Skip to main content

Advertisement

Log in

Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Doxorubicin (DOX) is a widely prescribed chemotherapeutic. The hypothesis for the present study is that DOX-induced myocyte apoptosis involves mitochondrial dysfunction that is a consequence of nuclear DOX effects.

Methods

H9c2 myoblasts were incubated with 0, 0.5 and 1 μM DOX and nuclear and mitochondrial alterations were determined.

Results

Doxorubicin accumulation in the nucleus was detected after 3 h treatment, followed by an increase in p53 and a decrease in mitochondrial membrane potential. Apoptotic markers, such as caspase activation and chromatin condensation were detected after 24 h of DOX treatment. Bax and p53 translocation to mitochondria as well as the formation of Bax clusters in the cytosol were observed. Importantly, pifithrin-alpha, a p53 inhibitor, protected against DOX-induced mitochondrial depolarization, caspase activation and cell death.

Conclusion

Mitochondrial dysfunction in H9c2 myoblasts treated with DOX is a consequence of nuclear p53 activation rather than a direct effect of the drug on mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Doroshow JH, Davies KJ (1986) Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. J Biol Chem 261:3068–3074

    PubMed  CAS  Google Scholar 

  2. Davies KJ, Doroshow JH (1986) Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem 261:3060–3067

    PubMed  CAS  Google Scholar 

  3. Wallace KB (2003) Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol Toxicol 93:105–115

    Article  PubMed  CAS  Google Scholar 

  4. Goormaghtigh E, Pollakis G, Ruysschaert JM (1983) Mitochondrial membrane modifications induced by adriamycin-mediated electron transport. Biochem Pharmacol 32:889–893

    Article  PubMed  CAS  Google Scholar 

  5. Mimnaugh EG, Trush MA, Gram TE (1983) Enhancement of rat heart microsomal lipid peroxidation following doxorubicin treatment in vivo. Cancer Treat Rep 67:731–733

    PubMed  CAS  Google Scholar 

  6. Palmeira CM, Serrano J, Kuehl DW et al (1997) Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin. Biochim Biophys Acta 1321:101–106

    Article  PubMed  CAS  Google Scholar 

  7. Solem LE, Wallace KB (1993) Selective activation of the sodium-independent, cyclosporin A-sensitive calcium pore of cardiac mitochondria by doxorubicin. Toxicol Appl Pharmacol 121:50–57

    Article  PubMed  CAS  Google Scholar 

  8. Bernardi P (1996) The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta 1275:5–9

    Article  PubMed  Google Scholar 

  9. Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341(Pt 2):233–249

    Article  PubMed  CAS  Google Scholar 

  10. Di Lisa F (2001) Mitochondrial contribution in the progression of cardiac ischemic injury. IUBMB Life 52:255–261

    Article  PubMed  CAS  Google Scholar 

  11. Childs AC, Phaneuf SL, Dirks AJ et al (2002) Doxorubicin treatment in vivo causes cytochrome c release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res 62:4592–4598

    PubMed  CAS  Google Scholar 

  12. Yamanaka S, Tatsumi T, Shiraishi J et al (2003) Amlodipine inhibits doxorubicin-induced apoptosis in neonatal rat cardiac myocytes. J Am Coll Cardiol 41:870–878

    Article  PubMed  CAS  Google Scholar 

  13. Cutts SM, Nudelman A, Rephaeli A et al (2005) The power and potential of doxorubicin-DNA adducts. IUBMB Life 57:73–81

    Article  PubMed  CAS  Google Scholar 

  14. Cutts SM, Parsons PG, Sturm RA et al (1996) Adriamycin-induced DNA adducts inhibit the DNA interactions of transcription factors and RNA polymerase. J Biol Chem 271:5422–5429

    Article  PubMed  CAS  Google Scholar 

  15. L’Ecuyer T, Sanjeev S, Thomas R et al (2006) DNA damage is an early event in doxorubicin-induced cardiac myocyte death. Am J Physiol Heart Circ Physiol 291:H1273–H1280

    Article  PubMed  CAS  Google Scholar 

  16. Chua CC, Liu X, Gao J et al (2006) Multiple actions of pifithrin-alpha on doxorubicin-induced apoptosis in rat myoblastic H9c2 cells. Am J Physiol Heart Circ Physiol 290:H2606–H2613

    Article  PubMed  CAS  Google Scholar 

  17. Liu X, Chua CC, Gao J et al (2004) Pifithrin-alpha protects against doxorubicin-induced apoptosis and acute cardiotoxicity in mice. Am J Physiol Heart Circ Physiol 286:H933–H939

    Article  PubMed  CAS  Google Scholar 

  18. Shizukuda Y, Matoba S, Mian OY et al (2005) Targeted disruption of p53 attenuates doxorubicin-induced cardiac toxicity in mice. Mol Cell Biochem 273:25–32

    Article  PubMed  CAS  Google Scholar 

  19. Marchenko ND, Zaika A, Moll UM (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J Biol Chem 275:16202–16212

    Article  PubMed  CAS  Google Scholar 

  20. Moll UM, Zaika A (2001) Nuclear and mitochondrial apoptotic pathways of p53. FEBS Lett 493:65–69

    Article  PubMed  CAS  Google Scholar 

  21. Schuler M, Green DR (2001) Mechanisms of p53-dependent apoptosis. Biochem Soc Trans 29:684–688

    Article  PubMed  CAS  Google Scholar 

  22. Nithipongvanitch R, Ittarat W, Cole MP et al (2007) Mitochondrial and nuclear p53 localization in cardiomyocytes: redox modulation by doxorubicin (Adriamycin)? Antioxid Redox Signal 9:1001–1008

    Article  PubMed  CAS  Google Scholar 

  23. Nithipongvanitch R, Ittarat W, Velez JM et al (2007) Evidence for p53 as guardian of the cardiomyocyte mitochondrial genome following acute adriamycin treatment. J Histochem Cytochem 55:629–639

    Article  PubMed  CAS  Google Scholar 

  24. Kimes BW, Brandt BL (1976) Properties of a clonal muscle cell line from rat heart. Exp Cell Res 98:367–381

    Article  PubMed  CAS  Google Scholar 

  25. L’Ecuyer T, Horenstein MS, Thomas R et al (2001) Anthracycline-induced cardiac injury using a cardiac cell line: potential for gene therapy studies. Mol Genet Metab 74:370–379

    Article  PubMed  CAS  Google Scholar 

  26. Frost BM, Eksborg S, Bjork O et al (2002) Pharmacokinetics of doxorubicin in children with acute lymphoblastic leukemia: multi-institutional collaborative study. Med Pediatr Oncol 38:329–337

    Article  PubMed  Google Scholar 

  27. Klein D, Kern RM, Sokol RZ (1995) A method for quantification and correction of proteins after transfer to immobilization membranes. Biochem Mol Biol Int 36:59–66

    PubMed  CAS  Google Scholar 

  28. Broekemeier KM, Dempsey ME, Pfeiffer DR (1989) Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 264:7826–7830

    PubMed  CAS  Google Scholar 

  29. Berthiaume JM, Wallace KB (2007) Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biol Toxicol 23:15–25

    Article  PubMed  CAS  Google Scholar 

  30. Hamza A, Amin A, Daoud S (2008) The protective effect of a purified extract of Withania somnifera against doxorubicin-induced cardiac toxicity in rats. Cell Biol Toxicol 24:63–73

    Article  PubMed  CAS  Google Scholar 

  31. Box VG (2007) The intercalation of DNA double helices with doxorubicin and nagalomycin. J Mol Graph Model 26:14–19

    Article  PubMed  CAS  Google Scholar 

  32. Kaufmann WK, Paules RS (1996) DNA damage and cell cycle checkpoints. FASEB J 10:238–247

    PubMed  CAS  Google Scholar 

  33. Gomez-Lazaro M, Fernandez-Gomez FJ, Jordan J (2004) p53: twenty-five years understanding the mechanism of genome protection. J Physiol Biochem 60:287–307

    Article  PubMed  CAS  Google Scholar 

  34. Miyashita T, Krajewski S, Krajewska M et al (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805

    PubMed  CAS  Google Scholar 

  35. Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299

    Article  PubMed  CAS  Google Scholar 

  36. Brady NR, Hamacher-Brady A, Gottlieb RA (2006) Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors. Biochim Biophys Acta 1757:667–678

    Article  PubMed  CAS  Google Scholar 

  37. Capano M, Crompton M (2002) Biphasic translocation of Bax to mitochondria. Biochem J 367:169–178

    Article  PubMed  CAS  Google Scholar 

  38. Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645–654

    Article  PubMed  CAS  Google Scholar 

  39. Nakamura T, Ueda Y, Juan Y et al (2000) Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: in vivo study. Circulation 102:572–578

    PubMed  CAS  Google Scholar 

  40. Berthiaume JM, Oliveira PJ, Fariss MW et al (2005) Dietary vitamin E decreases doxorubicin-induced oxidative stress without preventing mitochondrial dysfunction. Cardiovasc Toxicol 5:257–267

    Article  PubMed  CAS  Google Scholar 

  41. Wattanapitayakul SK, Chularojmontri L, Herunsalee A et al (2005) Screening of antioxidants from medicinal plants for cardioprotective effect against doxorubicin toxicity. Basic Clin Pharmacol Toxicol 96:80–87

    Article  PubMed  CAS  Google Scholar 

  42. Albertini R, Abuja PM (1999) Prooxidant and antioxidant properties of Trolox C, analogue of vitamin E, in oxidation of low-density lipoprotein. Free Radic Res 30:181–188

    Article  PubMed  CAS  Google Scholar 

  43. Fariss MW, Zhang JG (2003) Vitamin E therapy in Parkinson’s disease. Toxicology 189:129–146

    Article  PubMed  CAS  Google Scholar 

  44. Sardão VA, Oliveira PJ, Holy J et al (2007) Vital imaging of H9c2 myoblasts exposed to tert-butylhydroperoxide—characterization of morphological features of cell death. BMC Cell Biol 8:11

    Article  PubMed  CAS  Google Scholar 

  45. Flora SJ (2007) Role of free radicals and antioxidants in health and disease. Cell Mol Biol 53:1–2

    PubMed  CAS  Google Scholar 

  46. Kelly GS (1998) Clinical applications of N-acetylcysteine. Altern Med Rev 3:114–127

    PubMed  CAS  Google Scholar 

  47. Neuzil J, Wang XF, Dong LF et al (2006) Molecular mechanism of ‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett 580:5125–5129

    Article  PubMed  CAS  Google Scholar 

  48. Halestrap AP (2006) Calcium, mitochondria and reperfusion injury: a pore way to die. Biochem Soc Trans 34:232–237

    Article  PubMed  CAS  Google Scholar 

  49. Zhou S, Starkov A, Froberg MK et al (2001) Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res 61:771–777

    PubMed  CAS  Google Scholar 

  50. Oliveira PJ, Bjork JA, Santos MS et al (2004) Carvedilol-mediated antioxidant protection against doxorubicin-induced cardiac mitochondrial toxicity. Toxicol Appl Pharmacol 200:159–168

    Article  PubMed  CAS  Google Scholar 

  51. Narula J, Haider N, Virmani R et al (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335:1182–1189

    Article  PubMed  CAS  Google Scholar 

  52. Kang PM, Izumo S (2003) Apoptosis in heart: basic mechanisms and implications in cardiovascular diseases. Trends Mol Med 9:177–182

    Article  PubMed  CAS  Google Scholar 

  53. Haunstetter A, Izumo S (1998) Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res 82:1111–1129

    PubMed  CAS  Google Scholar 

  54. Kalyanaraman B, Joseph J, Kalivendi S et al (2002) Doxorubicin-induced apoptosis: implications in cardiotoxicity. Mol Cell Biochem 234–235:119–124

    Article  PubMed  Google Scholar 

  55. Youn HJ, Kim HS, Jeon MH et al (2005) Induction of caspase-independent apoptosis in H9c2 cardiomyocytes by adriamycin treatment. Mol Cell Biochem 270:13–19

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant HL 58016 and FCT SAU-OSM-64084-2006. Vilma A. Sardão is supported by grants from the Portuguese Foundation for Science and Technology, SFRH/BD/10251/2002 and SFRH/BPD/31549/2006. We acknowledge Ana Filipa Branco for excellent technical assistance. We also acknowledge Dr. Marc Fariss (University of Colorado, Denver) for providing vitamin E-succinate.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilma A. Sardão.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sardão, V.A., Oliveira, P.J., Holy, J. et al. Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts. Cancer Chemother Pharmacol 64, 811–827 (2009). https://doi.org/10.1007/s00280-009-0932-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-009-0932-x

Keywords

Navigation