Skip to main content

Advertisement

Log in

Functional role of TASK-1 in the heart: studies in TASK-1-deficient mice show prolonged cardiac repolarization and reduced heart rate variability

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

TASK-1, a member of the recently identified K2P channel family, is mainly expressed in the heart and the nervous system. TASK-1 is regulated by several physiological and pathological conditions and functions as a background potassium channel. However, there are limited data concerning the significance of TASK-1 in cardiac physiology. We studied the functional role of TASK-1 in the heart by cardiac phenotyping the TASK-1-deficient mouse (TASK-1−/−). TASK-1 was predominantly expressed in the ventricles of control animals. Real-time PCR and immunoblot demonstrated that the expression of seven other K2P channels was unchanged in TASK-1−/− mice. No structural or functional abnormalities were found by histology and echocardiography. Electrophysiological studies recording monophasic action potentials (MAPs) showed a significant prolongation of action potential duration in spontaneously beating and atrially paced hearts, respectively. Surface ECGs of TASK-1−/− mice revealed a significant prolongation of the rate corrected QT interval. Telemetric ECG recordings for 24 h, during physical and pharmacological stress testing and after ischemia/reperfusion injury did not result in a higher incidence of arrhythmias. Infarct size was comparable in both genotypes. However, TASK-1−/− mice had a higher mean heart rate and significantly reduced heart rate variability (HRV). Time and frequency domain measurements as well as baroreceptor reflex testing revealed a sympathovagal imbalance with a shift to an increase in sympathetic influence in TASK-1−/− mice. In conclusion, TASK-1 plays a functional role in the repolarization of the cardiac action potential in vivo and contributes to the maintenance of HRV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

TWIK:

Tandem pore domain weak inward rectifying K+ channel

TASK:

TWIK related acid-sensitive K+ channel

TREK:

TWIK related K+ channel

RRU:

Relative RNA unit

AR:

Area at risk

References

  1. Aller MI, Veale EL, Linden A-M, Sandu C, Schwaninger M, Evans LJ, Korpi ER, Mathie A, Wisden W, Brickley SG (2005) Modifying the subunit composition of TASK-1 channels alters the modulation of a leak conductance in cerebellar granule neurons. J Neurosci 25:11455–11467

    Article  CAS  PubMed  Google Scholar 

  2. Backx PH, Marban E (1993) Background potassium current active during the plateau of the action potential in guinea pig ventricular myocytes. Circ Res 72:890–900

    CAS  PubMed  Google Scholar 

  3. Bárándi L, Virág L, Jost N, Horváth Z, Koncz I, Papp R, Harmati G, Horváth B, Szentandrássy N, Bányász T, Magyar J, Zaza A, Varró A, Nánási PP (2010) Reverse rate-dependent changes are determined by baseline action potential duration in mammalian and human ventricular preparations. Basic Res Cardiol 105:315–323

    Article  PubMed  Google Scholar 

  4. Barbuti A, Ishii S, Shimizu T, Robinson RB, Feinmark SJ (2002) Block of the background K+ channel TASK-1 contributes to arrhythmogenic effects of platelet-activating factor. Am J Physiol Heart Circ Physiol 282:H2024–H2030

    CAS  PubMed  Google Scholar 

  5. Bayliss DA, Sirois JE, Talley EM (2003) The TASK family: two pore-domain background K+ channels. Mol Interv 3:205–219

    Article  CAS  PubMed  Google Scholar 

  6. Bernstein D (2003) Exercise assessment of transgenic models in human cardiovascular disease. Physiol Genomics 13:217–226

    CAS  PubMed  Google Scholar 

  7. Besana A, Barbuti A, Tateyama MA, Symes AJ, Robinson RB, Feinmark SJ (2004) Activation of protein kinase Cε inhibits the two-pore domain K+ channel, TASK-1, inducing repolarization abnormalities in cardiac ventricular myocytes. J Biol Chem 279:33154–33160

    Article  CAS  PubMed  Google Scholar 

  8. Casimiro MC, Knollmann BC, Ebert SN, Vary JC Jr, Greene AE, Franz MR, Grinberg A, Huang SP, Pfeifer K (2001) Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange–Nielsen syndrome. Proc Natl Acad Sci USA 98:2526–2531

    Article  CAS  PubMed  Google Scholar 

  9. Chandler NJ, Greener ID, Tellez JO, Inada S, Musa H, Molenaar P, DiFrancesco D, Baruscotti M, Longhi R, Anderson RH, Billeter R, Sharma V, Sigg DC, Boyett MR, Dobrzynski H (2009) Molecular architecture of the human sinus node. Insights into the function of the cardiac pacemaker. Circulation 119:1562–1575

    Article  PubMed  Google Scholar 

  10. Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A, Pountney D, Saganich M, Vaga-Saenz de Miera E, Rudy B (1999) Molecular diversity of K+ channels. Ann N Y Acad Sci 868:233–285

    Article  CAS  PubMed  Google Scholar 

  11. Collins KA, Korcarz CE, Lang RM (2003) Use of echocardiography for the phenotypic assessment of genetically altered mice. Physiol Genomics 13:227–239

    PubMed  Google Scholar 

  12. Czirjak G, Fischer T, Spät A, Lesage F, Enyedi P (2000) TASK (TWIK-related acid-sensitive K+ channel) is expressed in glomerulosa cells of rat adrenal cortex and inhibited by angiotensin II. Mol Endocrinol 14:863–874

    Article  CAS  PubMed  Google Scholar 

  13. Czirjak G, Petheo GL, Spät A, Enyedi P (2001) Inhibition of TASK-1 potassium channel by phospholipase C. Am J Physiol Cell Physiol 281:C700–C708

    CAS  PubMed  Google Scholar 

  14. Davies LA, Hu C, Guagliardo NA, Sen N, Chen X, Talley EM, Carey RM, Bayliss DA, Barrett PQ (2008) TASK channel deletion in mice causes primary hyperaldosteronism. Proc Natl Acad Sci USA 105:2203–2208

    Article  CAS  PubMed  Google Scholar 

  15. Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M (1997) TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 16:5464–5471

    Article  CAS  PubMed  Google Scholar 

  16. Ellinghaus P, Scheubel RJ, Dobrev D, Ravens U, Holtz J, Huetter J, Nielsch U, Morawietz H (2005) Comparing the global mRNA expression profile of human atrial and ventricular myocardium with high-density oligonucleotide arrays. J Thorac Cardiovasc Surg 129:1383–1390

    Article  CAS  PubMed  Google Scholar 

  17. Fabritz L, Kirchhof P, Franz MR, Eckhardt L, Mönnig G, Milberg P, Breithardt G, Haverkamp W (2003) Prolonged action potential durations, increased dispersion of repolarization, and polymorphic ventricular tachycardia in a mouse model of proarrhythmia. Basic Res Cardiol 98:25–32

    Article  PubMed  Google Scholar 

  18. Gehrmann J, Frantz S, Maguire CT, Vargas M, Ducharme A, Wakimoto H, Lee RT, Berul CI (2001) Electrophysiological characterization of murine myocardial ischemia and infarction. Basic Res Cardiol 96:237–250

    Article  CAS  PubMed  Google Scholar 

  19. Gurney AM, Osipenko AN, MacMillan D, McFarlane KM, Tate RJ, Kempsill FEJ (2003) Two-pore domain K channel, TASK-1, in pulmonary artery smooth muscle cells. Circ Res 93:957–964

    Article  CAS  PubMed  Google Scholar 

  20. Gurney AM, Manoury B (2009) Two-pore potassium channels in the cardiovascular system. Eur Biophys J 38:305–318

    Article  CAS  PubMed  Google Scholar 

  21. Heitzmann D, Derand R, Jungbauer S, Bandulik S, Sterner C, Schweda F, El Wakil A, Lalli E, Guy N, Mengual R, Reichold M, Tegtmeier I, Bendahhou S, Gomez-Sanchez CE, Aller MI, Wisden W, Weber A, Lesage F, Warth R, Barhanin J (2008) Invalidation of TASK-1 potassium channels disrupts adrenal gland zonation and mineralocorticoid homeostasis. EMBO J 27:179–187

    Article  CAS  PubMed  Google Scholar 

  22. Jost N, Acsai K, Horváth B, Bányász T, Baczkó I, Bitay M, Bogáts G, Nánási PP (2009) Contribution of IKr and IK1 to ventricular repolarization in canine and human myocytes: is there any influence of action potential duration? Basic Res Cardiol 104:33–41

    Article  CAS  PubMed  Google Scholar 

  23. Kirchheim HR, Just A, Ehmke H (1998) Physiology and pathophysiology of baroreceptor function and neuro-hormonal abnormalities in heart failure. Basic Res Cardiol 93(Suppl1):1–22

    Article  CAS  PubMed  Google Scholar 

  24. Knollmann BC, Katchmann AN, Franz MR (2001) Monophasic action potential recordings from intact mouse heart: validation, regional heterogeneity, and relation to refractoriness. J Cardiovasc Electrophysiol 12:1286–12941

    Article  CAS  PubMed  Google Scholar 

  25. Ko SH, Lee SK, Han YJ, Choe H, Kwak YG, Chae SW, Cho KP, Song HS (1997) Blockade of myocardial ATP-sensitive potassium channels by ketamine. Anesthesiology 87:68–74

    Article  CAS  PubMed  Google Scholar 

  26. Koizumi H, Smerin SE, Yamanishi T, Moorjani BR, Zhang R, Smith JC (2010) TASK channels contribute to the K+-dominated leak current regulation respiratory rhythm generation in vitro. J Neurosci 12:4273–4284

    Article  Google Scholar 

  27. Kojic ZZ, Flögel U, Schrader J, Decking UKM (2003) Endothelial NO formation does not control myocardial O2 consumption in mouse heart. Am J Physiol Heart Circ Physiol 285:H392–H397

    CAS  PubMed  Google Scholar 

  28. Leonoudakis D, Gray AT, Winegar BD, Kindler CH, Harada M, Taylor DM, Chavez RA, Forsayeth JR, Yost CS (1998) An open rectifier potassium channel with two pore domains in tandem cloned from rat cerebellum. J Neurosci 18:868–877

    CAS  PubMed  Google Scholar 

  29. Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 279:F793–F801

    CAS  PubMed  Google Scholar 

  30. Maingret F, Patel AJ, Lazdunski M, Honoré E (2001) The endocannabinoid anandamide is a direct and selective blocker of the background K+ channel TASK-1. EMBO J 20:47–54

    Article  CAS  PubMed  Google Scholar 

  31. Meuth SG, Kleinschnitz C, Broicher T, Austinat M, Braeuninger S, Bittner S, Fischer S, Bayliss DA, Budde T, Stoll G, Wiendl H (2009) The neuroprotective impact of the leak potassium channel TASK1 on stroke development in mice. Neurobiol Dis 33:1–11

    Article  CAS  PubMed  Google Scholar 

  32. Mitchell GF, Jeron A, Koren G (1998) Measurement of heart rate and Q–T interval in the conscious mouse. Am J Physiol 274:H747–H751

    CAS  PubMed  Google Scholar 

  33. Mohler PJ, Schott JJ, Gramolini AO, Dilly KW, Guatimosim S, duBell WH, Song LS, Haurogne K, Kyndt F, Ali ME, Rogers TB, Lederer WJ, Escande D, LeMarec H, Bennett V (2003) Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden death. Nature 421:634–639

    Article  CAS  PubMed  Google Scholar 

  34. Olschewski A, Li Y, Tang B, Hanze J, Eul B, Bohle RM, Wilhelm J, Morty RE, Brau ME, Weir K, Kwapiszewska G, Klepetko W, Seeger W, Olschewski H (2006) Impact of TASK-1 in human pulmonary artery smooth muscle cells. Circ Res 98:1072–1080

    Article  CAS  PubMed  Google Scholar 

  35. Patel AJ, Honoré E, Lesage F, Fink M, Romey G, Lazdunski M (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2:422–426

    Article  CAS  PubMed  Google Scholar 

  36. Petzelbauer P, Zacharowski PA, Miyazaki Y, Friedl P, Wickenhauser G, Castellino FJ, Gröger M, Wolff K, Zacharowski K (2005) The fibrin-derived peptide Bβ15-42 protects the myocardium against ischemia-reperfusion injury. Nat Med 11:298–304

    Article  CAS  PubMed  Google Scholar 

  37. Putzke C, Wemhöner K, Sachse FB, Rinne S, Schlichthörl G, Li XT, Jae L, Eckhardt I, Wischmeyer E, Wulf H, Preisig-Müller R, Daut J, Decher N (2007) The acid-sensitive potassium channel TASK-1 in rat cardiac muscle. Cardiovasc Res 75:59–68

    Article  CAS  PubMed  Google Scholar 

  38. Roden DM, Balser JR, George AL, Anderson ME (2002) Cardiac ion channels. Annu Rev Physiol 64:431–475

    Article  CAS  PubMed  Google Scholar 

  39. Roth DM, Swaney JS, Dalton ND, Gilpin EA, Ross J (2002) Impact of anesthesia on cardiac function during echocardiography in mice. Am J Physiol Heart Circ Physiol 282:H2134–H2140

    CAS  PubMed  Google Scholar 

  40. Sirois JE, Lei Q, Talley EM, Lynch C III, Bayliss DA (2000) The TASK-1 two-pore domain K+ channel is a molecular substrate for neuronal effects of inhalational anesthetics. J Neurosci 20:6347–6354

    CAS  PubMed  Google Scholar 

  41. Talley EM, Bayliss DA (2002) Modulation of TASK-1 (KCNK3) and TASK-3 (KCNK9) potassium channels. J Biol Chem 277:17733–17742

    Article  CAS  PubMed  Google Scholar 

  42. Tanaka N, Dalton N, Mao L, Rockman HA, Peterson KL, Gottshall KR, Hunter JJ, Chien KR, Ross J Jr (1996) Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation 94:1109–1117

    CAS  PubMed  Google Scholar 

  43. Tang B, Li Y, Nagaraj C, Morty RE, Gabor S, Stacher E, Voswinckel R, Weissmann N, Leithner K, Olschewski H, Olschewski A (2009) Endothelin-1 inhibits background two-pore domain channel TASK-1 in primary human pulmonary artery smooth muscle cells. Am J Resp Cell Mol Biol 41:476–483

    Article  CAS  Google Scholar 

  44. TASK Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability. Eur Heart J 17:354–381

    Google Scholar 

  45. Thireau J, Zhang BL, Poisson D, Babuty D (2007) Heart rate variability in mice: a theoretical and practical guide. Exp Physiol 93:83–94

    Article  PubMed  Google Scholar 

  46. Trapp S, Aller IM, Wisden W, Gourine AV (2008) A role of TASK-1 (KCNK3) channels in the chemosensory control of breathing. J Neurosci 35:8844–8850

    Article  Google Scholar 

  47. Waldeyer C, Fabritz L, Fortmüller L, Gerss J, Damke D, Blana A, Laakmann S, Kreienkamp N, Volkery D, Breithardt G, Kirchhof P (2009) Regional, age-dependent, and genotype-dependent differences in ventricular action potential duration and activation time in 410 Langendorff-perfused hearts. Basic Res Cardiol 104:523–533

    Article  PubMed  Google Scholar 

  48. Washburn CP, Bayliss DA, Guyenet PG (2003) Cardiorespiratory neurons of the rat ventrolateral medulla contain TASK-1 and TASK-3 channel mRNA. Respir Physiol Neurobiol 138:19–35

    Article  CAS  PubMed  Google Scholar 

  49. Weiergräber M, Henry M, Südkamp M, de Vivie E-R, Hescheler J, Schneider T (2005) Ablation of Cav2.3/E-type voltage-gated calcium channel results in cardiac arrhythmia and altered autonomic control within the murine cardiovascular system. Basic Res Cardiol 100:1–13

    Article  PubMed  Google Scholar 

  50. Wickman K, Nemec J, Gendler SJ, Clapham DE (1998) Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 20:103–114

    Article  CAS  PubMed  Google Scholar 

  51. Yamamoto Y, Kummer W, Atoji Y, Suzuki Y (2002) TASK-1, TASK-2, TASK-3 and TRAAK immunoreactivities in the rat carotid body. Brain Res 950:304–307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The TASK-1−/− mouse was supplied by Dr. W. Wisden from the Department of Clinical Neurobiology, University of Heidelberg. Dr. Sager and Dr. Engelhardt, Animal Care Facility Duesseldorf, are acknowledged for their encouraging help with the animal experiments. The work was supported by two grants from the University Duesseldorf and by the German Society for Pediatric Cardiology. MS was a recipient of “Forschungsförderung der Universität Düsseldorf”.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit C. Donner.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 19948 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donner, B.C., Schullenberg, M., Geduldig, N. et al. Functional role of TASK-1 in the heart: studies in TASK-1-deficient mice show prolonged cardiac repolarization and reduced heart rate variability. Basic Res Cardiol 106, 75–87 (2011). https://doi.org/10.1007/s00395-010-0128-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00395-010-0128-x

Keywords

Navigation