Skip to main content

Advertisement

Log in

Optimized expression vector for ion channel studies in Xenopus oocytes and mammalian cells using alfalfa mosaic virus

  • Instruments and Techniques
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Plasmid vectors used for mammalian expression or for in vitro cRNA translation can differ substantially and are rarely cross-compatible. To make comparisons between mammalian and Xenopus oocyte expression systems, it would be advantageous to use a single vector without the need for shuttle vectors or subcloning. We have designed such a vector, designated pUNIV for universal, with elements that will allow for in vitro or ex vivo expression in multiple cell types. We tested the expression of pUNIV-based cDNA cassettes using enhanced green fluorescent protein and two forms of the type A γ-aminobutyric acid receptor (GABAAR) and compared pUNIV to vectors optimized for expression in either Xenopus oocytes or mammalian cells. In HEK293 cells, radioligand binding was robust, and patch clamp experiments showed that subtle macroscopic GABAAR kinetics were indistinguishable from our previous results. In Xenopus oocytes, agonist median effective concentration measurements matched previous work using a vector optimized for oocyte expression. Furthermore, we found that expression using pUNIV was significantly enhanced in oocytes and was remarkably long-lasting in both systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boileau AJ, Pearce RA, Czajkowski C (2005) Tandem subunits effectively constrain GABAA receptor stoichiometry and recapitulate receptor kinetics but are insensitive to GABAA receptor-associated protein. J Neurosci 25:11219–11230

    Article  PubMed  CAS  Google Scholar 

  2. Boileau AJ, Kucken AM, Evers AR, Czajkowski C (1998) Molecular dissection of benzodiazepine binding and allosteric coupling using chimeric γ-aminobutyric acidA receptor subunits. Mol Pharmacol 53:295–303

    PubMed  CAS  Google Scholar 

  3. Boileau AJ, Evers AR, Davis AF, Czajkowski C (1999) Mapping the agonist binding site of the GABAA receptor: evidence for a β-strand. J Neurosci 19:4847–4854

    PubMed  CAS  Google Scholar 

  4. Boileau AJ, Baur R, Sharkey LM, Sigel E, Czajkowski C (2002) The relative amount of cRNA coding for γ2 subunits affects stimulation by benzodiazepines in GABAA receptors expressed in Xenopus oocytes. Neuropharmacology 43:695–700

    Article  PubMed  CAS  Google Scholar 

  5. Boileau AJ, Li T, Benkwitz C, Czajkowski C, Pearce RA (2003) Effects of γ2S subunit incorporation on GABAA receptor macroscopic kinetics. Neuropharmacology 44:1003–1012

    Article  PubMed  CAS  Google Scholar 

  6. Bothwell AL, Paskind M, Reth M, Imanishi-Kari T, Rajewsky K, Baltimore D (1981) Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a gamma 2a variable region. Cell 24:625–637

    Article  PubMed  CAS  Google Scholar 

  7. Browning KS, Lax SR, Humphreys J, Ravel JM, Jobling SA, Gehrke L (1988) Evidence that the 5′-untranslated leader of mRNA affects the requirement for wheat germ initiation factors 4A, 4F, and 4G. J Biol Chem 263:9630–9634

    PubMed  CAS  Google Scholar 

  8. Buchman AR, Berg P (1988) Comparison of intron-dependent and intron-independent gene expression. Mol Cell Biol 8:4395–4405

    PubMed  CAS  Google Scholar 

  9. Dahan DS, Dibas MI, Petersson EJ, Auyeung VC, Chanda B, Bezanilla F, Dougherty DA, Lester HA (2004) A fluorophore attached to nicotinic acetylcholine receptor beta M2 detects productive binding of agonist to the alpha delta site. Proc Natl Acad Sci USA 101:10195–10200

    Article  PubMed  CAS  Google Scholar 

  10. Dai Z, Hooker BS, Quesenberry RD, Thomas SR (2005) Optimization of Acidothermus cellulolyticus endoglucanase (E1) production in transgenic tobacco plants by transcriptional, post-transcription and post-translational modification. Transgenic Res 14:627–643

    Article  PubMed  CAS  Google Scholar 

  11. Donnelly MI, Zhou M, Millard CS, Clancy S, Stols L, Eschenfeldt WH, Collart FR, Joachimiak A (2006) An expression vector tailored for large-scale, high-throughput purification of recombinant proteins. Protein Expr Purif 47:446–454

    Article  PubMed  CAS  Google Scholar 

  12. Drummond DR, Armstrong J, Colman A (1985) The effect of capping and polyadenylation on the stability, movement and translation of synthetic messenger RNAs in Xenopus oocytes. Nucleic Acids Res 13:7375–7394

    Article  PubMed  CAS  Google Scholar 

  13. DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP (1987) Analysis of mutation in human cells by using an Epstein–Barr virus shuttle system. Mol Cell Biol 7:379–387

    PubMed  CAS  Google Scholar 

  14. Fletcher L, Corbin SD, Browning KS, Ravel JM (1990) The absence of a m7G cap on beta-globin mRNA and alfalfa mosaic virus RNA 4 increases the amounts of initiation factor 4F required for translation. J Biol Chem 265:19582–19587

    PubMed  CAS  Google Scholar 

  15. Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TM (1987) A comparison of eukaryotic viral 5′-leader sequences as enhancers of mRNA expression in vivo. Nucleic Acids Res 15:8693–8711

    Article  PubMed  CAS  Google Scholar 

  16. Gehrke L, Auron PE, Quigley GJ, Rich A, Sonenberg N (1983) 5′-Conformation of capped alfalfa mosaic virus ribonucleic acid 4 may reflect its independence of the cap structure or of cap-binding protein for efficient translation. Biochemistry 22:5157–5164

    Article  PubMed  CAS  Google Scholar 

  17. Georgiev O, Bourquin JP, Gstaiger M, Knoepfel L, Schaffner W, Hovens C (1996) Two versatile eukaryotic vectors permitting epitope tagging, radiolabelling and nuclear localisation of expressed proteins. Gene 168:165–167

    Article  PubMed  CAS  Google Scholar 

  18. Gluzman Y (1981) SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23:175–182

    Article  PubMed  CAS  Google Scholar 

  19. Graham FL, van der Eb AJ (1973) Transformation of rat cells by DNA of human adenovirus 5. Virology 54:536–539

    Article  PubMed  CAS  Google Scholar 

  20. Hanazono Y, Yu JM, Dunbar CE, Emmons RV (1997) Green fluorescent protein retroviral vectors: low titer and high recombination frequency suggest a selective disadvantage. Hum Gene Ther 8:1313–1319

    PubMed  CAS  Google Scholar 

  21. Heinzel SS, Krysan PJ, Calos MP, DuBridge RB (1988) Use of simian virus 40 replication to amplify Epstein–Barr virus shuttle vectors in human cells. J Virol 62:3738–3746

    PubMed  CAS  Google Scholar 

  22. Huang MT, Gorman CM (1990) The simian virus 40 small-t intron, present in many common expression vectors, leads to aberrant splicing. Mol Cell Biol 10:1805–1810

    PubMed  CAS  Google Scholar 

  23. Im WB, Pregenzer JF, Binder JA, Dillon GH, Alberts GL (1995) Chloride channel expression with the tandem construct of α6-β2 GABAA receptor subunit requires a monomeric subunit of α6 or γ2. J Biol Chem 270:26063–26066

    Article  PubMed  CAS  Google Scholar 

  24. Jespersen T, Grunnet M, Angelo K, Klaerke DA, Olesen SP (2002) Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes. Biotechniques 32:536–538, 540

    PubMed  CAS  Google Scholar 

  25. Jobling SA, Gehrke L (1987) Enhanced translation of chimaeric messenger RNAs containing a plant viral untranslated leader sequence. Nature 325:622–625

    Article  PubMed  CAS  Google Scholar 

  26. Klein RL, Dayton RD, Leidenheimer NJ, Jansen K, Golde TE, Zweig RM (2006) Efficient neuronal gene transfer with AAV8 leads to neurotoxic levels of tau or green fluorescent proteins. Mol Ther 13:517–527

    Article  PubMed  CAS  Google Scholar 

  27. Kozak M (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196:947–950

    Article  PubMed  CAS  Google Scholar 

  28. Krieg PA, Melton DA (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res 12:7057–7070

    Article  PubMed  CAS  Google Scholar 

  29. Kucken AM, Teissere JA, Seffinga-Clark J, Wagner DA, Czajkowski C (2003) Structural requirements for imidazobenzodiazepine binding to GABAA receptors. Mol Pharmacol 63:289–296

    Article  PubMed  CAS  Google Scholar 

  30. Kucken AM, Wagner DA, Ward PR, Teissére JA, Boileau AJ, Czajkowski C (2000) Identification of benzodiazepine binding site residues in the γ2 subunit of the γ-aminobutyric acidA receptor. Mol Pharmacol 57:932–939

    PubMed  CAS  Google Scholar 

  31. Liman ER, Tytgat J, Hess P (1992) Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9:861–871

    Article  PubMed  CAS  Google Scholar 

  32. Mercado J, Czajkowski C (2006) Charged residues in the α1 and β2 pre-M1 regions involved in GABAA receptor activation. J Neurosci 26:2031–2040

    Article  PubMed  CAS  Google Scholar 

  33. Nowak MW, Kearney PC, Sampson JR, Saks ME, Labarca CG, Silverman SK, Zhong W, Thorson J, Abelson JN, Davidson N et al (1995) Nicotinic receptor binding site probed with unnatural amino acid incorporation in intact cells. Science 268:439–442

    Article  PubMed  CAS  Google Scholar 

  34. Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH (1989) Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338:582–585

    Article  PubMed  CAS  Google Scholar 

  35. Ray BK, Lawson TG, Kramer JC, Cladaras MH, Grifo JA, Abramson RD, Merrick WC, Thach RE (1985) ATP-dependent unwinding of messenger RNA structure by eukaryotic initiation factors. J Biol Chem 260:7651–7658

    PubMed  CAS  Google Scholar 

  36. Reisman D, Sugden B (1986) trans activation of an Epstein–Barr viral transcriptional enhancer by the Epstein–Barr viral nuclear antigen 1. Mol Cell Biol 6:3838–3846

    PubMed  CAS  Google Scholar 

  37. Reyes-Ruiz JM, Barrera-Saldana HA (2006) Proteins in a DNA world: expression systems for their study. Rev Invest Clin 58:47–55

    PubMed  CAS  Google Scholar 

  38. Rio DC, Clark SG, Tjian R (1985) A mammalian host-vector system that regulates expression and amplification of transfected genes by temperature induction. Science 227:23–28

    Article  PubMed  CAS  Google Scholar 

  39. Robertson GA, Warmke JM, Ganetzky B (1996) Potassium currents expressed from Drosophila and mouse egg cDNAs in Xenopus oocytes. Neuropharmacology 35:841–850

    Article  PubMed  CAS  Google Scholar 

  40. Sancar F, Czajkowski C (2004) A GABAA receptor mutation linked to human epilepsy (γ2R43Q) impairs cell surface expression of αβγ receptors. J Biol Chem 279:47034–47039

    Article  PubMed  CAS  Google Scholar 

  41. Schmidt EV, Christoph G, Zeller R, Leder P (1990) The cytomegalovirus enhancer: a pan-active control element in transgenic mice. Mol Cell Biol 10:4406–4411

    PubMed  CAS  Google Scholar 

  42. Senapathy P, Shapiro MB, Harris NL (1990) Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol 183:252–278

    PubMed  CAS  Google Scholar 

  43. Shih TM, Smith RD, Toro L, Goldin AL (1998) High-level expression and detection of ion channels in Xenopus oocytes. Methods Enzymol 293:529–556

    PubMed  CAS  Google Scholar 

  44. Sigel E, Baur R, Trube G, Mohler H, Malherbe P (1990) The effect of subunit composition of rat brain GABAA receptors on channel function. Neuron 5:703–711

    Article  PubMed  CAS  Google Scholar 

  45. Stuhmer W (1992) Electrophysiological recording from Xenopus oocytes. Methods Enzymol 207:319–339

    Article  PubMed  CAS  Google Scholar 

  46. Tretter V, Ehya N, Fuchs K, Sieghart W (1997) Stoichiometry and assembly of a recombinant GABAA receptor subtype. J Neurosci 17:2728–2737

    PubMed  CAS  Google Scholar 

  47. Verdoorn TA, Draguhn A, Ymer S, Seeburg PH, Sakmann B (1990) Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron 4:919–928

    Article  PubMed  CAS  Google Scholar 

  48. Xue H (1998) Identification of major phylogenetic branches of inhibitory ligand-gated channel receptors. J Mol Evol 47:323–333

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr. Cynthia Czajkowski for support and encouragement and Mark Nowak for helpful discussions. This work was funded by National Institute of Health grants MH66406 to C.C./A.B. and NS34727 to C.C.

Jeremy D. Bushman and José L. Mercado contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Boileau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatachalan, S.P., Bushman, J.D., Mercado, J.L. et al. Optimized expression vector for ion channel studies in Xenopus oocytes and mammalian cells using alfalfa mosaic virus. Pflugers Arch - Eur J Physiol 454, 155–163 (2007). https://doi.org/10.1007/s00424-006-0183-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-006-0183-1

Keywords

Navigation