydroxylase and degradation of the soluble form. Eur J Biochem 269:1561–1569

    Article  PubMed  Google Scholar 

  • Dunkley PR, Bobrovskaya L, Graham ME, von Nagy-Felsobuki EI, Dickson PW (2004) Tyrosine hydroxylase phosphrylation: regulation and consequences. J Neurochem 91:1025–1034

    Article  CAS  PubMed  Google Scholar 

  • Dyson HJ, Wright PE (2005) Intrinsic unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa H, Okuno S (2005) Regulatory mechanism of tyrosine hydroxylase activity. Biochem Biophys Res Commun 338:271–276

    Article  CAS  PubMed  Google Scholar 

  • Gahn LG, Roskoski R Jr (1995) Thermal stability and CD analysis of rat tyrosine hydroxylase. Biochemistry 34:252–256

    Article  CAS  PubMed  Google Scholar 

  • Goodwill KE, Sabatier C, Marks C, Raag R, Fitzpatrick PF, Stevens RC (1997) Crystal structure of tyrosine hydroxylase at 2.3 Å and its implications for inherited neurodegenerative diseases. Nat Struct Biol 4:578–585

    Article  CAS  PubMed  Google Scholar 

  • Haavik J, Martínez A, Flatmark T (1990) pH-dependent release of catecholamines from tyrosine hydroxylase and inhibitory effect of phosphorylation Ser-40. FEBS Lett 262:363–365

    Article  CAS  PubMed  Google Scholar 

  • Haycock JW (2002) Species differences in the expression of multiple tyrosine hydroxylase protein isoforms. J Neurochem 81:947–953

    Article  CAS  PubMed  Google Scholar 

  • Haycock JW, Wakade AR (1992) Activation and multiple-site phosphorylation of tyrosine hydroxylase in perfused rat adrenal glands. J Neurochem 58:57–64

    Article  CAS  PubMed  Google Scholar 

  • Haycock JW, Lew JY, Garcia-Espana A, Lee KY, Harada K, Meller E, Goldstein M (1998) Role of serine-19 phosphorylation in regulating tyrosine hydroxylase studied with site- and phosphospecific antibodies and site-directed mutagenesis. J Neurochem 71:1670–1675

    CAS  PubMed  Google Scholar 

  • Hufton SE, Jennings IG, Cotton RGH (1995) Structure and function of the aromatic amino acid hydroxylases. Biochem J 311:353–366

    CAS  PubMed  Google Scholar 

  • Ichinose H, Ohye T, Fujita K, Yoshida M, Ueda S, Nagatsu T (1993) Increased heterogeneity of tyrosine hydroxylase in humans. Biochem Biophys Res Commun 195:158–165

    Article  CAS  PubMed  Google Scholar 

  • Ichinose H, Ohye T, Takahashi E, Seki N, Hori T, Segawa M, Nomura Y, Endo K, Tanaka H, Tsuji S, Fujita K, Nagatsu T (1994a) Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet 8:236–242

    Article  CAS  PubMed  Google Scholar 

  • Ichinose H, Ohye T, Fujita K, Pantucek F, Lange K, Riederer P, Nagatsu T (1994b) Quantification of mRNA of tyrosine hydroxylase in the substantia nigra in Parkinson’s disease and schizophrenia. J Neural Transm [P-D Sect] 8:149–158

    Article  CAS  Google Scholar 

  • Itagaki C, Isobe T, Taoka M, Natsume T, Nomura N, Horigome T, Omura S, Ichinose H, Nagatsu T, Greene LA, Ichimura T (1999) Stimulus-coupled interaction of tyrosine hydroxylase with 14-3-3 proteins. Biochemistry 38:15673–15680

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Nagatsu T (2005) Molecular genetics of tyrosine 3-monooxygenase and inherited diseases. Biochem Biophys Res Commun 338:267–270

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Kaneda N, Ichinose H, Kishi F, Nakazawa A, Kurosawa Y, Fujita K, Nagatsu T (1988) Structure of the human tyrosine hydroxylase gene: alternative splicing from a single gene accounts for generation of four mRNA types. J Biochem 103:907–912

    CAS  PubMed  Google Scholar 

  • Kumer SC, Vrana KE (1996) Intricate regulation of tyrosine hydroxylase activity and gene expression. J Neurochem 67:443–462

    Article  CAS  PubMed  Google Scholar 

  • Le Bourdellès B, Horellou P, Le Caer JP, Denefle P, Latta M, Haavik J, Guibert B, Mayaux JF, Mallet J (1991) Phosphorylation of human recombinant tyrosine hydroxylase isoforms 1 and 2: an additional phosphorylated residues in isoform 2, generated by alternative splicing. J Biol Chem 266:17124–17130

    PubMed  Google Scholar 

  • Lüdecke B, Knappskog PM, Clayton PT, Surtees RAH, Clelland JD, Heales SJR, Brand MP, Bartholomé K, Flatmark T (1996) Recessively inherited L-DOPA-responsive Parkinsonism in infancy caused by a point mutation in the tyrosine hydroxylase. Hum Mol Genet 5:1023–1028

    Article  PubMed  Google Scholar 

  • Martínez A, Haavik J, Flatmark T, Arrondo JLR, Muga A (1996) Conformational properties and stability of tyrosine hydroxylase studied by infrared spectroscopy: effect of iron/catecholamine binding and phosphorylation. J Biol Chem 271:19737–19742

    Article  PubMed  Google Scholar 

  • McCulloch RI, Fitzpatrick PF (1999) Limited proteolysis of tyrosine hydroxylase identifies residues 33–55 as conformationally sensitive to phosphorylation state and dopamine binding. Arch Biochem Biophys 367:143–145

    Article  CAS  PubMed  Google Scholar 

  • Meloni R, Leboyer M, Bellivier F, Barbe B, Samolyk D, Allilaire JF, Mallet J (1995) Association of manic-depressive illness with tyrosine hydroxylase microsatellite marker. Lancet 345:932

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Harada M, Kiuchi K, Kojima K, Kondo T, Narabayashi H, Rausch D, Riederer P, Jellinger K, Nagatsu T (1988) Homospecific activity (activity per enzyme protein) of tyrosine hydroxylase increases in Parkinsonian brain. J Neural Transm 72:77–82

    Article  CAS  PubMed  Google Scholar 

  • Moy LY, Tsai LH (2004) Cycline-dependent kinase 5 phosphrylates serine 31 of tyrosine hydroxylase and regulates its stability. J Biol Chem 279:54487–54493

    Article  CAS  PubMed  Google Scholar 

  • Muga A, Arrondo JL, Martínez A, Flatmark T, Haavik J (1998) The effect of phosphorylation at Ser-40 and the structure and thermal stability of tyrosine hydroxylase. Adv Pharmacol 42:15–18

    Article  CAS  PubMed  Google Scholar 

  • Muramatsu S, Fujimoto K, Ikeguchi K, Shizuma N, Kawasaki K, Ono F, Shen Y, Wang L, Mizukami H, Kume A, Matsumura M, Nagatsu I, Urano F, Ichinose H, Nagatsu T, Terao K, Nakano I, Ozawa K (2002) Behavioral recovery in a primate model of Parkinson’s disease by triple transduction of striatal cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes. Hum Gene Ther 13:345–354

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu T (1991) Genes for human catecholamine-synthesizing enzymes. Neurosci Res 12:315–345

    Article  CAS  PubMed  Google Scholar 

  • Nagatsu (1993) Biochemical aspects of Parkinson’s disease. Adv Neurol 60:165–174

  • Nagatsu T (1995) Tyrosine hydroxylase: human isoforms, structure and regulation in physiology and pathology. Essays Biochem 30 (Apps KD, Ed, Portland Press), 15–35

  • Nagatsu T (2006) The catecholamine system in health and disease—relation to tyrosine 3-monooxygenase and other catecholamine-synthesizing enzymes. Proc Jpn Acad B 82:388–415

    Article  CAS  Google Scholar 

  • Nagatsu T, Levitt M, Udenfriend S (1964) Tyrosine hydroxylase: the initial step in norepinephrine biosynthesis. J Biol Chem 239:2910–2917

    CAS  PubMed  Google Scholar 

  • Nagatsu T, Nakahara D, Kobayashi K, Morita S, Sawada H, Mizuguchi T, Kiuchi K (1994) Peripherally administered (6R)-tetrahydrobiopterin increases in vivo tyrosine hydroxylase activity in the striatum measured by microdialysis both in normal mice and in transgenic mice carrying human tyrosine hydroxylase. Neurosci Lett 182:44–46

    Article  CAS  PubMed  Google Scholar 

  • Nakashima A, Mori K, Suzuki T, Kurita H, Otani M, Nagatsu T, Ota A (1999a) Dopamine inhibition of human tyrosine hydroxylase type 1 is controlled by the specific portion in the N-terminus of the enzyme. J Neurochem 72:2145–2153

    Article  CAS  PubMed  Google Scholar 

  • Nakashima A, Mori K, Nagatsu T, Ota A (1999b) Expression of human tyrosine hydroxylase type I in Escherichia coli as a protease-cleavable fusion protein. J Neural Transm 106:819–824

    Article  CAS  PubMed  Google Scholar 

  • Nakashima A, Hayashi N, Mori K, Kaneko YS, Nagatsu T, Ota A (2000) Positive charge intrinsic to Arg37–Arg38 is critical for dopamine inhibition of the catalytic activity of human tyrosine hydroxylase type 1. FEBS Lett 465:59–63

    Article  CAS  PubMed  Google Scholar 

  • Nakashima A, Kaneko YS, Mori K, Fujiwara K, Tsugu T, Suzuki T, Nagatsu T, Ota A (2002) The mutation of two amino acid residues in the N-terminus of tyrosine hydroxylase (TH) dramatically enhances the catalytic activity in neuroendocrine AtT-20 cells. J Neurochem 82:202–206

    Article  CAS  PubMed  Google Scholar 

  • Nakashima A, Ota A, Sabban EL (2003) Interaction between Egr1 and AP1 factors in regulation of tyrosine hydroxylase transcription. Brain Res Mol Brain Res 112:61–69

    Article  CAS  PubMed  Google Scholar 

  • Nakashima A, Hayashi N, Kaneko YS, Mori K, Egusa H, Nagatsu T, Ota A (2005a) Deletion of N-terminus of human tyrosine hydroxylase type 1 enhances stability of the enzyme in AtT-20 cells. J Neurosci Res 81:110–120

    Article  CAS  PubMed  Google Scholar 

  • Nakashima A, Kaneko YS, Mori K, Nagatsu T, Ota A (2005b) The phosphorylation of Ser40 of tyrosine hydroxylase has no effect on the stability of the enzyme in PC12 cells. Biogenic Amines 19:279–288

    Article  CAS  Google Scholar 

  • Nakashima A, Hayashi N, Kaneko YS, Mori K, Sabban EL, Nagatsu T, Ota A (2007) RNAi of 14-3-3η protein increases intracellular stability of tyrosine hydroxylase. Biochem Biophys Res Commun 363:817–821

    Article  CAS  PubMed  Google Scholar 

  • Nankova B, Kvetnansky R, McMahon A, Viskupic E, Hiremagalur B, Frankle G, Fukuhara K, Kopin IJ, Sabban EL (1994) Induction of tyrosine hydroxylase gene expression by a nonneuronal nonpituitary-mediated mechanism in immobilization stress. Proc Natl Acad Sci USA 91:5937–5941

    Article  CAS  PubMed  Google Scholar 

  • Obsilova V, Nedbalkova E, Silhan J, Boura E, Herman P, Vecer J, Sulc M, Teisinger J, Dyda F, Obsil T (2008) The 14-3-3 protein affects the conformation of the regulatory domain of human tyrosine hydroxylase. Biochemistry 47:1768–1777

    Article  CAS  PubMed  Google Scholar 

  • Okuno S, Fujisawa H (1991) Conversion of tyrosine hydroxylase to stable and inactive form by the end products. J Neurochem 57:53–60

    Article  CAS  PubMed  Google Scholar 

  • Ota A, Yoshida S, Nagatsu T (1995) Deletion mutants of human tyrosine hydroxylase type 1 regulatory domain. Biochem Biophys Res Commun 213:1099–1106

    Article  CAS  PubMed  Google Scholar 

  • Ota A, Yoshida S, Nagatsu T (1996) Regulation of N-terminus-deleted human tyrosine hydroxylase type 1 by end products of catechoalamine biosynthetic pathway. J Neural Transm 103:1415–1428

    Article  CAS  PubMed  Google Scholar 

  • Ota A, Nakashima A, Mori K, Nagatsu T (1997) Effects of dopamine on N-terminus-deleted human tyrosine hydroxylase type 1 expressed in Escherichia coli. Neurosci Lett 229:57–60

    Article  CAS  PubMed  Google Scholar 

  • Ota A, Kaneko YS, Mori K, Nakashima A, Nagatsu I, Nagatsu T (2007) Effects of peripherally administered lipopolysaccharide (LPS) on GTP cyclohydrolase I, tetrahydrobiopterin and norepinephrine in the locus coeruleus in mice. Stress 10:131–136

    CAS  PubMed  Google Scholar 

  • Sabban EL, Kvetnansky R (2001) Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events. Trends Neurosci 24:91–97

    Article  CAS  PubMed  Google Scholar 

  • Sabban EL, Liu X, Serova L, Gueorguiev V, Kvetnansky R (2006) Stress triggerd changes in gene expression in adrenal medulla: transcriptional responses to acute and chronic stress. Cell Mol Neurobiol 26:845–856

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Chiba T, Sakata E, Kato K, Mizuno Y, Hattori N, Tanaka K (2006) 14-3-3η is a novel regulator of parkin ubiquitin ligase. EMBO J 25:211–221

    Article  CAS  PubMed  Google Scholar 

  • Scavelli R, Ding Z, Blau N, Haavik J, Martínez A, Thöny B (2005) Stimulation of hepatic phenylalanine hydroxylase activity but not Pah-mRNA expression upon oral loading of tetrahydrobiopterin in normal mice. Mol Genet Metab 86:153–155

    Article  CAS  Google Scholar 

  • Shimura H, Hattori N, Kubo S, Mizuno Y, Asaka S, Minoshima S, Shimizu N, Imai K, Chiba T, Tanaka K, Suzuki T (2000) Familial Parkinson gene product, parkin, is a ubiquitine-protein ligase. Nat Genet 25:302–305

    Article  CAS  PubMed  Google Scholar 

  • Sumi-Ichinose C, Urano F, Kuroda R, Ohye T, Kojima M, Tazawa M, Shiraishi H, Hagino Y, Nagatsu T, Nomura T, Ichinose H (2001) Catecholamines and serotonin are differently regulated by tetrahydrobioptein. A study from 6-pyruvoyltetrahydrobiopterin synthase knockout mice. J Biol Chem 276:41150–41160

    Article  CAS  PubMed  Google Scholar 

  • Sumi-Ichinose C, Urano F, Shimomura A, Sato T, Ikemoto K, Shiraishi H, Senda T, Ichinose H, Nomura T (2005) Genetically rescued tetrahydrobiopterin-depleted mice survive with hyperphenylalaninemia and region-specific monoaminergic abnormalities. J Neurochem 95:703–714

    Article  CAS  PubMed  Google Scholar 

  • Sutherland C, Alterio J, Campbell DG, Le Bourdellès B, Mallet J, Haavick J, Cohen P (1993) Phosphorylation and activation of human tyrosine hydroxylase in vitro by mitogen-activated protein (MAP) kinase and MAP-kinase-activated kinases 1 and 2. Eur J Biochem 217:715–722

    Article  CAS  PubMed  Google Scholar 

  • Tank AW, Xu L, Chen X, Radcliffe P, Sterling CR (2008) Post-transcriptional regulation of tyrosine hydroxylase expression in adrenal medulla and brain. Ann NY Acad Sci 1148:238–248

    Article  CAS  PubMed  Google Scholar 

  • Thibaut F, Ribeyre JM, Dourmap N, Meloni R, Laurent C, Campion D, Ménard JF, Dollfus S, Mallet J, Petit M (1997) Association of DNA polymorphism in the first intron of the tyrosine hydroxylase gene with disturbances of the catecholaminergic system in schizophrenia. Schizophr Res 23:259–264

    Article  CAS  PubMed  Google Scholar 

  • Thöny B, Ding Z, Martínez A (2004) Tetrahydrobiopterin protects phenylalanine hydroxylase activity in vivo: implications for tetrahydrobiopterin-responsive hyperphenylalaninemia. FEBS Lett 577:507–511

    Article  PubMed  CAS  Google Scholar 

  • Thöny B, Calvo AC, Scherer T, Svebak RM, Haavik J, Blau N, Martínez A (2008) Tetrahydrobiopterin shows chaperone activity for tyrosine hydroxylase. J Neurochem 106:672–681

    Article  PubMed  CAS  Google Scholar 

  • Urano F, Hayashi N, Arisaka F, Kurita H, Murata S, Ichinose H (2006) Molecular mechanism for pterin-mediated inactivation of tyrosine hydroxylase: formation of insoluble aggregates of tyrosine hydroxylase. J Biochem 139:625–635

    Article  CAS  PubMed  Google Scholar 

  • Winge I, McKinney JA, Ying M, D’Santos CS, Kleppe R, Knappskog PM, Haavik J (2008) Activation and stabilization of human tryptophan hydroxylase 2 by phosphorylation and 14-3-3 binding. Biochem J 410:195–204

    Article  CAS  PubMed  Google Scholar 

  • Wong DL, Tank AW (2007) Stress-induced catecholaminergic function: transcriptional and post-transcriptional control. Stress 10:121–130

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM (2000) Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA 97:13354–13359

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan (14580752, 16500247, 18500301) to A. Nakashima and (10670050) to A. Ota, by a grant from Fujita Health University, Japan, to A. Nakashima and A. Ota, and also by NIH grant NS 44218 to E.L. Sabban.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiharu Nagatsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakashima, A., Hayashi, N., Kaneko, Y.S. et al. Role of N-terminus of tyrosine hydroxylase in the biosynthesis of catecholamines. J Neural Transm 116, 1355–1362 (2009). https://doi.org/10.1007/s00702-009-0227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0227-8

Keywords

Navigation