Skip to main content
Log in

The emerging role of the endocannabinoid system in cardiovascular disease

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Endocannabinoids are endogenous bioactive lipid mediators present both in the brain and various peripheral tissues, which exert their biological effects via interaction with specific G-protein-coupled cannabinoid receptors, the CB1 and CB2. Pathological overactivation of the endocannabinoid system (ECS) in various forms of shock and heart failure may contribute to the underlying pathology and cardiodepressive state by the activation of the cardiovascular CB1 receptors. Furthermore, tonic activation of CB1 receptors by endocannabinoids has also been implicated in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes, such as plasma lipid alterations, abdominal obesity, hepatic steatosis, inflammation, and insulin and leptin resistance. In contrast, activation of CB2 receptors in immune cells exerts various immunomodulatory effects, and the CB2 receptors in endothelial and inflammatory cells appear to limit the endothelial inflammatory response, chemotaxis, and inflammatory cell adhesion and activation in atherosclerosis and reperfusion injury. Here, we will overview the cardiovascular actions of endocannabinoids and the growing body of evidence implicating the dysregulation of the ECS in a variety of cardiovascular diseases. We will also discuss the therapeutic potential of the modulation of the ECS by selective agonists/antagonists in various cardiovascular disorders associated with inflammation and tissue injury, ranging from myocardial infarction and heart failure to atherosclerosis and cardiometabolic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mechoulam R, Fride E, Di Marzo V (1998) Endocannabinoids. Eur J Pharmacol 359:1–18

    Article  CAS  PubMed  Google Scholar 

  2. Pacher P, Batkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462

    Article  CAS  PubMed  Google Scholar 

  3. Milman G, Maor Y, Abu-Lafi S et al (2006) N-arachidonoyl l-serine, an endocannabinoid-like brain constituent with vasodilatory properties. Proc Natl Acad Sci USA 103:2428–2433

    Article  CAS  PubMed  Google Scholar 

  4. Howlett AC (2005) Cannabinoid receptor signaling. Handb Exp Pharmacol 168:53–79

    Article  CAS  PubMed  Google Scholar 

  5. Begg M, Pacher P, Batkai S et al (2005) Evidence for novel cannabinoid receptors. Pharmacol Ther 106:133–145

    Article  CAS  PubMed  Google Scholar 

  6. Lauckner JE, Jensen JB, Chen HY et al (2008) GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proc Natl Acad Sci USA 105:2699–2704

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Wang L, Harvey-White J et al (2008) Multiple pathways involved in the biosynthesis of anandamide. Neuropharmacology 54:1–7

    Article  CAS  PubMed  Google Scholar 

  8. Di Marzo V (2008) Endocannabinoids: synthesis and degradation. Rev Physiol Biochem Pharmacol 160:1–24

    Article  PubMed  CAS  Google Scholar 

  9. Ahn K, McKinney MK, Cravatt BF (2008) Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem Rev 108:1687–1707

    Article  CAS  PubMed  Google Scholar 

  10. Starowicz K, Nigam S, Di Marzo V (2007) Biochemistry and pharmacology of endovanilloids. Pharmacol Ther 114:13–33

    Article  CAS  PubMed  Google Scholar 

  11. Bonz A, Laser M, Kullmer S et al (2003) Cannabinoids acting on CB1 receptors decrease contractile performance in human atrial muscle. J Cardiovasc Pharmacol 41:657–664

    Article  CAS  PubMed  Google Scholar 

  12. Batkai S, Pacher P, Osei-Hyiaman D et al (2004) Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. Circulation 110:1996–2002

    Article  CAS  PubMed  Google Scholar 

  13. Mukhopadhyay P, Batkai S, Rajesh M et al (2007) Pharmacological inhibition of CB1 cannabinoid receptor protects against doxorubicin-induced cardiotoxicity. J Am Coll Cardiol 50:528–536

    Article  CAS  PubMed  Google Scholar 

  14. Rajesh M, Mukhopadhyay P, Batkai S et al (2007) CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion. Am J Physiol Heart Circ Physiol 293:H2210–H2218

    Article  CAS  PubMed  Google Scholar 

  15. Rajesh M, Mukhopadhyay P, Hasko G et al (2008) CB(2) cannabinoid receptor agonists attenuate TNF-alpha-induced human vascular smooth muscle cell proliferation and migration. Br J Pharmacol 153:347–357

    Article  CAS  PubMed  Google Scholar 

  16. Cota D, Marsicano G, Tschop M et al (2003) The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 112:423–431

    CAS  PubMed  Google Scholar 

  17. Engeli S, Bohnke J, Feldpausch M et al (2005) Activation of the peripheral endocannabinoid system in human obesity. Diabetes 54:2838–2843

    Article  CAS  PubMed  Google Scholar 

  18. Osei-Hyiaman D, DePetrillo M, Pacher P et al (2005) Endocannabinoid activation at hepatic CB1 receptors stimulates fatty acid synthesis and contributes to diet-induced obesity. J Clin Invest 115:1298–1305

    CAS  PubMed  Google Scholar 

  19. Mallat A, Lotersztajn S (2008) Endocannabinoids and liver disease. I. Endocannabinoids and their receptors in the liver. Am J Physiol Gastrointest Liver Physiol 294:G9–G12

    Article  CAS  PubMed  Google Scholar 

  20. Van Sickle MD, Duncan M, Kingsley PJ et al (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310:329–332

    Article  PubMed  CAS  Google Scholar 

  21. Pacher P, Gao B (2008) Endocannabinoid effects on immune cells: implications for inflammatory liver diseases. Am J Physiol Gastrointest Liver Physiol 294:G850–G854

    Article  CAS  PubMed  Google Scholar 

  22. Klein TW, Newton C, Larsen K et al (2003) The cannabinoid system and immune modulation. J Leukoc Biol 74:486–496

    Article  CAS  PubMed  Google Scholar 

  23. Klein TW (2005) Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat Rev Immunol 5:400–411

    Article  CAS  PubMed  Google Scholar 

  24. Di Marzo V, Petrosino S (2007) Endocannabinoids and the regulation of their levels in health and disease. Curr Opin Lipidol 18:129–140

    Article  PubMed  CAS  Google Scholar 

  25. Mackie K (2006) Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol 46:101–122

    Article  CAS  PubMed  Google Scholar 

  26. Di Marzo V (2008) Targeting the endocannabinoid system: to enhance or reduce? Nat Rev Drug Discov 7:438–455

    Article  PubMed  CAS  Google Scholar 

  27. Pacher P, Batkai S, Osei-Hyiaman D et al (2005) Hemodynamic profile, responsiveness to anandamide, and baroreflex sensitivity of mice lacking fatty acid amide hydrolase. Am J Physiol Heart Circ Physiol 289:H533–541

    Article  CAS  PubMed  Google Scholar 

  28. Pacher P, Batkai S, Kunos G (2005) Blood pressure regulation by endocannabinoids and their receptors. Neuropharmacology 48:1130–1138

    Article  CAS  PubMed  Google Scholar 

  29. Varga K, Lake K, Martin BR et al (1995) Novel antagonist implicates the CB1 cannabinoid receptor in the hypotensive action of anandamide. Eur J Pharmacol 278:279–283

    Article  CAS  PubMed  Google Scholar 

  30. Varga K, Lake KD, Huangfu D et al (1996) Mechanism of the hypotensive action of anandamide in anesthetized rats. Hypertension 28:682–686

    CAS  PubMed  Google Scholar 

  31. Lake KD, Martin BR, Kunos G et al (1997) Cardiovascular effects of anandamide in anesthetized and conscious normotensive and hypertensive rats. Hypertension 29:1204–1210

    CAS  PubMed  Google Scholar 

  32. Pacher P, Batkai S, Kunos G (2004) Haemodynamic profile and responsiveness to anandamide of TRPV1 receptor knock-out mice. J Physiol 558:647–657

    Article  CAS  PubMed  Google Scholar 

  33. Gardiner SM, March JE, Kemp PA et al (2002) Complex regional haemodynamic effects of anandamide in conscious rats. Br J Pharmacol 135:1889–1896

    Article  CAS  PubMed  Google Scholar 

  34. Wheal AJ, Bennett T, Randall MD et al (2007) Cardiovascular effects of cannabinoids in conscious spontaneously hypertensive rats. Br J Pharmacol 152:717–724

    Article  CAS  PubMed  Google Scholar 

  35. Pacher P, Mukhopadhyay P, Mohanraj R et al (2008) Modulation of the endocannabinoid system in cardiovascular disease: therapeutic potential and limitations. Hypertension 52:601–607

    Article  CAS  PubMed  Google Scholar 

  36. Ishac EJ, Jiang L, Lake KD et al (1996) Inhibition of exocytotic noradrenaline release by presynaptic cannabinoid CB1 receptors on peripheral sympathetic nerves. Br J Pharmacol 118:2023–2028

    CAS  PubMed  Google Scholar 

  37. Malinowska B, Godlewski G, Bucher B et al (1997) Cannabinoid CB1 receptor-mediated inhibition of the neurogenic vasopressor response in the pithed rat. Naunyn Schmiedebergs Arch Pharmacol 356:197–202

    Article  CAS  PubMed  Google Scholar 

  38. Szabo B, Nordheim U, Niederhoffer N (2001) Effects of cannabinoids on sympathetic and parasympathetic neuroeffector transmission in the rabbit heart. J Pharmacol Exp Ther 297:819–826

    CAS  PubMed  Google Scholar 

  39. Niederhoffer N, Szabo B (2000) Cannabinoids cause central sympathoexcitation and bradycardia in rabbits. J Pharmacol Exp Ther 294:707–713

    CAS  PubMed  Google Scholar 

  40. Pfitzer T, Niederhoffer N, Szabo B (2004) Central effects of the cannabinoid receptor agonist WIN55212-2 on respiratory and cardiovascular regulation in anaesthetised rats. Br J Pharmacol 142:943–952

    Article  CAS  PubMed  Google Scholar 

  41. Maslov LN, Lasukova OV, Krylatov AV et al (2004) Selective cannabinoid receptor agonist HU-210 decreases pump function of isolated perfused heart: role of cAMP and cGMP. Bull Exp Biol Med 138:550–553

    Article  CAS  PubMed  Google Scholar 

  42. Sterin-Borda L, Del Zar CF, Borda E (2005) Differential CB1 and CB2 cannabinoid receptor-inotropic response of rat isolated atria: endogenous signal transduction pathways. Biochem Pharmacol 69:1705–1713

    Article  CAS  PubMed  Google Scholar 

  43. Gebremedhin D, Lange AR, Campbell WB et al (1999) Cannabinoid CB1 receptor of cat cerebral arterial muscle functions to inhibit L-type Ca2+ channel current. Am J Physiol 276:H2085–2093

    CAS  PubMed  Google Scholar 

  44. Jarai Z, Wagner JA, Varga K et al (1999) Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors. Proc Natl Acad Sci USA 96:14136–14141

    Article  CAS  PubMed  Google Scholar 

  45. Wagner JA, Jarai Z, Batkai S et al (2001) Hemodynamic effects of cannabinoids: coronary and cerebral vasodilation mediated by cannabinoid CB(1) receptors. Eur J Pharmacol 423:203–210

    Article  CAS  PubMed  Google Scholar 

  46. Wagner JA, Abesser M, Karcher J et al (2005) Coronary vasodilator effects of endogenous cannabinoids in vasopressin-preconstricted unpaced rat isolated hearts. J Cardiovasc Pharmacol 46:348–355

    Article  CAS  PubMed  Google Scholar 

  47. Randall MD, Harris D, Kendall DA et al (2002) Cardiovascular effects of cannabinoids. Pharmacol Ther 95:191–202

    Article  CAS  PubMed  Google Scholar 

  48. Mendizabal VE, Adler-Graschinsky E (2007) Cannabinoids as therapeutic agents in cardiovascular disease: a tale of passions and illusions. Br J Pharmacol 151:427–440

    Article  CAS  PubMed  Google Scholar 

  49. Hillard CJ (2000) Endocannabinoids and vascular function. J Pharmacol Exp Ther 294:27–32

    CAS  PubMed  Google Scholar 

  50. Ralevic V, Kendall DA, Randall MD et al (2002) Cannabinoid modulation of sensory neurotransmission via cannabinoid and vanilloid receptors: roles in regulation of cardiovascular function. Life Sci 71:2577–2594

    Article  CAS  PubMed  Google Scholar 

  51. Pacher P, Batkai S, Kunos G (2005) Cardiovascular pharmacology of cannabinoids. Handb Exp Pharmacol 168:599–625

    Article  CAS  PubMed  Google Scholar 

  52. Batkai S, Osei-Hyiaman D, Pan H et al (2007) Cannabinoid-2 receptor mediates protection against hepatic ischemia/reperfusion injury. FASEB J 21:1788–1800

    Article  CAS  PubMed  Google Scholar 

  53. Rajesh M, Pan H, Mukhopadhyay P et al (2007) Cannabinoid-2 receptor agonist HU-308 protects against hepatic ischemia/reperfusion injury by attenuating oxidative stress, inflammatory response, and apoptosis. J Leukoc Biol 82:1382–1389

    Article  CAS  PubMed  Google Scholar 

  54. Montecucco F, Burger F, Mach F et al (2008) CB2 cannabinoid receptor agonist JWH-015 modulates human monocyte migration through defined intracellular signaling pathways. Am J Physiol Heart Circ Physiol 294:H1145–H1155

    Article  CAS  PubMed  Google Scholar 

  55. Mach F, Montecucco F, Steffens S (2008) Cannabinoid receptors in acute and chronic complications of atherosclerosis. Br J Pharmacol 153:290–298

    Article  CAS  PubMed  Google Scholar 

  56. Pacher P, Hasko G (2008) Endocannabinoids and cannabinoid receptors in ischaemia–reperfusion injury and preconditioning. Br J Pharmacol 153:252–262

    Article  CAS  PubMed  Google Scholar 

  57. Krylatov AV, Maslov LN, Lasukova OV et al (2005) Cannabinoid receptor antagonists SR141716 and SR144528 exhibit properties of partial agonists in experiments on isolated perfused rat heart. Bull Exp Biol Med 139:558–561

    Article  CAS  PubMed  Google Scholar 

  58. Rajesh M, Mukhopadhyay P, Hasko G et al (2008) Cannabinoid CB1 receptor inhibition decreases vascular smooth muscle migration and proliferation. Biochem Biophys Res Commun 377:1248–1252

    Article  CAS  PubMed  Google Scholar 

  59. Bouchard JF, Lepicier P, Lamontagne D (2003) Contribution of endocannabinoids in the endothelial protection afforded by ischemic preconditioning in the isolated rat heart. Life Sci 72:1859–1870

    Article  CAS  PubMed  Google Scholar 

  60. Montecucco F, Lenglet S, Braunersreuther V et al (2009) CB(2) cannabinoid receptor activation is cardioprotective in a mouse model of ischemia/reperfusion. J Mol Cell Cardiol (in press)

  61. Mukhopadhyay P, Mohanraj R, Batkai S et al (2008) CB1 cannabinoid receptor inhibition: promising approach for heart failure? Congest Heart Fail 14:330–334

    Article  CAS  PubMed  Google Scholar 

  62. Braunwald E (2008) Biomarkers in heart failure. N Engl J Med 358:2148–2159

    Article  CAS  PubMed  Google Scholar 

  63. Yellon DM, Hausenloy DJ (2005) Realizing the clinical potential of ischemic preconditioning and postconditioning. Nat Clin Pract Cardiovasc Med 2:568–575

    Article  PubMed  Google Scholar 

  64. Lange RA, Hillis LD (2002) Reperfusion therapy in acute myocardial infarction. N Engl J Med 346:954–955

    Article  PubMed  Google Scholar 

  65. Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357:1121–1135

    Article  CAS  PubMed  Google Scholar 

  66. Pacher P, Nivorozhkin A, Szabo C (2006) Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 58:87–114

    Article  CAS  PubMed  Google Scholar 

  67. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed  Google Scholar 

  68. Lagneux C, Lamontagne D (2001) Involvement of cannabinoids in the cardioprotection induced by lipopolysaccharide. Br J Pharmacol 132:793–796

    Article  CAS  PubMed  Google Scholar 

  69. Lepicier P, Bouchard JF, Lagneux C et al (2003) Endocannabinoids protect the rat isolated heart against ischaemia. Br J Pharmacol 139:805–815

    Article  CAS  PubMed  Google Scholar 

  70. Joyeux M, Arnaud C, Godin-Ribuot D et al (2002) Endocannabinoids are implicated in the infarct size-reducing effect conferred by heat stress preconditioning in isolated rat hearts. Cardiovasc Res 55:619–625

    Article  CAS  PubMed  Google Scholar 

  71. Varga K, Wagner JA, Bridgen DT et al (1998) Platelet- and macrophage-derived endogenous cannabinoids are involved in endotoxin-induced hypotension. FASEB J 12:1035–1044

    CAS  PubMed  Google Scholar 

  72. Liu J, Batkai S, Pacher P et al (2003) Lipopolysaccharide induces anandamide synthesis in macrophages via CD14/MAPK/phosphoinositide 3-kinase/NF-kappa B independently of platelet-activating factor. J Biol Chem 278:45034–45039

    Article  CAS  PubMed  Google Scholar 

  73. Maccarrone M, De Petrocellis L, Bari M et al (2001) Lipopolysaccharide downregulates fatty acid amide hydrolase expression and increases anandamide levels in human peripheral lymphocytes. Arch Biochem Biophys 393:321–328

    Article  CAS  PubMed  Google Scholar 

  74. Wagner JA, Abesser M, Harvey-White J et al (2006) 2-Arachidonylglycerol acting on CB1 cannabinoid receptors mediates delayed cardioprotection induced by nitric oxide in rat isolated hearts. J Cardiovasc Pharmacol 47:650–655

    Article  CAS  PubMed  Google Scholar 

  75. Hajrasouliha AR, Tavakoli S, Ghasemi M et al (2008) Endogenous cannabinoids contribute to remote ischemic preconditioning via cannabinoid CB2 receptors in the rat heart. Eur J Pharmacol 579:246–252

    Article  CAS  PubMed  Google Scholar 

  76. Calignano A, La Rana G, Giuffrida A et al (1998) Control of pain initiation by endogenous cannabinoids. Nature 394:277–281

    Article  CAS  PubMed  Google Scholar 

  77. LoVerme J, Russo R, La Rana G et al (2006) Rapid broad-spectrum analgesia through activation of peroxisome proliferator-activated receptor-alpha. J Pharmacol Exp Ther 319:1051–1061

    Article  CAS  PubMed  Google Scholar 

  78. Underdown NJ, Hiley CR, Ford WR (2005) Anandamide reduces infarct size in rat isolated hearts subjected to ischaemia–reperfusion by a novel cannabinoid mechanism. Br J Pharmacol 146:809–816

    Article  CAS  PubMed  Google Scholar 

  79. Krylatov AV, Ugdyzhekova DS, Bernatskaya NA et al (2001) Activation of type II cannabinoid receptors improves myocardial tolerance to arrhythmogenic effects of coronary occlusion and reperfusion. Bull Exp Biol Med 131:523–525

    Article  CAS  PubMed  Google Scholar 

  80. Di Filippo C, Rossi F, Rossi S et al (2004) Cannabinoid CB2 receptor activation reduces mouse myocardial ischemia–reperfusion injury: involvement of cytokine/chemokines and PMN. J Leukoc Biol 75:453–459

    Article  PubMed  CAS  Google Scholar 

  81. Durst R, Danenberg H, Gallily R et al (2007) Cannabidiol, a nonpsychoactive Cannabis constituent, protects against myocardial ischemic reperfusion injury. Am J Physiol Heart Circ Physiol 293:H3602–H3607

    Article  CAS  PubMed  Google Scholar 

  82. Ryberg E, Larsson N, Sjogren S et al (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152:1092–1101

    Article  CAS  PubMed  Google Scholar 

  83. Carrier EJ, Auchampach JA, Hillard CJ (2006) Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci USA 103:7895–7900

    Article  CAS  PubMed  Google Scholar 

  84. Hasko G, Linden J, Cronstein B et al (2008) Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 7:759–770

    Article  CAS  PubMed  Google Scholar 

  85. Mudd JO, Kass DA (2008) Tackling heart failure in the twenty-first century. Nature 451:919–928

    Article  CAS  PubMed  Google Scholar 

  86. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35:569–582

    Article  CAS  PubMed  Google Scholar 

  87. Pacher P, Schulz R, Liaudet L et al (2005) Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol Sci 26:302–310

    Article  CAS  PubMed  Google Scholar 

  88. Takimoto E, Kass DA (2007) Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49:241–248

    Article  CAS  PubMed  Google Scholar 

  89. Wagner JA, Hu K, Bauersachs J et al (2001) Endogenous cannabinoids mediate hypotension after experimental myocardial infarction. J Am Coll Cardiol 38:2048–2054

    Article  CAS  PubMed  Google Scholar 

  90. Wagner JA, Hu K, Karcher J et al (2003) CB(1) cannabinoid receptor antagonism promotes remodeling and cannabinoid treatment prevents endothelial dysfunction and hypotension in rats with myocardial infarction. Br J Pharmacol 138:1251–1258

    Article  CAS  PubMed  Google Scholar 

  91. Pacher P, Liaudet L, Bai P et al (2003) Potent metalloporphyrin peroxynitrite decomposition catalyst protects against the development of doxorubicin-induced cardiac dysfunction. Circulation 107:896–904

    Article  CAS  PubMed  Google Scholar 

  92. Matias I, Di Marzo V (2007) Endocannabinoids and the control of energy balance. Trends Endocrinol Metab 18:27–37

    Article  CAS  PubMed  Google Scholar 

  93. Engeli S (2008) Dysregulation of the endocannabinoid system in obesity. J Neuroendocrinol 20(Suppl 1):110–115

    Article  CAS  PubMed  Google Scholar 

  94. Pacher P (2009) Cannabinoid CB1 receptor antagonists for atherosclerosis and cardiometabolic disorders: new hopes, old concerns? Arterioscler Thromb Vasc Biol 29:7–9

    Article  CAS  PubMed  Google Scholar 

  95. Despres JP, Golay A, Sjostrom L (2005) Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353:2121–2134

    Article  CAS  PubMed  Google Scholar 

  96. Pi-Sunyer FX, Aronne LJ, Heshmati HM et al (2006) Effect of rimonabant, a cannabinoid-1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients: RIO-North America: a randomized controlled trial. JAMA 295:761–775

    Article  CAS  PubMed  Google Scholar 

  97. Scheen AJ, Finer N, Hollander P et al (2006) Efficacy and tolerability of rimonabant in overweight or obese patients with type 2 diabetes: a randomised controlled study. Lancet 368:1660–1672

    Article  CAS  PubMed  Google Scholar 

  98. Van Gaal LF, Rissanen AM, Scheen AJ et al (2005) Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365:1389–1397

    Article  PubMed  CAS  Google Scholar 

  99. Despres JP, Ross R, Boka G et al (2009) Effect of rimonabant on the high-triglyceride/low-HDL-cholesterol dyslipidemia, intra abdominal adiposity, and liver fat: the ADAGIO-Lipids trial. Arterioscler Thromb Vasc Biol 29:416–423

    Article  CAS  PubMed  Google Scholar 

  100. Jones D (2008) End of the line for cannabinoid receptor 1 as an anti-obesity target? Nat Rev Drug Discov 7:961–962

    Article  CAS  PubMed  Google Scholar 

  101. Katagiri H, Yamada T, Oka Y (2007) Adiposity and cardiovascular disorders: disturbance of the regulatory system consisting of humoral and neuronal signals. Circ Res 101:27–39

    Article  CAS  PubMed  Google Scholar 

  102. Berg AH, Scherer PE (2005) Adipose tissue, inflammation, and cardiovascular disease. Circ Res 96:939–949

    Article  CAS  PubMed  Google Scholar 

  103. Okamoto Y, Kihara S, Funahashi T et al (2006) Adiponectin: a key adipocytokine in metabolic syndrome. Clin Sci (Lond) 110:267–278

    Article  CAS  Google Scholar 

  104. Han SH, Quon MJ, Kim JA et al (2007) Adiponectin and cardiovascular disease: response to therapeutic interventions. J Am Coll Cardiol 49:531–538

    Article  CAS  PubMed  Google Scholar 

  105. Okamoto Y, Folco EJ, Minami M et al (2008) Adiponectin inhibits the production of CXC receptor 3 chemokine ligands in macrophages and reduces T-lymphocyte recruitment in atherogenesis. Circ Res 102:218–225

    Article  CAS  PubMed  Google Scholar 

  106. La Cava A, Matarese G (2004) The weight of leptin in immunity. Nat Rev Immunol 4:371–379

    Article  PubMed  CAS  Google Scholar 

  107. Hasty AH, Shimano H, Osuga J et al (2001) Severe hypercholesterolemia, hypertriglyceridemia, and atherosclerosis in mice lacking both leptin and the low density lipoprotein receptor. J Biol Chem 276:37402–37408

    Article  CAS  PubMed  Google Scholar 

  108. Mertens A, Verhamme P, Bielicki JK et al (2003) Increased low-density lipoprotein oxidation and impaired high-density lipoprotein antioxidant defense are associated with increased macrophage homing and atherosclerosis in dyslipidemic obese mice: LCAT gene transfer decreases atherosclerosis. Circulation 107:1640–1646

    Article  CAS  PubMed  Google Scholar 

  109. Wu KK, Wu TJ, Chin J et al (2005) Increased hypercholesterolemia and atherosclerosis in mice lacking both ApoE and leptin receptor. Atherosclerosis 181:251–259

    Article  CAS  PubMed  Google Scholar 

  110. Taleb S, Herbin O, Ait-Oufella H et al (2007) Defective leptin/leptin receptor signaling improves regulatory T cell immune response and protects mice from atherosclerosis. Arterioscler Thromb Vasc Biol 27:2691–2698

    Article  CAS  PubMed  Google Scholar 

  111. Pagotto U, Marsicano G, Cota D et al (2006) The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr Rev 27:73–100

    Article  CAS  PubMed  Google Scholar 

  112. D'Eon TM, Pierce KA, Roix JJ et al (2008) The role of adipocyte insulin resistance in the pathogenesis of obesity-related elevations in endocannabinoids. Diabetes 57:1262–1268

    Article  PubMed  CAS  Google Scholar 

  113. Matias I, Gonthier MP, Orlando P et al (2006) Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia. J Clin Endocrinol Metab 91:3171–3180

    Article  CAS  PubMed  Google Scholar 

  114. Starowicz KM, Cristino L, Matias I et al (2008) Endocannabinoid dysregulation in the pancreas and adipose tissue of mice fed with a high-fat diet. Obesity (Silver Spring) 16:553–565

    Article  CAS  Google Scholar 

  115. Despres JP, Lemieux I, Bergeron J et al (2008) Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol 28:1039–1049

    Article  CAS  PubMed  Google Scholar 

  116. Bluher M, Engeli S, Kloting N et al (2006) Dysregulation of the peripheral and adipose tissue endocannabinoid system in human abdominal obesity. Diabetes 55:3053–3060

    Article  PubMed  CAS  Google Scholar 

  117. Cote M, Matias I, Lemieux I et al (2007) Circulating endocannabinoid levels, abdominal adiposity and related cardiometabolic risk factors in obese men. Int J Obes (Lond) 31:692–699

    CAS  Google Scholar 

  118. Spoto B, Fezza F, Parlongo G et al (2006) Human adipose tissue binds and metabolizes the endocannabinoids anandamide and 2-arachidonoylglycerol. Biochimie 88:1889–1897

    Article  CAS  PubMed  Google Scholar 

  119. Ravinet Trillou C, Arnone M, Delgorge C et al (2003) Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. Am J Physiol Regul Integr Comp Physiol 284:R345–R353

    PubMed  Google Scholar 

  120. Ravinet Trillou C, Delgorge C, Menet C et al (2004) CB1 cannabinoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int J Obes Relat Metab Disord 28:640–648

    Article  CAS  PubMed  Google Scholar 

  121. Osei-Hyiaman D, Liu J, Zhou L et al (2008) Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice. J Clin Invest 118:3160–3169

    Article  CAS  PubMed  Google Scholar 

  122. Tedesco L, Valerio A, Cervino C et al (2008) Cannabinoid type 1 receptor blockade promotes mitochondrial biogenesis through endothelial nitric oxide synthase expression in white adipocytes. Diabetes 57:2028–2036

    Article  CAS  PubMed  Google Scholar 

  123. Yan ZC, Liu DY, Zhang LL et al (2007) Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta. Biochem Biophys Res Commun 354:427–433

    Article  CAS  PubMed  Google Scholar 

  124. Nissen SE, Nicholls SJ, Wolski K et al (2008) Effect of rimonabant on progression of atherosclerosis in patients with abdominal obesity and coronary artery disease: the STRADIVARIUS randomized controlled trial. JAMA 299:1547–1560

    Article  CAS  PubMed  Google Scholar 

  125. Van Gaal LF, Scheen AJ, Rissanen AM et al (2008) Long-term effect of CB1 blockade with rimonabant on cardiometabolic risk factors: two year results from the RIO-Europe Study. Eur Heart J 29:1761–1771

    Article  PubMed  CAS  Google Scholar 

  126. Kunos G, Osei-Hyiaman D, Batkai S et al (2008) Should peripheral CB(1) cannabinoid receptors be selectively targeted for therapeutic gain? Trends Pharmacol Sci 30:1–7

    Article  PubMed  CAS  Google Scholar 

  127. Nogueiras R, Veyrat-Durebex C, Suchanek PM et al (2008) Peripheral, but not central, CB1 antagonism provides food intake-independent metabolic benefits in diet-induced obese rats. Diabetes 57:2977–2991

    Article  CAS  PubMed  Google Scholar 

  128. Rosenstock J, Hollander P, Chevalier S et al (2008) SERENADE: the Study Evaluating Rimonabant Efficacy in Drug-naive Diabetic Patients: effects of monotherapy with rimonabant, the first selective CB1 receptor antagonist, on glycemic control, body weight, and lipid profile in drug-naive type 2 diabetes. Diabetes Care 31:2169–2176

    Article  PubMed  Google Scholar 

  129. Karsak M, Gaffal E, Date R et al (2007) Attenuation of allergic contact dermatitis through the endocannabinoid system. Science 316:1494–1497

    Article  CAS  PubMed  Google Scholar 

  130. Wright KL, Duncan M, Sharkey KA (2007) Cannabinoid CB(2) receptors in the gastrointestinal tract: a regulatory system in states of inflammation. Br J Pharmacol 153:263–270

    Article  PubMed  CAS  Google Scholar 

  131. Batkai S, Rajesh M, Mukhopadhyay P et al (2007) Decreased age-related cardiac dysfunction, myocardial nitrative stress, inflammatory gene expression, and apoptosis in mice lacking fatty acid amide hydrolase. Am J Physiol Heart Circ Physiol 293:H909–H918

    Article  CAS  PubMed  Google Scholar 

  132. Berdyshev EV, Boichot E, Germain N et al (1997) Influence of fatty acid ethanolamides and delta9-tetrahydrocannabinol on cytokine and arachidonate release by mononuclear cells. Eur J Pharmacol 330:231–240

    Article  CAS  PubMed  Google Scholar 

  133. Hoareau L, Buyse M, Festy F et al (2009) Anti-inflammatory effect of palmitoylethanolamide on human adipocytes. Obesity (Silver Spring) 17:431–438

    Article  CAS  Google Scholar 

  134. Maccarrone M, Bari M, Menichelli A et al (1999) Anandamide activates human platelets through a pathway independent of the arachidonate cascade. FEBS Lett 447:277–282

    Article  CAS  PubMed  Google Scholar 

  135. MacCarrone M, Bari M, Menichelli A et al (2001) Human platelets bind and degrade 2-arachidonoylglycerol, which activates these cells through a cannabinoid receptor. Eur J Biochem 268:819–825

    Article  CAS  PubMed  Google Scholar 

  136. Dol-Gleizes F, Paumelle R, Visentin V et al (2009) Rimonabant, a selective cannabinoid CB1 receptor antagonist, inhibits atherosclerosis in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 29:12–18

    Article  CAS  PubMed  Google Scholar 

  137. Sugamura K, Sugiyama S, Nozaki T et al (2009) Activated endocannabinoid system in coronary artery disease and anti-inflammatory effects of cannabinoid 1 receptor blockade on macrophages. Circulation 119:28–36

    Article  CAS  PubMed  Google Scholar 

  138. Montecucco F, Matias I, Lenglet S et al (2009) Regulation and possible role of endocannabinoids and related mediators in hypercholesterolemic mice with atherosclerosis. Atherosclerosis (in press)

  139. Steffens S, Veillard NR, Arnaud C et al (2005) Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature 434:782–786

    Article  CAS  PubMed  Google Scholar 

  140. Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6:508–519

    Article  CAS  PubMed  Google Scholar 

  141. Di Marzo V (2008) Play an ADAGIO with a STRADIVARIUS: the right patient for CB1 receptor antagonists? Nat Clin Pract Cardiovasc Med 5:610–612

    Article  PubMed  CAS  Google Scholar 

  142. Gerthoffer WT (2007) Mechanisms of vascular smooth muscle cell migration. Circ Res 100:607–621

    Article  CAS  PubMed  Google Scholar 

  143. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241

    Article  CAS  PubMed  Google Scholar 

  144. Jiang LS, Pu J, Han ZH et al (2009) Role of activated endocannabinoid system in regulation of cellular cholesterol metabolism in macrophages. Cardiovasc Res 81:805–813

    Article  CAS  PubMed  Google Scholar 

  145. Braunersreuther V, Mach F, Steffens S (2007) The specific role of chemokines in atherosclerosis. Thromb Haemost 97:714–721

    CAS  PubMed  Google Scholar 

  146. Miller AM, Stella N (2008) CB(2) receptor-mediated migration of immune cells: it can go either way. Br J Pharmacol 153:299–308

    Article  CAS  PubMed  Google Scholar 

  147. Freeman-Anderson NE, Pickle TG, Netherland CD et al (2008) Cannabinoid (CB2) receptor deficiency reduces the susceptibility of macrophages to oxidized LDL/oxysterol-induced apoptosis. J Lipid Res 49:2338–2346

    Article  CAS  PubMed  Google Scholar 

  148. Kockx MM, Herman AG (2000) Apoptosis in atherosclerosis: beneficial or detrimental? Cardiovasc Res 45:736–746

    Article  CAS  PubMed  Google Scholar 

  149. Liu J, Thewke DP, Su YR et al (2005) Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol 25:174–179

    CAS  PubMed  Google Scholar 

  150. Libby P, Geng YJ, Aikawa M et al (1996) Macrophages and atherosclerotic plaque stability. Curr Opin Lipidol 7:330–335

    Article  CAS  PubMed  Google Scholar 

  151. Reinhard W, Stark K, Neureuther K et al (2008) Common polymorphisms in the cannabinoid CB2 receptor gene (CNR2) are not associated with myocardial infarction and cardiovascular risk factors. Int J Mol Med 22:165–174

    CAS  PubMed  Google Scholar 

  152. Thomas BF, Gilliam AF, Burch DF et al (1998) Comparative receptor binding analyses of cannabinoid agonists and antagonists. J Pharmacol Exp Ther 285:285–292

    CAS  PubMed  Google Scholar 

  153. Rajesh M, Mukhopadhyay P, Batkai S et al (2007) Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. Am J Physiol Heart Circ Physiol 293:H610–H619

    Article  CAS  PubMed  Google Scholar 

  154. Mechoulam R, Peters M, Murillo-Rodriguez E et al (2007) Cannabidiol—recent advances. Chem Biodivers 4:1678–1692

    Article  CAS  PubMed  Google Scholar 

  155. Galiegue S, Mary S, Marchand J et al (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232:54–61

    Article  CAS  PubMed  Google Scholar 

  156. Bensaid M, Gary-Bobo M, Esclangon A et al (2003) The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol Pharmacol 63:908–914

    Article  CAS  PubMed  Google Scholar 

  157. Juan-Pico P, Fuentes E, Javier Bermudez-Silva F et al (2006) Cannabinoid receptors regulate Ca(2+) signals and insulin secretion in pancreatic beta-cell. Cell Calcium 39:155–162

    Article  CAS  PubMed  Google Scholar 

  158. Carlisle SJ, Marciano-Cabral F, Staab A et al (2002) Differential expression of the CB2 cannabinoid receptor by rodent macrophages and macrophage-like cells in relation to cell activation. Int Immunopharmacol 2:69–82

    Article  CAS  PubMed  Google Scholar 

  159. Coopman K, Smith LD, Wright KL et al (2007) Temporal variation in CB2R levels following T lymphocyte activation: evidence that cannabinoids modulate CXCL12-induced chemotaxis. Int Immunopharmacol 7:360–371

    Article  CAS  PubMed  Google Scholar 

  160. Ghosh S, Preet A, Groopman JE et al (2006) Cannabinoid receptor CB(2) modulates the CXCL12/CXCR4-mediated chemotaxis of T lymphocytes. Mol Immunol 43:2169–2179

    Article  CAS  PubMed  Google Scholar 

  161. Kurihara R, Tohyama Y, Matsusaka S et al (2006) Effects of peripheral cannabinoid receptor ligands on motility and polarization in neutrophil-like HL60 cells and human neutrophils. J Biol Chem 281:12908–12918

    Article  CAS  PubMed  Google Scholar 

  162. Deusch E, Kress HG, Kraft B et al (2004) The procoagulatory effects of delta-9-tetrahydrocannabinol in human platelets. Anesth Analg 99:1127–1130 table of contents

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.S. is supported by grants from the Swiss National Science Foundation, the Novartis Foundation for Biomedical Research, Prevot and Wolfermann-Naegeli Foundation. P.P. is supported by the Intramural research program of the NIH/NIAAA.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pál Pacher or Sabine Steffens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacher, P., Steffens, S. The emerging role of the endocannabinoid system in cardiovascular disease. Semin Immunopathol 31, 63–77 (2009). https://doi.org/10.1007/s00281-009-0145-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-009-0145-8

Keywords

Navigation