Skip to main content

Advertisement

Log in

Comparison of the behavioral and cardiovascular effects of mephedrone with other drugs of abuse in rats

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Exceedingly little experimental research exists on the popular recreational drug mephedrone (4-methylmethcathinone) despite clinical reports concerning its behavioral and cardiovascular toxicity.

Objectives

To characterize mephedrone preclinically by examining its capacity to (1) serve as a discriminative stimulus, (2) disrupt the acquisition of response sequences, and (3) disrupt mean arterial pressure (MAP) and heart rate (HR).

Methods and results

In one group of subjects that reliably discriminated 3.2 mg/kg of mephedrone from saline (n = 9), substitution tests indicated that stimulants (cocaine, MDMA, and methamphetamine) more closely approximated the mephedrone discriminative stimulus than non-stimulants (fenfluramine, morphine, and phencyclidine), although none fully substituted. In a second group (n = 6), mephedrone (0.56–10 mg/kg, i.p.) dose-dependently decreased response rate and increased errors in both components of a procedure in which subjects either acquired a new response sequence each session (repeated acquisition) or completed the same response sequence each session (performance). Finally, in a third group (n = 12), radio telemetry probes were used to measure the changes in MAP and HR elicited by mephedrone and then compared them to a known stimulant, methamphetamine. In these studies, mephedrone (0.01–9 mg/kg, i.v.) elicited increases in MAP and HR that were very similar to those elicited by methamphetamine (0.01–9 mg/kg, i.v.). The tachycardia and pressor responses to mephedrone (3 mg/kg) were blocked by the β-blocker atenolol (1 mg/kg, i.v.) and the α1, α2-blocker phentolamine (3 mg/kg, i.v.), respectively.

Conclusions

Mephedrone produces behavioral and cardiovascular responses that are similar to other stimulants; however, differences from the classical stimulants were also apparent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adkins J (2011) Bath salts: deadly new designer drug. Regional Organized Crime Information Center (ROCIC) Bath Salts Designer Drug Report. ROCIC Publications, 1–11

  • Angoa-Perez M, Kane MJ, Francescutti DM, Sykes KE, Shah MM, Mohammed AM, Thomas DM, Kuhn DM (2012) Mephedrone, an abused psychoactive component of ‘bath salts’ and methamphetamine congener, does not cause neurotoxicity to dopamine nerve endings of the striatum. J Neurochem 120:1097–1107

    PubMed  CAS  Google Scholar 

  • Badon LA, Hicks A, Lord K, Ogden BA, Meleg-Smith S, Varner KJ (2002) Changes in cardiovascular responsiveness and cardiotoxicity elicited during binge administration of Ecstasy. J Pharmacol Exp Ther 302:898–907

    Article  PubMed  CAS  Google Scholar 

  • Balster RL, Prescott WR (1992) Delta 9-tetrahydrocannabinol discrimination in rats as a model for cannabis intoxication. Neurosci Biobehav Rev 16:55–62

    Article  PubMed  CAS  Google Scholar 

  • Baumann MH, Ayestas MA Jr, Partilla JS, Sink JR, Shulgin AT, Daley PF, Brandt SD, Rothman RB, Ruoho AE, Cozzi NV (2012) The designer methcathinone analogs, mephedrone and methylone, are substrates for monoamine transporters in brain tissue. Neuropsychopharmacology 37:1192–1203

    Article  PubMed  CAS  Google Scholar 

  • Delatte MS, Winsauer PJ, Moerschbaecher JM (2002) Tolerance to the disruptive effects of Delta(9)-THC on learning in rats. Pharmacol Biochem Behav 74:129–140

    Article  PubMed  CAS  Google Scholar 

  • Galizio M, McKinney P, Cerutti DT, Pitts RC (2009) Effects of MDMA, methamphetamine and methylphenidate on repeated acquisition and performance in rats. Pharmacol Biochem Behav 94:305–311

    Article  PubMed  CAS  Google Scholar 

  • Gerak LR, Stevenson MW, Winsauer PJ, Moerschbaecher JM (2004) Effects of pregnanolone alone and in combination with other positive GABAA modulators on complex behavior in rats. Psychopharmacology (Berl) 173:195–202

    Article  CAS  Google Scholar 

  • Glennon RA, Young R, Hauck AE, McKenney JD (1984) Structure–activity studies on amphetamine analogs using drug discrimination methodology. Pharmacol Biochem Behav 21:895–901

    Article  PubMed  CAS  Google Scholar 

  • Goudie AJ, Atkinson J, West CR (1986) Discriminative properties of the psychostimulant dl-cathinone in a two lever operant task. Lack of evidence for dopaminergic mediation. Neuropharmacology 25:85–94

    Article  PubMed  CAS  Google Scholar 

  • Hadlock GC, Webb KM, McFadden LM, Chu PW, Ellis JD, Allen SC, Andrenyak DM, Vieira-Brock PL, German CL, Conrad KM, Hoonakker AJ, Gibb JW, Wilkins DG, Hanson GR, Fleckenstein AE (2011) 4-Methylmethcathinone (mephedrone): neuropharmacological effects of a designer stimulant of abuse. J Pharmacol Exp Ther 339:530–536

    Article  PubMed  CAS  Google Scholar 

  • Holtzman SG (1990) Discriminative stimulus effects of drugs: relationship to potential for abuse. In: Adler MW, Cowan A (eds) Testing and evaluation of drugs of abuse. John Wiley & Sons, New York, pp 193–210

    Google Scholar 

  • Kehr J, Ichinose F, Yoshitake S, Goiny M, Sievertsson T, Nyberg F, Yoshitake T (2011) Mephedrone, compared with MDMA (ecstasy) and amphetamine, rapidly increases both dopamine and 5-HT levels in nucleus accumbens of awake rats. Br J Pharmacol 164:1949–1958

    Article  PubMed  CAS  Google Scholar 

  • Leonard ST, Gerak LR, Delatte MS, Moerschbaecher JM, Winsauer PJ (2009) Relative potency and effectiveness of flunitrazepam, ethanol, and beta-CCE for disrupting the acquisition and retention of response sequences in rats. Behav Pharmacol 20:33–44

    Article  PubMed  CAS  Google Scholar 

  • Lisek R, Xu W, Yuvasheva E, Chiu YT, Reitz AB, Liu-Chen LY, Rawls SM (2012) Mephedrone (‘bath salt’) elicits conditioned place preference and dopamine-sensitive motor activation. Drug Alcohol Depend, Epub

  • Lord KC, Shenouda SK, McIlwain E, Charalampidis D, Lucchesi PA, Varner KJ (2010) Oxidative stress contributes to methamphetamine-induced left ventricular dysfunction. Cardiovasc Res 87:111–118

    Article  PubMed  CAS  Google Scholar 

  • Maurer HH (2012) Chemistry, pharmacology, and metabolism of emerging drugs of abuse. Ther Drug Monit 32:544–549

    Article  Google Scholar 

  • Meng H, Cao J, Kang J, Ying X, Ji J, Reynolds W, Rampe D (2012) Mephedrone, a new designer drug of abuse, produces acute hemodynamic effects in the rat. Toxicol Lett 208:62–68

    Article  PubMed  CAS  Google Scholar 

  • Moerschbaecher JM, Boren JJ, Schrot J, Fontes JC (1979) Effects of cocaine and d-amphetamine on the repeated acquisition and performance of conditional discriminations. J Exp Anal Behav 31:127–140

    Article  PubMed  CAS  Google Scholar 

  • Motbey CP, Hunt GE, Bowen MT, Artiss S, McGregor IS (2012) Mephedrone (4-methylmethcathinone, ‘meow’): acute behavioural effects and distribution of Fos expression in adolescent rats. Addict Biol 17:409–422

    Article  PubMed  CAS  Google Scholar 

  • Murnane KS, Murai N, Howell LL, Fantegrossi WE (2009) Discriminative stimulus effects of psychostimulants and hallucinogens in S(+)-3,4-methylenedioxymethamphetamine (MDMA) and R(−)-MDMA trained mice. J Pharmacol Exp Ther 331:717–723

    Article  PubMed  CAS  Google Scholar 

  • Nicholson PJ, Quinn MJ, Dodd JD (2010) Headshop heartache: acute mephedrone ‘meow’ myocarditis. Heart 96:2051–2052

    Article  PubMed  Google Scholar 

  • Quinton MS, Gerak LR, Moerschbaecher JM, Winsauer PJ (2005) Interaction of cocaine with positive GABAA modulators on the repeated acquisition and performance of response sequences in rats. Psychopharmacology (Berl) 181:217–226

    Article  CAS  Google Scholar 

  • Quinton MS, Gerak LR, Moerschbaecher JM, Winsauer PJ (2006) Effects of pregnanolone in rats discriminating cocaine. Pharmacol Biochem Behav 85:385–392

    Article  PubMed  CAS  Google Scholar 

  • Regan L, Mitchelson M, Macdonald C (2011) Mephedrone toxicity in a Scottish emergency department. Emerg Med J 28:1055–1058

    Article  PubMed  Google Scholar 

  • Schechter MD, Rosecrans JA, Glennon RA (1984) Comparison of behavioral effects of cathinone, amphetamine and apomorphine. Pharmacol Biochem Behav 20:181–184

    Article  PubMed  CAS  Google Scholar 

  • Schifano F, Albanese A, Fergus S, Stair JL, Deluca P, Corazza O, Davey Z, Corkery J, Siemann H, Scherbaum N, Farre’ M, Torrens M, Demetrovics Z, Ghodse AH (2011) Mephedrone (4-methylmethcathinone; ‘meow meow’): chemical, pharmacological and clinical issues. Psychopharmacology (Berl) 214:593–602

    Article  CAS  Google Scholar 

  • Schindler CW, Zheng JW, Tella SR, Goldberg SR (1992) Pharmacological mechanisms in the cardiovascular effects of methamphetamine in conscious squirrel monkeys. Pharmacol Biochem Behav 42:791–796

    Article  PubMed  CAS  Google Scholar 

  • Schmidt MM, Sharma A, Schifano F, Feinmann C (2011) “Legal highs” on the net-evaluation of UK-based Websites, products and product information. Forensic Sci Int 206:92–97

    Article  PubMed  Google Scholar 

  • Shenouda SK, Carvalho F, Varner KJ (2010) The cardiovascular and cardiac actions of ecstasy and its metabolites. Curr Pharm Biotechnol 11:470–475

    Article  PubMed  CAS  Google Scholar 

  • Winsauer PJ, Moerschbaecher JM, Brauner IN, Purcell JE, Lancaster JR Jr, Bagby GJ, Nelson S (2002) Alcohol unmasks simian immunodeficiency virus-induced cognitive impairments in rhesus monkeys. Alcohol Clin Exp Res 26:1846–1857

    Article  PubMed  CAS  Google Scholar 

  • Winsauer PJ, Moerschbaecher JM, Molina PE, Roussell AM (2003) Contingent and noncontingent cocaine administration in rhesus monkeys: a comparison of the effects on the acquisition and performance of response sequences. Behav Pharmacol 14:295–306

    Article  PubMed  CAS  Google Scholar 

  • Winsauer PJ, Daniel JM, Filipeanu CM, Leonard ST, Hulst JL, Rodgers SP, Lassen-Greene CL, Sutton JL (2011) Long-term behavioral and pharmacodynamic effects of delta-9-tetrahydrocannabinol in female rats depend on ovarian hormone status. Addict Biol 16:64–81

    Article  PubMed  CAS  Google Scholar 

  • Winsauer PJ, Filipeanu CM, Bailey EM, Hulst JL, Sutton JL (2012) Ovarian hormones and chronic administration during adolescence modify the discriminative stimulus effects of delta-9-tetrahydrocannabinol (Delta(9)-THC) in adult female rats. Pharmacol Biochem Behav 102:442–449

    Article  PubMed  CAS  Google Scholar 

  • Winstock A, Mitcheson L, Ramsey J, Davies S, Puchnarewicz M, Marsden J (2011) Mephedrone: use, subjective effects and health risks. Addiction 106:1991–1996

    Article  PubMed  Google Scholar 

  • Wood DM, Davies S, Puchnarewicz M, Button J, Archer R, Ovaska H, Ramsey J, Lee T, Holt DW, Dargan PI (2010) Recreational use of mephedrone (4-methylmethcathinone, 4-MMC) with associated sympathomimetic toxicity. J Med Toxicol 6:327–330

    Article  PubMed  Google Scholar 

  • Young R, Glennon RA (1998) Discriminative stimulus effects of S(−)-methcathinone (CAT): a potent stimulant drug of abuse. Psychopharmacology (Berl) 140:250–256

    Article  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported, in part, by grants awarded to Kurt Varner (K8P20GM103514 and 5P20RR018766).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Winsauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varner, K.J., Daigle, K., Weed, P.F. et al. Comparison of the behavioral and cardiovascular effects of mephedrone with other drugs of abuse in rats. Psychopharmacology 225, 675–685 (2013). https://doi.org/10.1007/s00213-012-2855-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2855-1

Keywords

Navigation