Skip to main content

Advertisement

Log in

Regulation of TauT by cisplatin in LLC-PK1 renal cells

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Cisplatin is a commonly used chemotherapeutic agent that has a major limitation because of its nephrotoxicity. Since cisplatin-induced renal injury is mainly confined to the S3 segment of renal proximal tubules—the primary site for renal adaptive regulation of TauT—we hypothesize that TauT functions as an anti-apoptotic gene and plays a role in protecting renal cells from drug-induced nephrotoxicity. In the present study we demonstrated that expression of TauT was significantly reduced by cisplatin (50 μM) in LLC-PK1 cells. Down-regulation of TauT by cisplatin occurs at the transcriptional level in a dose-dependent manner, as demonstrated through a reporter gene driven by the TauT promoter. It appears that cisplatin down-regulates TauT expression, at least in part, through the p53-dependent pathway, since cisplatin induces the p53 expression, which, in turn, represses TauT. Cisplatin induces apoptosis of LLC-PK1 cells in a dose-dependent manner. However, forced over-expression of TauT by stable transfection of a taurine transporter cDNA (pNCT) in LLC-PK1 cells was able to attenuate cisplatin-induced down-regulation of taurine uptake by LLC-PK1 cells and protect renal tubular cells from apoptosis. The mechanism by which TauT serves as an anti-apoptotic gene in cisplatin-induced renal injury remains to be determined, but could relate to taurine-dependent cell volume regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heller-Stilb B, Van Roeyen C, Rascher K, Hartwig H, Huth A, Seeliger MW, Warskulat U, Haussinger D (2002) Disruption of the taurine transporter gene (taut) leads to retinal degeneration in mice. FASEB J 16:231–233

    CAS  PubMed  Google Scholar 

  2. Sturman JA (1986) Nutritional taurine and central nervous system development. Ann N Y Acad Sci 477:196–213

    Google Scholar 

  3. Maar TE, Lund TM, Gegelashvili G, Hartmann-Petersen R, Moran J, Pasantes-Morales H, Berezin V, Bock E, Schousboe A (1998) Effects of taurine depletion on cell migration and NCAM expression in cultures of dissociated mouse cerebellum and N2A cells. Amino Acids 15:77–88

    Article  CAS  PubMed  Google Scholar 

  4. Han X, Budreau AM, Chesney RW (2000) The taurine transporter gene and its role in renal development. Amino Acids 19:499–507

    Article  CAS  PubMed  Google Scholar 

  5. Saad SY, Al-Rikabi AC (2002) Protection effects of taurine supplementation against cisplatin-induced nephrotoxicity in rats. Chemotherapy 48:42–48

    Article  CAS  PubMed  Google Scholar 

  6. Matsell DG, Bennett T, Han X, Budreau AM, Chesney RW (1997) Regulation of the taurine transporter gene in the S3 segment of the proximal tubule. Kidney Int 52:748–754

    CAS  PubMed  Google Scholar 

  7. Leibbrandt ME, Wolfgang GHI, Metz AL, Ozobia AA, Haskins JR (1995) Critical subcellular targets of cisplatin and related platinum analogs in rat renal proximal tubule cells. Kidney Int 48:761–770

    CAS  PubMed  Google Scholar 

  8. Smith KE, Borden LA, Wang CD, Hartig PR, Branchek TA, Weinshank RL (1992) Cloning and expression of a high affinity taurine transporter from rat brain. Mol Pharmacol 42:563–569

    Google Scholar 

  9. Hartwell LH, Kastan MB (1994) Cell cycle control and cancer. Science 266:1821–1828

    CAS  PubMed  Google Scholar 

  10. Pei XH, Nakanishi Y, Takayama K, Bai F, Hara N (1999) Benzo[a]pyrene activates the human p53 gene through induction of nuclear factor kappaB activity. J Biol Chem 274:35240–35246

    Article  CAS  PubMed  Google Scholar 

  11. Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287:1824–1827

    Article  CAS  PubMed  Google Scholar 

  12. Nylander K, Bourdon JC, Bray SE, Gibbs NK, Kay R, Hart I, Hall PA (2000) Transcriptional activation of tyrosinase and TRP-1 by p53 links UV irradiation to the protective tanning response. J Pathol 190:39–46

    Article  CAS  PubMed  Google Scholar 

  13. Ashcroft M, Taya Y, Vousden KH (2000) Stress signals utilize multiple pathways to stabilize p53. Mol Cell Biol 20:3224–3233

    Article  CAS  PubMed  Google Scholar 

  14. Godley LA, Eckhaus M, Paglino JJ, Owens J, Varmus HE (1996) Wild-type p53 transgenic mice exhibit altered differentiation of the ureteric bud and possess small kidneys. Genes Dev 110:836–850

    Google Scholar 

  15. Sheard MA, Vojtesek B, Janakova L, Kovarik J, Zaloudik J (1997) Up-regulation of Fas (CD95) in human p53 wild-type cancer cells treated with ionizing radiation. Int J Cancer 73:757–762

    Google Scholar 

  16. Lang F, Madlung J, Uhlemann AC, Risler T, Gulbins E (1998) Inhibition of Jurkat-T-lymphocyte Na+/H+-exchanger by CD95(Fas/Apo-1)-receptor stimulation. Pflugers Arch 436:377–383

    Article  CAS  PubMed  Google Scholar 

  17. Han X, Budreau AM, Chesney RW (2000) Identification of promoter elements involved in adaptive regulation of the taurine transporter gene: role of cytosolic Ca2+ signaling. Adv Exp Med Biol 483:535–544

    CAS  PubMed  Google Scholar 

  18. Park MS, Leon MD, Devarajan PD (2002) Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol 13:858–865

    Article  CAS  PubMed  Google Scholar 

  19. Brady HR, Kone BC, Stromski ME, Zeidel ML, Giebisch G, Gullans SR (1990) Mitochondrial injury: an early event in cisplatin toxicity to renal proximal tubules. Am J Physiol Renal Physiol 258:F1181–F1187

    CAS  Google Scholar 

  20. Huang H, Zhu L, Reid BR, Drobny GP, Hopkins PB (1995) Solution structure of a cisplatin-induced DNA interstrand cross-link. Science 270:1842–1845

    CAS  PubMed  Google Scholar 

  21. Okuda M, Masaki K, Fukatsu S, Hashimoto Y, Inui K (2000) Role of apoptosis in cisplatin-induced toxicity in the renal epithelial cell line LLC-PK1. Implication of the functions of apical membranes. Biochem Pharmacol 59:195–201

    Google Scholar 

  22. Lau AH (1999) Apoptosis induced by cisplatin nephrotoxic injury. Kidney Int 56:1295–1298

    Article  CAS  PubMed  Google Scholar 

  23. Ueda N, Kaushal GP, Shah SV (2000) Apoptotic mechanisms in acute renal failure. Am J Med 108:403–415

    Article  CAS  PubMed  Google Scholar 

  24. Megyesi J, Safirstein RL, Price PM (1998) Induction of p21WAF1/CIP1/SDI1 in kidney tubule cells affects the course of cisplatin-induced acute renal failure. J Clin Invest 101:777–782

    CAS  PubMed  Google Scholar 

  25. Takeda M, Kobayashi M, Shirato I, Endou H (1998) Involvement of macromolecule synthesis, endonuclease activation and c-fos expression in cisplatin-induced apoptosis of mouse proximal tubule cells. Toxicol Lett 94:83–92

    Article  CAS  PubMed  Google Scholar 

  26. Seabra V, Stachlewita RF, Thurman RG (1998) Taurine blunts LPS-induced increases in intracellular calcium and TNF-alpha production by Kupffer cells. J Leukoc Biol 64:615–621

    CAS  PubMed  Google Scholar 

  27. Gurujeyalakshmi G, Wang Y, Giri SN (2000) Suppression of bleomycin-induced nitric oxide production in mice by taurine and niacin. Nitric Oxide 4:399–411

    Article  CAS  PubMed  Google Scholar 

  28. Huang XM, Zhu WH, Kang ML (2003) Study on the effect of doxorubicin on expressions of genes encoding myocardial sarcoplasmic reticulum Ca2+ transport proteins and the effect of taurine on myocardial protection in rabbits. J Zhejiang Univ Sci 4:114–120

    CAS  PubMed  Google Scholar 

  29. Han X, Budreau AM, Chesney RW (2002) Transcriptional repression of taurine transporter gene (TauT) by p53 in renal cells. J Biol Chem 277:39266–39273

    Article  CAS  PubMed  Google Scholar 

  30. Han X, Chesney RW (2003) Regulation of taurine transporter gene (TauT) by WT1. FEBS Lett 540:71–76

    Article  CAS  PubMed  Google Scholar 

  31. Kreidberg JA, Loring SH, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691

    Article  CAS  PubMed  Google Scholar 

  32. Idelman G, Glaser T, Robert CT, Werner H (2003) WT1–p53 interactions in insulin-like growth factor-I receptor gene regulation. J Biol Chem 278:3474–3482

    Article  CAS  PubMed  Google Scholar 

  33. Maheswaran S, Englert C, Pelletie RJ (1995) The WT1 gene product stabilizes p53 and inhibits p53-mediated apoptosis. Genes Dev 9:2143–2156

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Andrea Patters for insightful comments and suggestions. This work was supported by grants from the National Kidney Foundation and Le Bonheur Chair of Excellence in Pediatrics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X., Chesney, R.W. Regulation of TauT by cisplatin in LLC-PK1 renal cells. Pediatr Nephrol 20, 1067–1072 (2005). https://doi.org/10.1007/s00467-005-1887-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-005-1887-8

Keywords

Navigation