Skip to main content

Advertisement

Log in

Amyloid precursor protein cytoplasmic domain with phospho-Thr668 accumulates in Alzheimer’s disease and its transgenic models: a role to mediate interaction of Aβ and tau

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Abnormal accumulation of Aβ and tau in senile plaques (SP) and neurofibrillary tangles (NFTs) is a key event in Alzheimer’s disease (AD). Here, we show that T668-phosphorylated cytoplasmic domain of APP (pT668-ACD) accumulates Aβ and tau in AD and its transgenic models. Anti-pT668 immunostaining of AD brain sections with hydrated autoclave enhancement identified SP neurites and NFTs in which pT668-ACD colocalizes with tau. We produced and examined transgenic (Tg) mice that overexpress human APP695, harboring the double Swedish/London mutation, and develop age-dependently Aβ plaques in the brain. All Aβ plaques contain co-accumulations of pT668-ACD, but co-accumulation of tau appears in only a fraction of Aβ plaques in older animals. We also examined the established tau Tg mice that overexpress the smallest human brain tau isoform and develop neuronal accumulations of tau in older animals. Examination of the old tau Tg mice showed that neuronal cells affected by tau accumulation induce co-accumulation of pT668-ACD. We speculate that in AD brains, extracellular Aβ deposition is accompanied by intracellular accumulation of pT668-ACD, followed by tau accumulation in the SP with dystrophic neurites and that neuronal cells affected by tau accumulation induce co-accumulation of pT668-ACD in NFTs. Thus, pT668-ACD is likely to mediate pathological interaction between Aβ and tau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akiyama H, Shin R-W, Uchida C, Kitamoto T, Uchida T (2005) Pin1 promotes production of Alzheimer’s amyloid beta from beta-cleaved amyloid precursor protein. Biochem Biophys Res Commun 336:521–529

    Article  PubMed  CAS  Google Scholar 

  2. Alvarez A, Toro R, Caceres A, Maccioni RB (1999) Inhibition of tau phosphorylating protein kinase cdk5 prevents beta-amyloid-induced neuronal death. FEBS Lett 459:421–426

    Article  PubMed  CAS  Google Scholar 

  3. Ando K, Iijima KI, Elliott JI, Kirino Y, Suzuki T (2001) Phosphorylation-dependent regulation of the interaction of amyloid precursor protein with Fe65 affects the production of beta-amyloid. J Biol Chem 276:40353–4036

    Article  PubMed  CAS  Google Scholar 

  4. Aplin AE, Gibb GM, Jacobsen JS, Gallo J-M, Anderton BH (1996) In vitro phosphorylation of the cytoplasmic domain of the amyloid precursor protein by glycogen synthase kinase-3β. J Neurochem 67:699–707

    Article  PubMed  CAS  Google Scholar 

  5. Arai H, Lee VM, Otvos L Jr, Greenberg BD, Lowery DE, Sharma SK, Schmidt ML, Trojanowski JQ (1990) Defined neurofilament, tau, and beta-amyloid precursor protein epitopes distinguish Alzheimer from non-Alzheimer senile plaques Proc Natl Acad Sci USA 87:2249–2253

    Article  PubMed  CAS  Google Scholar 

  6. Busciglio J, Lorenzo A, Yeh J, Yankner BA (1995) beta-amyloid fibrils induce tau phosphorylation and loss of microtubule binding. Neuron 14:879–888

    Article  PubMed  CAS  Google Scholar 

  7. Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40:427–446

    Article  PubMed  CAS  Google Scholar 

  8. Goedert M, Hasegawa M, Jakes R, Lawler S, Cuenda A, Cohen P (1997) Phosphorylation of microtubule-associated protein tau by stress-activated protein kinases. FEBS Lett 409:57–62

    Article  PubMed  CAS  Google Scholar 

  9. Gotz J, Chen F, van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Aβ 42 fibrils. Science 293:1491–1495

    Article  PubMed  CAS  Google Scholar 

  10. Greenberg SG, Davies P, Schein JD, Binder LI (1992) Hydrofluoric acid-treated tau PHF proteins display the same biochemical properties as normal tau. J Biol Chem 267:564–569

    PubMed  CAS  Google Scholar 

  11. Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274:99–102

    Article  PubMed  CAS  Google Scholar 

  12. Iijima K, Ando K, Takeda S, Satoh Y, Seki T, Itohara S, Greengard P, Kirino Y, Nairn AC, Suzuki T (2000) Neuron-specific phosphorylation of Alzheimer’s beta-amyloid precursor protein by cyclin-dependent kinase 5. J Neurochem 75:1085–1091

    Article  PubMed  CAS  Google Scholar 

  13. Imahori K, Uchida T (1997) Physiology and pathology of tau protein kinases in relation to Alzheimer’s disease. J Biochem (Tokyo) 121:179–188

    CAS  Google Scholar 

  14. Ishihara T, Zhang B, Higuchi M, Yoshiyama Y, Trojanowski JQ, Lee VM (2001) Age-dependent induction of congophilic neurofibrillary tau inclusions in tau transgenic mice. Am J Pathol 158:555–562

    PubMed  CAS  Google Scholar 

  15. Iwatsubo T, Yamaguchi H, Fujimuro M, Yokosawa H, Ihara Y, Trojanowski JQ, Lee VM (1996) Purification and characterization of Lewy bodies from the brains of patients with diffuse Lewy body disease. Am J Pathol 148:1517–1529

    PubMed  CAS  Google Scholar 

  16. Kitamoto T, Ogomori K, Tateishi J, Prusiner SB (1987) Formic acid pretreatment enhances immunostaining of cerebral and systemic amyloids. Lab Invest 57:230–236

    PubMed  CAS  Google Scholar 

  17. Kitamoto T, Mohri S, Ironside JW, Miyoshi I, Tanaka T, Kitamoto N, Itohara S, Kasai N, Katsuki M, Higuchi J, Muramoto T, Shin R-W (2002) Follicular dendritic cell of the knock-in mouse provides a new bioassay for human prions. Biochem Biophys Res Commun 294:280–286

    Article  PubMed  CAS  Google Scholar 

  18. Lang E, Szendrei GI, Lee VM-Y, Otvos L Jr (1992) Immunological and conformation characterization of a phosphorylated immunodominant epitope on the paired helical filaments found in Alzheimer’s disease. Biochem Biophys Res Commun 187:783–790

    Article  PubMed  CAS  Google Scholar 

  19. Lee MS, Kao SC, Lemere CA, Xia W, Tseng HC, Zhou Y, Neve R, Ahlijanian MK, Tsai LH (2003) APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol 163:83–95

    Article  PubMed  CAS  Google Scholar 

  20. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491

    Article  PubMed  CAS  Google Scholar 

  21. Mori H, Kondo J, Ihara Y (1987) Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science 235:1641–1644

    Article  PubMed  CAS  Google Scholar 

  22. Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Titani K, Ihara Y (1993) Ubiquitin is conjugated with amino-terminally processed tau in paired helical filaments. Neuron 10:1151–1160

    Article  PubMed  CAS  Google Scholar 

  23. Murayama H, Shin R-W, Higuchi J, Shibuya S, Muramoto T, Kitamoto T (1999) Interaction of aluminum with PHFtau in Alzheimer’s disease neurofibrillary degeneration evidenced by desferrioxamine-assisted chelating autoclave method. Am J Pathol 155:877–885

    PubMed  CAS  Google Scholar 

  24. Oishi M, Nairn AC, Czernik AJ, Lim GS, Isohara T, Gandy SE, Greengard P, Suzuki T (1997) The cytoplasmic domain of Alzheimer’s amyloid precursor protein is phosphorylated at Thr654, Ser655, and Thr668 in adult rat brain and cultured cells. Mol Med 3:111–123

    PubMed  CAS  Google Scholar 

  25. Sato H, Hirata J, Furukawa M, Kuroda N, Shiraki H, Maeda Y, Okochi K (1991) Identification of the region including the epitope for a monoclonal antibody which can neutralize human parvovirus B19. J Virol 65:1667–1672

    PubMed  CAS  Google Scholar 

  26. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    PubMed  CAS  Google Scholar 

  27. Shin R-W, Ogomori K, Kitamoto T, Tateishi J (1989) Increased tau accumulation in senile plaques as a hallmark in Alzheimer’s disease. Am J Pathol 134:1365–1371

    PubMed  CAS  Google Scholar 

  28. Shin R-W, Iwaki T, Kitamoto T, Tateishi J (1991) Hydrated autoclave pretreatment enhances tau immunoreactivity in formalin-fixed normal and Alzheimer’s disease brain tissues. Lab Invest 64:693–702

    PubMed  CAS  Google Scholar 

  29. Shin R-W, Iwaki T, Kitamoto T, Sato Y, Tateishi J (1992) Massive accumulation of modified tau and severe depletion of normal tau characterize the cerebral cortex and white matter of Alzheimer’s disease. Demonstration using the hydrated autoclaving method. Am J Pathol 140:937–945

    PubMed  CAS  Google Scholar 

  30. Shin R-W, Bramblett GT, Lee VM-Y, Trojanowski JQ (1993) Alzheimer disease A68 proteins injected into rat brain induce codeposits of β-amyloid, ubiquitin, and α1-antichymotrypsin. Proc Natl Acad Sci USA 90:6825–6828

    Article  PubMed  CAS  Google Scholar 

  31. Shin R-W, Saido TC, Maeda M, Kitamoto T (2005) Novel α-secretase cleavage of Alzheimer’s amyloid beta precursor protein in the endoplasmic reticulum of COS7 cells. Neurosci Lett 376:14–19

    Article  PubMed  CAS  Google Scholar 

  32. Standen CL, Brownlees J, Grierson AJ, Kesavapany S, Lau K-F, McLoughlin DM, Miller CCJ (2001) Phosphorylation of thr (668) in the cytoplasmic domain of the Alzheimer’s disease amyloid precursor protein by stress-activated protein kinase 1b (Jun N-terminal kinase-3). J Neurochem 76:316–320

    Article  PubMed  CAS  Google Scholar 

  33. Takashima A, Honda T, Yasutake K, Michel G, Murayama O, Murayama M, KIshiguro K, Yamaguchi H (1998) Activation of tau protein kinase I/glycogen synthase kinase-3β by amyloid β peptide (25–35) enhances phosphorylation of tau in hippocampal neurons. Neurosci Res 31:317–323

    Article  PubMed  CAS  Google Scholar 

  34. Tomita S, Ozaki T, Taru H, Oguchi S, Takeda S, Yagi Y, Sakiyama S, Kirino Y, Suzuki T (1999) Interaction of a neuron-specific protein containing PDZ domains with Alzheimer’s amyloid precursor protein. J Biol Chem 274:2243–2254

    Article  PubMed  CAS  Google Scholar 

  35. Weidemann A, Konig G, Bunke D, Fischer P, J. Salbaum M, C.L. Masters CL, Beyreuther K (1989) Identification, biogenesis, and localization of precursor of Alzheimer’s disease A4 amyloid protein. Cell 57:115–126

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. J. Q. Trojanowski and V.M.-Y. Lee for providing the brain samples of the tau transgenic mice, Drs. P. Davies and S. Greenberg for providing PHF1, Dr. T. Suzuki for UT-18, and Dr. H. Sato for BE11. We also thank Ms. H. Kudo, Ms. K. Abe and Ms. A. Yamazaki for technical assistance. This study was supported by a grant from the Ministry of Health, Labor, and Welfare, Japan; and grants-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryong-Woon Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, RW., Ogino, K., Shimabuku, A. et al. Amyloid precursor protein cytoplasmic domain with phospho-Thr668 accumulates in Alzheimer’s disease and its transgenic models: a role to mediate interaction of Aβ and tau. Acta Neuropathol 113, 627–636 (2007). https://doi.org/10.1007/s00401-007-0211-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-007-0211-z

Keywords

Navigation