Skip to main content

Advertisement

Log in

Human concentrative nucleoside transporter 3 is a determinant of fludarabine transportability and cytotoxicity in human renal proximal tubule cell cultures

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Interpatient variability in renal elimination of fludarabine (9-β-D-arabinosyl-2-fluoroadenine) by renal human nucleoside transporters (hNTs) may contribute to unpredictable toxicities including rare nephrotoxicities. This study assessed relationships between hNT levels and fludarabine uptake and cytotoxicity in cultures of human renal proximal tubule cells (hRPTCs) that produce multiple transporter types.

Methods

hRPTC cultures were established from ten different individuals and their hNT characteristics were assessed by measuring RNA expression by TaqMan™ reverse transcriptase polymerase chain reaction, protein abundance by quantitative immunoblotting of cell surface protein preparations, and uptake by radiolabeled nucleoside uptake assays. Fludarabine cytotoxicity against hRPTC cultures was quantified using methoxyphenyl tetrazolium inner salt (MTS) assays.

Results

RNA, protein and activities for human equilibrative NT 1 (hENT1) and 2 (hENT2) and human concentrative NT 3 (hCNT3) were identified in cultures of hRPTCs from ten different individuals. Significant differences in hCNT3 activities were exhibited among hRPTC cultures and correlated positively with cell surface levels of hCNT3 protein, but did not correlate with hCNT3 mRNA levels.

Conclusions

Observed differences in hCNT3-mediated uptake activities, hNT-mediated fludarabine uptake activities, and fludarabine cytotoxicities correlated positively with each other, suggesting that hCNT3 is a primary determinant of fludarabine uptake and cytotoxicity in hRPTC cultures. Variations in hCNT3 abundance in renal proximal tubules, and hence nucleoside reabsorption, may explain interpatient variability in fludarabine’s pharmacokinetics and toxicities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IC50 :

50% Inhibitory concentration

EC50 :

50% Cell killing concentration

CNT:

Concentrative nucleoside transporter

ENT:

Equilibrative nucleoside transporter

hCNT1:

Human concentrative nucleoside transporter 1

hCNT2:

Human concentrative nucleoside transporter 2

hCNT3:

Human concentrative nucleoside transporter 3

hENT1:

Human equilibrative nucleoside transporter 1

hENT2:

Human equilibrative nucleoside transporter 2

hENT3:

Human equilibrative nucleoside transporter 3

hENT4:

Human equilibrative nucleoside transporter 4

hNT:

Human nucleoside transporter

hRPTC:

Human renal proximal tubule cell

MTS:

Methoxyphenyl tetrazolium inner salt

NBMPR:

Nitrobenzylmercaptopurine ribonucleoside

NT:

Nucleoside transporter

PCR:

Polymerase chain reaction

RT-PCR:

Reverse transcriptase polymerase chain reaction

SNP:

Single nucleotide polymorphism

SDS:

Sodium dodecyl sulfate

SLC28:

Solute Carrier 28

SLC29:

Solute Carrier 29

References

  1. Avramis VI, Champagne J, Sato J et al (1990) Pharmacology of fludarabine phosphate after a phase I/II trial by a loading bolus and continuous infusion in pediatric patients. Cancer Res 50:7226–7231

    PubMed  CAS  Google Scholar 

  2. Baldwin SA, Beal PR, Yao SY, King AE, Cass CE, Young JD (2004) The equilibrative nucleoside transporter family, SLC29. Pflugers Arch 447:735–743

    Article  PubMed  CAS  Google Scholar 

  3. Baldwin SA, Yao SY, Hyde RJ et al (2005) Functional characterization of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes. J Biol Chem 280:15880–15887

    Article  PubMed  CAS  Google Scholar 

  4. Barnes K, Dobrzynski H, Foppolo S et al (2006) Distribution and functional characterization of equilibrative nucleoside transporter-4, a novel cardiac adenosine transporter activated at acidic pH. Circ Res 99:510–519

    Article  PubMed  CAS  Google Scholar 

  5. Blackburn JG, Hazen-Martin DJ, Detrisac CJ, Sens DA (1988) Electrophysiology and ultrastructure of cultured human proximal tubule cells. Kidney Int 33:508–516

    Article  PubMed  CAS  Google Scholar 

  6. Boumah CE, Hogue DL, Cass CE (1992) Expression of high levels of nitrobenzylthioinosine-sensitive nucleoside transport in cultured human choriocarcinoma (BeWo) cells. Biochem J 288:987–996

    PubMed  CAS  Google Scholar 

  7. Brockman RW, Schabel FM Jr, Montgomery JA (1977) Biological activity of 9-β-D-arabinofuranosyl-2-fluoroadenine, a metabolically stable analog of 9-β-d-arabinofuranosyladenine. Biochem Pharmacol 26:2193–2196

    Article  PubMed  CAS  Google Scholar 

  8. Carson DA, Wasson DB, Kaye J et al (1980) Deoxycytidine kinase mediated toxicity of deoxyadenosine analogs toward human lymphoblasts in vitro and toward murine L1210 leukemia in vivo. Proc Natl Acad Sci USA 77:6865–6869

    Article  PubMed  CAS  Google Scholar 

  9. Chow L, Lai R, Dabbagh L et al (2005) Analysis of human equilibrative nucleoside transporter 1 (hENT1) protein in non-Hodgkin’s lymphoma by immunohistochemistry. Mod Pathol 18:558–564

    Article  PubMed  CAS  Google Scholar 

  10. Dabbagh L, Coupland RW, Cass CE, Mackey JR (2003) Immunohistochemical variation of human equilibrative nucleoside transporter 1 protein in primary breast cancers. Clin Cancer Res 9:3213–3214

    PubMed  CAS  Google Scholar 

  11. Damaraju VL, Elwi AN, Hunter C et al (2007) Localization of broadly selective equilibrative and concentrative nucleoside transporters, hENT1 and hCNT3, in human kidney. Am J Physiol Renal Physiol 293:F200–F211

    Article  PubMed  CAS  Google Scholar 

  12. Danhauser L, Plunkett W, Keating M et al (1996) 9-β-D-Arabinofuranosyl-2-fluoroadenine 5′-monophosphate pharmacokinetics in plasma and tumor cells of patients with relapsed leukemia and lymphoma. Cancer Chemother Pharmacol 18:145–152

    Google Scholar 

  13. Elwi AN, Damaraju VL, Baldwin SA, Young JD, Sawyer MB, Cass CE (2006) Renal nucleoside transporters: physiological and clinical implications. Biochem Cell Biol 84:844–858

    Article  PubMed  CAS  Google Scholar 

  14. Engel K, Zhou M, Wang J (2004) Identification and characterization of a novel monoamine transporter in the human brain. J Biol Chem 279:50042–50049

    Article  PubMed  CAS  Google Scholar 

  15. Errasti-Murugarren E, Pastor-Anglada M, Casado FJ (2007) Role of CNT3 in the transepithelial flux of nucleosides and nucleoside-derived drugs. J Physiol 582:1249–1260

    Article  PubMed  CAS  Google Scholar 

  16. Ghandi V, Plunkett W (2002) Cellular and clinical pharmacology of fludarabine. Clin Pharmacokinet 41:93–103

    Article  Google Scholar 

  17. Govindarajan R, Bakken AH, Hudkins KL et al (2007) In situ hybridization and immunolocalization of concentrative and equilibrative nucleoside transporters in the human intestine, liver, kidneys, and placenta. Am J Physiol Regul Integr Comp Physiol 293:R1809–R1822

    PubMed  CAS  Google Scholar 

  18. Gray JH, Mangravite LM, Owen RP et al (2003) Functional and genetic diversity of concentrative nucleoside transporter 1, CNT1, in human populations. Mol Pharmacol 73:512–519

    Google Scholar 

  19. Gray JH, Owen RP, Giacomini KM (2004) The concentrative nucleoside transporter family, SLC28. Pflugers Arch 447:728–734

    Article  PubMed  CAS  Google Scholar 

  20. Griffiths M, Beaumont N, Yao SY et al (1997) Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs. Nat Med 3:89–93

    Article  PubMed  CAS  Google Scholar 

  21. Griffiths M, Yao SY, Abidi F et al (1997) Molecular cloning and characterization of a nitrobenzylthioinosine-insensitive (ei) equilibrative nucleoside transporter from human placenta. Biochem J 328:739–743

    PubMed  CAS  Google Scholar 

  22. Gutierrez MM, Brett CM, Ott RJ, Hui AC, Giacomini KM (1992) Nucleoside transport in brush border membrane vesicles from human kidney. Biochim Biophys Acta 1105:1–9

    Article  PubMed  CAS  Google Scholar 

  23. Hagenbeek A, Eghbali H, Monfardini S et al (2006) Phase III intergroup study of fludarabine phosphate compared with cyclophosphamide, vincristine, and prednisone chemotherapy in newly diagnosed patients with stage III and IV low-grade malignant Non-Hodgkin’s lymphoma. J Clin Oncol 24:1590–1596

    Article  PubMed  CAS  Google Scholar 

  24. Hussain K, Mazza JJ, Clouse LH (2003) Tumor lysis syndrome (TLS) following fludarabine therapy for chronic lymphocytic leukemia (CLL): case report and review of the literature. Am J Hematol 72:212–215

    Article  PubMed  Google Scholar 

  25. King KM, Damaraju VL, Vickers MF et al (2006) A comparison of the transportability, and its role in cytotoxicity, of clofarabine, cladribine, and fludarabine by recombinant human nucleoside transporters produced in three model expression systems. Mol Pharmacol 69:346–353

    PubMed  CAS  Google Scholar 

  26. King KM (2007) Current Cancer Therapy Rev (in press)

  27. Lai Y, Bakken AH, Unadkat JD (2002) Simultaneous expression of hCNT1-CFP and hENT1-YFP in Madin-Darby canine kidney cells. Localization and vectorial transport studies. J Biol Chem 277:37711–37717

    Article  PubMed  CAS  Google Scholar 

  28. Lash LH, Putt DA, Cai H (2006) Membrane transport function in primary cultures of human proximal tubular cells. Toxicology 228:200–218

    Article  PubMed  CAS  Google Scholar 

  29. Leporrier M, Chevret S, Cazin B et al (2001) French Cooperative Group on Chronic Lymphocytic Leukemia. Randomized comparison of fludarabine, CAP, and ChOP in 938 previously untreated stage B and C chronic lymphocytic leukemia patients. Blood 98:2319–2325

    Article  PubMed  CAS  Google Scholar 

  30. Mackey JR, Jennings LL, Clarke ML et al (2002) Immunohistochemical variation of human equilibrative nucleoside transporter 1 in primary breast cancers. Clin Cancer Res 8:110–116

    PubMed  CAS  Google Scholar 

  31. Mackey JR, Galmarini CM, Graham KA et al (2005) Quantitative analysis of nucleoside transporter and metabolism gene expression in chronic lymphocytic leukemia (CLL): identification of fludarabine-sensitive and -insensitive populations. Blood 105:767–774

    Article  PubMed  CAS  Google Scholar 

  32. Malich G, Markovic B, Winder C et al (1997) The sensitivity and specificity of the MTS tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicol 124:179–192

    Article  CAS  Google Scholar 

  33. Malspeis L, Grever MR, Staubus AE et al (1990) Pharmacokinetics of 2-F-ara-A (9-beta-d-arabinofuranosyl-2-fluoroadenine) in cancer patients during the phase I clinical investigation of fludarabine phosphate. Sem Oncol 17:18–32

    CAS  Google Scholar 

  34. Mangravite LM, Lipschutz JH, Mostov KE, Giacomini KM (2001) Localization of GFP-tagged concentrative nucleoside transporters in a renal polarized epithelial cell line. Am J Physiol Renal Physiol 280:F879–F885

    PubMed  CAS  Google Scholar 

  35. Mangravite LM, Xiao G, Giacomini KM (2003) Localization of human equilibrative nucleoside transporters, hENT1 and hENT2, in renal epithelial cells. Am J Physiol Renal Physiol 284:F902–F910

    PubMed  CAS  Google Scholar 

  36. Mangravite LM, Badagnani I, Giacomini KM (2003) Nucleoside transporters in the disposition and targeting of nucleoside analogs in the kidney. Eur J Pharmacol 479:269–281

    Article  PubMed  CAS  Google Scholar 

  37. Rao VA, Plunkett W (2003) Activation of a p53-mediated apoptotic pathway in quiescent lymphocytes after the inhibition of DNA repair by fludarabine. Clin Cancer Res 9:3204–3212

    PubMed  CAS  Google Scholar 

  38. Ritzel MW, Yao SY, Huang MY, Elliott JF, Cass CE, Young JD (1997) Molecular cloning and functional expression of cDNAs encoding a human Na + -nucleoside cotransporter (hCNT1). Am J Physiol 272:C707–C714

    PubMed  CAS  Google Scholar 

  39. Ritzel MW, Yao SY, Ng AM, Mackey JR, Cass CE, Young JD (1998) Molecular cloning, functional expression and chromosomal localization of a cDNA encoding a human Na+/nucleoside cotransporter (hCNT2) selective for purine nucleosides and uridine. Mol Membr Biol 15:203–211

    Article  PubMed  CAS  Google Scholar 

  40. Ritzel MW, Ng AM, Yao SY et al (2001) Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). J Biol Chem 276:2914–2927

    Article  PubMed  CAS  Google Scholar 

  41. Smith KM, Slugoski MD, Cass CE, Baldwin SA, Karpinski E, Young JD (2007) Cation coupling properties of human concentrative nucleoside transporters hCNT1, hCNT2 and hCNT3. Mol Membr Biol 24:53–64

    Article  PubMed  CAS  Google Scholar 

  42. Spratlin J, Sangha R, Glubrecht D et al (2004) The absence of human equilibrative nucleoside transporter 1 is associated with reduced survival in patients with gemcitabine-treated pancreas adenocarcinoma. Clin Cancer Res 10:6956–6961

    Article  PubMed  CAS  Google Scholar 

  43. Terada T, Saito H, Mukai M, Inui KI (1996) Identification of the histidine residues involved in substrate recognition by a rat H+/peptide cotransporter, PEPT1. FEBS Lett 394:196–200

    Article  PubMed  CAS  Google Scholar 

  44. Tobinai K, Watanabe T, Ogura M et al (2006) Phase II study of oral fludarabine phosphate in relapsed indolent B-Cell non-Hodgkin’s lymphoma. J Clin Oncol 24:174–180

    Article  PubMed  CAS  Google Scholar 

  45. Tseng WC, Derse D, Cheng Y-C et al (1982) In vitro activity of 9-β-d-arabinofuranosyl-2-fluoroadenine and the biochemical actions of its triphosphate on DNA polymerases and ribonucleotide reductase from HeLa cells. Mol Pharmacol 21:474–477

    PubMed  CAS  Google Scholar 

  46. Vickers MF, Zhang J, Visser F et al (2004) Uridine recognition motifs of human equilibrative nucleoside transporters 1 and 2 produced in Saccharomyces cerevisiae. Nucleosides Nucleotides Nucleic Acids 23:361–373

    Article  PubMed  CAS  Google Scholar 

  47. Wang J, Su SF, Dresser MJ, Schaner ME, Washington CB, Giacomini KM (1997) Na+-dependent purine nucleoside transporter from human kidney: cloning and functional characterization. Am J Physiol Renal Physiol 273:F1058–F1065

    CAS  Google Scholar 

  48. Ward JL, Sherali A, Mo ZP, Tse CM (2000) Kinetic and pharmacological properties of cloned human equilibrative nucleoside transporters, ENT1 and ENT2, stably expressed in nucleoside transporter-deficient PK15 cells. Ent2 exhibits a low affinity for guanosine and cytidine but a high affinity for inosine. J Biol Chem 275:8375–8381

    Article  PubMed  CAS  Google Scholar 

  49. Xia L, Engel K, Zhou MY, Wang J (2007) Membrane localization and pH-dependent transport of a newly cloned organic cation transporter (PMAT) in kidney cells. Am J Physiol Renal Physiol 292:F682–F690

    Article  PubMed  CAS  Google Scholar 

  50. Zhang J, Smith KM, Tackaberry T et al (2005) Uridine binding and transportability determinants of human cocentrative nucleoside transporters. Mol Pharmacol 68:830–839

    PubMed  CAS  Google Scholar 

  51. Zhang J, Visser F, Vickers MF et al (2003) Uridine binding motifs of human concentrative nucleoside transporters 1 and 3 produced in Saccharomyces cerevisiae. Mol Pharmacol 64:1512–1520

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol E. Cass.

Additional information

This research was funded by the Alberta Cancer Board Research Initiative Program and National Cancer Institute of Canada. C.E.C. is Canada Research Chair in Oncology. J.D.Y. is Heritage Scientist of the Alberta Heritage Foundation for Medical Research. M.B S. received an American Society of Clinical Oncology Career Development Award. A.N.E. is supported by an Alberta Cancer Board Legacy Graduate Award and a Studentship from the Translational Research Training in Cancer Program jointly supported by the Canadian Institutes of Health Research, National Cancer Institute of Canada and Alberta Cancer Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elwi, A.N., Damaraju, V.L., Kuzma, M.L. et al. Human concentrative nucleoside transporter 3 is a determinant of fludarabine transportability and cytotoxicity in human renal proximal tubule cell cultures. Cancer Chemother Pharmacol 63, 289–301 (2009). https://doi.org/10.1007/s00280-008-0739-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-008-0739-1

Keywords

Navigation