Skip to main content

Advertisement

Log in

Gene transfer as a strategy to achieve permanent cardioprotection II: rAAV-mediated gene therapy with heme oxygenase-1 limits infarct size 1 year later without adverse functional consequences

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Extensive evidence indicates that heme oxygenase-1 (HO-1) exerts potent cytoprotective effects in response to stress. Previous studies have shown that gene therapy with HO-1 protects against myocardial ischemia/reperfusion injury for up to 8 weeks after gene transfer. However, the long-term effects of HO-1 gene therapy on myocardial ischemic injury and function are unknown. To address this issue, we created a recombinant adeno-associated viral vector carrying the HO-1 gene (rAAV/HO-1) that enables long-lasting transgene expression. Mice received injections in the anterior LV wall of rAAV/LacZ (LacZ group) or rAAV/HO-1 (HO-1 group); 1 year later, they were subjected to a 30-min coronary occlusion (O) and 4 h of reperfusion (R). Cardiac HO-1 gene expression was confirmed at 1 month and 1 year after gene transfer by immunoblotting and immunohistochemistry analyses. In the HO-1 group, infarct size (% of risk region) was dramatically reduced at 1 year after gene transfer (11.2 ± 2.1%, n = 12, vs. 44.7 ± 3.6%, n = 8, in the LacZ group; P < 0.05). The infarct-sparing effects of HO-1 gene therapy at 1 year were as powerful as those observed 24 h after ischemic PC (six 4-min O/4-min R cycles) (15.0 ± 1.7%, n = 10). There were no appreciable changes in LV fractional shortening, LV ejection fraction, or LV end-diastolic or end-systolic diameter at 1 year after HO-1 gene transfer as compared to the age-matched controls or with the LacZ group. Histology showed no inflammation in the myocardium 1 year after rAAV/HO-1-mediated gene transfer. These results demonstrate, for the first time, that rAAV-mediated HO-1 gene transfer confers long-term (1 year), possibly permanent, cardioprotection without adverse functional consequences, providing proof of principle for the concept of achieving prophylactic cardioprotection (i.e., “immunization against infarction”).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Abraham NG, Asija A, Drummond G, Peterson S (2007) Heme oxygenase-1 gene therapy: recent advances and therapeutic applications. Curr Gene Ther 7:89–108

    Article  PubMed  CAS  Google Scholar 

  2. Abraham NG, Kappas A (2005) Heme oxygenase and the cardiovascular-renal system. Free Radic Biol Med 39:1–25. doi:10.1016/j.freeradbiomed.2005.03.010

    Article  PubMed  CAS  Google Scholar 

  3. Abraham NG, Kappas A (2008) Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 60:79–127. doi:10.1124/pr.107.07104

    Article  PubMed  CAS  Google Scholar 

  4. Akagi R, Takahashi T, Sassa S (2005) Cytoprotective effects of heme oxygenase in acute renal failure. Contrib Nephrol 148:70–85. doi:10.1159/000086044

    Article  PubMed  CAS  Google Scholar 

  5. Alam J, Cook JL (2007) How many transcription factors does it take to turn on the heme oxygenase-1 gene? Am J Respir Cell Mol Biol 36:166–174. doi:10.1165/rcmb.2006-0340TR

    Article  PubMed  CAS  Google Scholar 

  6. Bolli R (2000) The late phase of preconditioning. Circ Res 87:972–983

    PubMed  CAS  Google Scholar 

  7. Bolli R, Li QH, Tang XL, Guo Y, Xuan YT, Rokosh G, Dawn B (2007) The late phase of preconditioning and its natural clinical application–gene therapy. Heart Fail Rev 12:189–199. doi:10.1007/s10741-007-9031-4

    Article  PubMed  CAS  Google Scholar 

  8. Dawn B, Bolli R (2005) HO-1 induction by HIF-1: a new mechanism for delayed cardioprotection? Am J Physiol Heart Circ Physiol 289:H522–H524. doi:10.1152/ajpheart.00274.2005

    Article  PubMed  CAS  Google Scholar 

  9. Flotte TR, Schwiebert EM, Zeitlin PL, Carter BJ, Guggino WB (2005) Correlation between DNA transfer and cystic fibrosis airway epithelial cell correction after recombinant adeno-associated virus serotype 2 gene therapy. Hum Gene Ther 16:921–928. doi:10.1089/hum.2005.16.921

    Article  PubMed  CAS  Google Scholar 

  10. Gardin JM, Siri FM, Kitsis RN, Edwards JG, Leinwand LA (1995) Echocardiographic assessment of left ventricular mass and systolic function in mice. Circ Res 76:907–914

    PubMed  CAS  Google Scholar 

  11. Guo Y, Bao W, Wu WJ, Shinmura K, Tang XL, Bolli R (2000) Evidence for an essential role of cyclooxygenase-2 as a mediator of the late phase of ischemic preconditioning in mice. Basic Res Cardiol 95:479–484

    Article  PubMed  CAS  Google Scholar 

  12. Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, Han H, Laubach VE, Ping P, Yang Z, Qiu Y, Bolli R (1999) The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Natl Acad Sci USA 96:11507–11512

    Article  PubMed  CAS  Google Scholar 

  13. Guo Y, Stein AB, Wu WJ, Tan W, Zhu X, Li QH, Dawn B, Motterlini R, Bolli R (2004) Administration of a CO-releasing molecule at the time of reperfusion reduces infarct size in vivo. Am J Physiol Heart Circ Physiol 286:H1649–H1653. doi:10.1152/ajpheart.00971.2003

    Article  PubMed  CAS  Google Scholar 

  14. Guo Y, Wu WJ, Qiu Y, Tang XL, Yang Z, Bolli R (1998) Demonstration of an early and a late phase of ischemic preconditioning in mice. Am J Physiol 275:H1375–H1387

    PubMed  CAS  Google Scholar 

  15. Hajjar RJ, Schmidt U, Matsui T, Guerrero JL, Lee KH, Gwathmey JK, Dec GW, Semigran MJ, Rosenzweig A (1998) Modulation of ventricular function through gene transfer in vivo. Proc Natl Acad Sci USA 95:5251–5256

    Article  PubMed  CAS  Google Scholar 

  16. Hajjar RJ, Zsebo K (2007) AAV vectors and cardiovascular disease: targeting TNF receptor in the heart: clue to way forward with AAV? Gene Ther 14:1611–1612. doi:10.1038/sj.gt.3303047

    Article  PubMed  CAS  Google Scholar 

  17. Hangaishi M, Ishizaka N, Aizawa T, Kurihara Y, Taguchi J, Nagai R, Kimura S, Ohno M (2000) Induction of heme oxygenase-1 can act protectively against cardiac ischemia/reperfusion in vivo. Biochem Biophys Res Commun 279:582–588. doi:10.1006/bbrc.2000.3973

    Article  PubMed  CAS  Google Scholar 

  18. Henckaerts E, Linden RM (2010) Adeno-associated virus: a key to the human genome? Future Virol 5:555–574. doi:10.2217/fvl.10.48

    Article  PubMed  CAS  Google Scholar 

  19. Hester ME, Foust KD, Kaspar RW, Kaspar BK (2009) AAV as a gene transfer vector for the treatment of neurological disorders: novel treatment thoughts for ALS. Curr Gene Ther 9:428–433

    Article  PubMed  CAS  Google Scholar 

  20. Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919. doi:10.1161/CIRCULATIONAHA.108.805242

    Article  PubMed  Google Scholar 

  21. Jiang Y, Chen L, Tang Y, Ma G, Shen C, Qi C, Zhu Q, Yao Y, Liu N (2010) HO-1 gene overexpression enhances the beneficial effects of superparamagnetic iron oxide labeled bone marrow stromal cells transplantation in swine hearts underwent ischemia/reperfusion: an MRI study. Basic Res Cardiol 105:431–442. doi:10.1007/s00395-009-0079-2

    Article  PubMed  CAS  Google Scholar 

  22. Jones JM, Wilson KH, Koch WJ, Milano CA (2002) Adenoviral gene transfer to the heart during cardiopulmonary bypass: effect of myocardial protection technique on transgene expression. Eur J Cardiothorac Surg 21:847–852 pii: S1010794002000787

    Article  PubMed  CAS  Google Scholar 

  23. Kapitulnik J, Maines MD (2009) Pleiotropic functions of biliverdin reductase: cellular signaling and generation of cytoprotective and cytotoxic bilirubin. Trends Pharmacol Sci 30:129–137. doi:10.1016/j.tips.2008.12.003

    Article  PubMed  CAS  Google Scholar 

  24. Katori M, Buelow R, Ke B, Ma J, Coito AJ, Iyer S, Southard D, Busuttil RW, Kupiec-Weglinski JW (2002) Heme oxygenase-1 overexpression protects rat hearts from cold ischemia/reperfusion injury via an antiapoptotic pathway. Transplantation 73:287–292

    Article  PubMed  CAS  Google Scholar 

  25. Li Q, Guo Y, Ou Q, Chen N, Wu WJ, Yuan F, O’Brien E, Wang T, Luo L, Hunt GN, Zhu X, Bolli R (2011) Intracoronary administration of cardiac stem cells in mice: a new, improved technique for cell therapy in murine models. Basic Res Cardiol. doi:10.1007/s00395-011-0180-1

  26. Li Q, Guo Y, Ou Q, Cui C, Wu WJ, Tan W, Zhu X, Lanceta LB, Sanganalmath SK, Dawn B, Shinmura K, Rokosh GD, Wang S, Bolli R (2009) Gene transfer of inducible nitric oxide synthase affords cardioprotection by upregulating heme oxygenase-1 via a nuclear factor-{kappa}B-dependent pathway. Circulation 120:1222–1230. doi:10.1161/CIRCULATIONAHA.108.778688

    Article  PubMed  CAS  Google Scholar 

  27. Li Q, Guo Y, Tan W, Ou Q, Wu WJ, Sturza D, Dawn B, Hunt G, Cui C, Bolli R (2007) Cardioprotection afforded by inducible nitric oxide synthase gene therapy is mediated by cyclooxygenase-2 via a nuclear factor-kappaB dependent pathway. Circulation 116:1577–1584. doi:10.1161/CIRCULATIONAHA.107.689810

    Article  PubMed  CAS  Google Scholar 

  28. Li Q, Guo Y, Tan W, Stein AB, Dawn B, Wu WJ, Zhu X, Lu X, Xu X, Siddiqui T, Tiwari S, Bolli R (2006) Gene therapy with iNOS provides long-term protection against myocardial infarction without adverse functional consequences. Am J Physiol Heart Circ Physiol 290:H584–H589. doi:10.1152/ajpheart.00855.2005

    Article  PubMed  CAS  Google Scholar 

  29. Li Q, Guo Y, Wu W, Ou Q, Zhu X, Tan W, Yuan F, Chen N, Dawn B, Luo L, O’Brien E, Bolli R (2011) Gene transfer as a strategy to achieve permanent cardioprotection I: rAAV-mediated gene therapy with inducible nitric oxide synthase limits infarct size 1 year later without adverse functional consequences. Basic Res Cardiol (in press)

  30. Li Q, Guo Y, Xuan YT, Lowenstein CJ, Stevenson SC, Prabhu SD, Wu WJ, Zhu Y, Bolli R (2003) Gene therapy with inducible nitric oxide synthase protects against myocardial infarction via a cyclooxygenase-2-dependent mechanism. Circ Res 92:741–748

    Article  PubMed  CAS  Google Scholar 

  31. Liu Y, Li P, Lu J, Xiong W, Oger J, Tetzlaff W, Cynader M (2008) Bilirubin possesses powerful immunomodulatory activity and suppresses experimental autoimmune encephalomyelitis. J Immunol 181:1887–1897 pii: 181/3/1887

    PubMed  CAS  Google Scholar 

  32. Lu R, Peng J, Xiao L, Deng HW, Li YJ (2002) Heme oxygenase-1 pathway is involved in delayed protection induced by heat stress against cardiac ischemia-reperfusion injury. Int J Cardiol 82:133–140 pii: S016752730100612X

    Article  PubMed  Google Scholar 

  33. Manno CS, Chew AJ, Hutchison S, Larson PJ, Herzog RW, Arruda VR, Tai SJ, Ragni MV, Thompson A, Ozelo M, Couto LB, Leonard DG, Johnson FA, McClelland A, Scallan C, Skarsgard E, Flake AW, Kay MA, High KA, Glader B (2003) AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 101:2963–2972. doi:10.1182/blood-2002-10-3296

    Article  PubMed  CAS  Google Scholar 

  34. Marini M, Lapalombella R, Margonato V, Ronchi R, Samaja M, Scapin C, Gorza L, Maraldi T, Carinci P, Ventura C, Veicsteinas A (2007) Mild exercise training, cardioprotection and stress genes profile. Eur J Appl Physiol 99:503–510. doi:10.1007/s00421-006-0369-4

    Article  PubMed  Google Scholar 

  35. Matsushita T, Elliger S, Elliger C, Podsakoff G, Villarreal L, Kurtzman GJ, Iwaki Y, Colosi P (1998) Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther 5:938–945. doi:10.1038/sj.gt.3300680

    Article  PubMed  CAS  Google Scholar 

  36. Melo LG, Agrawal R, Zhang L, Rezvani M, Mangi AA, Ehsan A, Griese DP, Dell’Acqua G, Mann MJ, Oyama J, Yet SF, Layne MD, Perrella MA, Dzau VJ (2002) Gene therapy strategy for long-term myocardial protection using adeno-associated virus-mediated delivery of heme oxygenase gene. Circulation 105:602–607

    Article  PubMed  CAS  Google Scholar 

  37. Morse D, Choi AM (2002) Heme oxygenase-1: the “emerging molecule” has arrived. Am J Respir Cell Mol Biol 27:8–16

    PubMed  CAS  Google Scholar 

  38. Muruve DA (2004) The innate immune response to adenovirus vectors. Hum Gene Ther 15:1157–1166. doi:10.1089/hum.2004.15.1157

    Article  PubMed  CAS  Google Scholar 

  39. Post H, Heusch G (2002) Ischemic preconditioning. Experimental facts and clinical perspective. Minerva Cardioangiol 50:569–605

    PubMed  CAS  Google Scholar 

  40. Samulski RJ, Zhu X, Xiao X, Brook JD, Housman DE, Epstein N, Hunter LA (1991) Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 10:3941–3950

    PubMed  CAS  Google Scholar 

  41. Thielmann M, Kottenberg E, Boengler K, Raffelsieper C, Neuhaeuser M, Peters J, Jakob H, Heusch G (2010) Remote ischemic preconditioning reduces myocardial injury after coronary artery bypass surgery with crystalloid cardioplegic arrest. Basic Res Cardiol 105:657–664. doi:10.1007/s00395-010-0104-5

    Article  PubMed  CAS  Google Scholar 

  42. Vivaldi MT, Kloner RA, Schoen FJ (1985) Triphenyltetrazolium staining of irreversible ischemic injury following coronary artery occlusion in rats. Am J Pathol 121:522–530

    PubMed  CAS  Google Scholar 

  43. Wright JF, Qu G, Tang C, Sommer JM (2003) Recombinant adeno-associated virus: formulation challenges and strategies for a gene therapy vector. Curr Opin Drug Discov Devel 6:174–178

    PubMed  CAS  Google Scholar 

  44. Yet SF, Tian R, Layne MD, Wang ZY, Maemura K, Solovyeva M, Ith B, Melo LG, Zhang L, Ingwall JS, Dzau VJ, Lee ME, Perrella MA (2001) Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circ Res 89:168–173

    Article  PubMed  CAS  Google Scholar 

  45. Yoshida T, Maulik N, Ho YS, Alam J, Das DK (2001) H(mox-1) constitutes an adaptive response to effect antioxidant cardioprotection: a study with transgenic mice heterozygous for targeted disruption of the heme oxygenase-1 gene. Circulation 103:1695–1701

    PubMed  CAS  Google Scholar 

  46. Zhao HX, Wang XL, Wang YH, Wu Y, Li XY, Lv XP, Zhao ZQ, Zhao RR, Liu HR (2010) Attenuation of myocardial injury by postconditioning: role of hypoxia inducible factor-1alpha. Basic Res Cardiol 105:109–118. doi:10.1007/s00395-009-0044-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by NIH grants R01 HL55757, HL-70897, HL-76794, and P01HL78825.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Bolli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Guo, Y., Ou, Q. et al. Gene transfer as a strategy to achieve permanent cardioprotection II: rAAV-mediated gene therapy with heme oxygenase-1 limits infarct size 1 year later without adverse functional consequences. Basic Res Cardiol 106, 1367–1377 (2011). https://doi.org/10.1007/s00395-011-0208-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-011-0208-6

Keywords

Navigation