Skip to main content

Advertisement

Log in

The role of serotonin receptor subtypes in treating depression: a review of animal studies

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Serotonin reuptake inhibitors (SSRIs) are effective in treating depression. Given the existence of different families and subtypes of 5-HT receptors, multiple 5-HT receptors may be involved in the antidepressant-like behavioral effects of SSRIs.

Objective

Behavioral pharmacology studies investigating the role of 5-HT receptor subtypes in producing or blocking the effects of SSRIs were reviewed.

Results

Few animal behavior tests were available to support the original development of SSRIs. Since their development, a number of behavioral tests and models of depression have been developed that are sensitive to the effects of SSRIs, as well as to other types of antidepressant treatments. The rationale for the development and use of these tests is reviewed. Behavioral effects similar to those of SSRIs (antidepressant-like) have been produced by agonists at 5-HT1A, 5-HT1B, 5-HT2C, 5-HT4, and 5-HT6 receptors. Also, antagonists at 5-HT2A, 5-HT2C, 5-HT3, 5-HT6, and 5-HT7 receptors have been reported to produce antidepressant-like responses. Although it seems paradoxical that both agonists and antagonists at particular 5-HT receptors can produce antidepressant-like effects, they probably involve diverse neurochemical mechanisms. The behavioral effects of SSRIs and other antidepressants may also be augmented when 5-HT receptor agonists or antagonists are given in combination.

Conclusions

The involvement of 5-HT receptors in the antidepressant-like effects of SSRIs is complex and involves the orchestration of stimulation and blockade at different 5-HT receptor subtypes. Individual 5-HT receptors provide opportunities for the development of a newer generation of antidepressants that may be more beneficial and effective than SSRIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abbas AI, Hedlund PB, Huang XP, Tran TB, Meltzer HY, Roth BL (2009) Amisulpride is a potent 5-HT7 antagonist: relevance for antidepressant actions in vivo. Psychopharmacology (Berl) 205:119–128

    CAS  Google Scholar 

  • Airan RD, Meltzer LA, Roy M, Gong Y, Chen H, Deisseroth K (2007) High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 317:819–823

    CAS  PubMed  Google Scholar 

  • Albinsson A, Bjork A, Svartengren J, Klint T, Andersson G (1994) Preclinical pharmacology of FG5893: a potential anxiolytic drug with high affinity for both 5-HT1A and 5-HT2A receptors. Eur J Pharmacol 261:285–294

    CAS  PubMed  Google Scholar 

  • Alexander B, Warner-Schmidt J, Eriksson T, Tamminga C, Arango-Llievano M, Ghose S, Vernov M, Stavarche M, Musatov S, Flajolet M, Svenningsson P, Greengard P, Kaplitt MG (2010) Reversal of depressed behaviors in mice by p11 gene therapy in the nucleus accumbens. Sci Transl Med 2:54ra76

    PubMed  Google Scholar 

  • Ansorge MS, Morelli E, Gingrich JA (2008) Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice. J Neurosci 28:199–207

    CAS  PubMed  Google Scholar 

  • Anthony JP, Sexton TJ, Neumaier JF (2000) Antidepressant-induced regulation of 5-HT(1b) mRNA in rat dorsal raphe nucleus reverses rapidly after drug discontinuation. J Neurosci Res 61:82–87

    CAS  PubMed  Google Scholar 

  • Artigas F, Romero L, de Montigny C, Blier P (1996) Acceleration of the effect of selected antidepressant drugs in major depression by 5-HT1A antagonists. Trends Neurosci 19:378–383

    CAS  PubMed  Google Scholar 

  • Artigas F, Celada P, Laruelle M, Adell A (2001) How does pindolol improve antidepressant action? Trends Pharmacol Sci 22:224–228

    CAS  PubMed  Google Scholar 

  • Bai F, Li X, Clay M, Lindstrom T, Skolnick P (2001) Intra- and interstrain differences in models of “behavioral despair”. Pharmacol Biochem Behav 70:187–192

    CAS  PubMed  Google Scholar 

  • Balu DT, Lucki I (2009) Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neurosci Biobehav Rev 33:232–252

    PubMed  Google Scholar 

  • Balu DT, Hodes GE, Anderson BT, Lucki I (2009) Enhanced sensitivity of the MRL/MpJ mouse to the neuroplastic and behavioral effects of chronic antidepressant treatments. Neuropsychopharmacology 34:1764–1773

    CAS  PubMed  Google Scholar 

  • Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29:450–460

    CAS  PubMed  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    CAS  PubMed  Google Scholar 

  • Beaulieu JM, Zhang X, Rodriguiz RM, Sotnikova TD, Cools MJ, Wetsel WC, Gainetdinov RR, Caron MG (2008) Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency. Proc Natl Acad Sci U S A 105:1333–1338

    CAS  PubMed  Google Scholar 

  • Bechtholt AJ, Valentino RJ, Lucki I (2008) Overlapping and distinct brain regions associated with the anxiolytic effects of chlordiazepoxide and chronic fluoxetine. Neuropsychopharmacology 33:2117–2130

    CAS  PubMed  Google Scholar 

  • Berg KA, Harvey JA, Spampinato U, Clarke WP (2008) Physiological and therapeutic relevance of constitutive activity of 5-HT 2A and 5-HT 2 C receptors for the treatment of depression. Prog Brain Res 172:287–305

    CAS  PubMed  Google Scholar 

  • Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, Graham D, Tsankova NM, Bolanos CA, Rios M, Monteggia LM, Self DW, Nestler EJ (2006) Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864–868

    CAS  PubMed  Google Scholar 

  • Beyer CE, Lin Q, Rosenzweig-Lipson S, Schechter LE (2006) Alpha 2A-adrenoceptors enhance the serotonergic effects of fluoxetine. Eur J Pharmacol 539:164–167

    CAS  PubMed  Google Scholar 

  • Bhatnagar S, Nowak N, Babich L, Bok L (2004) Deletion of the 5-HT3 receptor differentially affects behavior of males and females in the Porsolt forced swim and defensive withdrawal tests. Behav Brain Res 153:527–535

    CAS  PubMed  Google Scholar 

  • Blier P, Szabo ST (2005) Potential mechanisms of action of atypical antipsychotic medications in treatment-resistant depression and anxiety. J Clin Psychiatry 66(Suppl 8):30–40

    CAS  PubMed  Google Scholar 

  • Blier P, Ward NM (2003) Is there a role for 5-HT1A agonists in the treatment of depression? Biol Psychiatry 53:193–203

    CAS  PubMed  Google Scholar 

  • Bodnoff SR, Suranyi-Cadotte B, Aitken DH, Quirion R, Meaney MJ (1988) The effects of chronic antidepressant treatment in an animal model of anxiety. Psychopharmacology (Berl) 95:298–302

    CAS  Google Scholar 

  • Bodnoff SR, Suranyi-Cadotte B, Quirion R, Meaney MJ (1989) A comparison of the effects of diazepam versus several typical and atypical anti-depressant drugs in an animal model of anxiety. Psychopharmacology (Berl) 97:277–279

    CAS  Google Scholar 

  • Bonaventure P, Kelly L, Aluisio L, Shelton J, Lord B, Galici R, Miller K, Atack J, Lovenberg TW, Dugovic C (2007) Selective blockade of 5-hydroxytryptamine (5-HT)7 receptors enhances 5-HT transmission, antidepressant-like behavior, and rapid eye movement sleep suppression induced by citalopram in rodents. J Pharmacol Exp Ther 321:690–698

    CAS  PubMed  Google Scholar 

  • Bonnavion P, Bernard JF, Hamon M, Adrien J, Fabre V (2010) Heterogeneous distribution of the serotonin 5-HT(1A) receptor mRNA in chemically identified neurons of the mouse rostral brainstem: implications for the role of serotonin in the regulation of wakefulness and REM sleep. J Comp Neurol 518:2744–2770

    CAS  PubMed  Google Scholar 

  • Boothman LJ, Mitchell SN, Sharp T (2006) Investigation of the SSRI augmentation properties of 5-HT(2) receptor antagonists using in vivo microdialysis. Neuropharmacology 50:726–732

    CAS  PubMed  Google Scholar 

  • Borsini F (1995) Role of the serotonergic system in the forced swimming test. Neurosci Biobehav Rev 19:377–395

    CAS  PubMed  Google Scholar 

  • Borsini F, Meli A (1988) Is the forced swimming test a suitable model for revealing antidepressant activity? Psychopharmacology (Berl) 94:147–160

    CAS  Google Scholar 

  • Borsini F, Podhorna J, Marazziti D (2002) Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology (Berl) 163:121–141

    CAS  Google Scholar 

  • Bortolozzi A, Diaz-Mataix L, Scorza MC, Celada P, Artigas F (2005) The activation of 5-HT receptors in prefrontal cortex enhances dopaminergic activity. J Neurochem 95:1597–1607

    CAS  PubMed  Google Scholar 

  • Bravo G, Maswood S (2006) Acute treatment with 5-HT3 receptor antagonist, tropisetron, reduces immobility in intact female rats exposed to the forced swim test. Pharmacol Biochem Behav 85:362–368

    CAS  PubMed  Google Scholar 

  • Burnet PW, Mead A, Eastwood SL, Lacey K, Harrison PJ, Sharp T (1995) Repeated ECS differentially affects rat brain 5-HT1A and 5-HT2A receptor expression. Neuroreport 6:901–904

    CAS  PubMed  Google Scholar 

  • Calcagnetti DJ, Quatrella LA, Schechter MD (1996) Olfactory bulbectomy disrupts the expression of cocaine-induced conditioned place preference. Physiol Behav 59:597–604

    CAS  PubMed  Google Scholar 

  • Caldecott-Hazard S, Schneider LS (1992) Clinical and biochemical aspects of depressive disorders: III. Treatment and controversies. Synapse 10:141–168

    CAS  PubMed  Google Scholar 

  • Carlsen J, De Olmos J, Heimer L (1982) Tracing of two-neuron pathways in the olfactory system by the aid of transneuronal degeneration: projections to the amygdaloid body and hippocampal formation. J Comp Neurol 208:196–208

    CAS  PubMed  Google Scholar 

  • Carr GV, Schechter LE, Lucki I (2011) Antidepressant and anxiolytic effects of selective 5-HT(6) receptor agonists in rats. Psychopharmacology (in press)

  • Ceglia I, Acconcia S, Fracasso C, Colovic M, Caccia S, Invernizzi RW (2004) Effects of chronic treatment with escitalopram or citalopram on extracellular 5-HT in the prefrontal cortex of rats: role of 5-HT1A receptors. Br J Pharmacol 142:469–478

    CAS  PubMed  Google Scholar 

  • Cervo L, Grignaschi G, Samanin R (1988) 8-Hydroxy-2-(di-n-propylamino)tetralin, a selective serotonin1A receptor agonist, reduces the immobility of rats in the forced swimming test by acting on the nucleus raphe dorsalis. Eur J Pharmacol 158:53–59

    CAS  PubMed  Google Scholar 

  • Cervo L, Canetta A, Calcagno E, Burbassi S, Sacchetti G, Caccia S, Fracasso C, Albani D, Forloni G, Invernizzi RW (2005) Genotype-dependent activity of tryptophan hydroxylase-2 determines the response to citalopram in a mouse model of depression. J Neurosci 25:8165–8172

    CAS  PubMed  Google Scholar 

  • Cesana R, Ceci A, Ciprandi C, Borsini F (1993) Mesulergine antagonism towards the fluoxetine anti-immobility effect in the forced swimming test in mice. J Pharm Pharmacol 45:473–475

    CAS  PubMed  Google Scholar 

  • Chaput Y, de Montigny C, Blier P (1991) Presynaptic and postsynaptic modifications of the serotonin system by long-term administration of antidepressant treatments. An in vivo electrophysiologic study in the rat. Neuropsychopharmacology 5:219–229

    CAS  PubMed  Google Scholar 

  • Chenu F, David DJ, Leroux-Nicollet I, Le Maitre E, Gardier AM, Bourin M (2008) Serotonin1B heteroreceptor activation induces an antidepressant-like effect in mice with an alteration of the serotonergic system. J Psychiatry Neurosci 33:541–550

    PubMed  Google Scholar 

  • Chou-Green JM, Holscher TD, Dallman MF, Akana SF (2003) Repeated stress in young and old 5-HT(2 C) receptor knockout mice. Physiol Behav 79:217–226

    CAS  PubMed  Google Scholar 

  • Clenet F, De Vos A, Bourin M (2001) Involvement of 5-HT(2 C) receptors in the anti-immobility effects of antidepressants in the forced swimming test in mice. Eur Neuropsychopharmacol 11:145–152

    CAS  PubMed  Google Scholar 

  • Compan V, Zhou M, Grailhe R, Gazzara RA, Martin R, Gingrich J, Dumuis A, Brunner D, Bockaert J, Hen R (2004) Attenuated response to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor knock-out mice. J Neurosci 24:412–419

    CAS  PubMed  Google Scholar 

  • Conductier G, Dusticier N, Lucas G, Cote F, Debonnel G, Daszuta A, Dumuis A, Nieoullon A, Hen R, Bockaert J, Compan V (2006) Adaptive changes in serotonin neurons of the raphe nuclei in 5-HT(4) receptor knock-out mouse. Eur J Neurosci 24:1053–1062

    PubMed  Google Scholar 

  • Cousins MS, Seiden LS (2000) The serotonin-1A receptor antagonist WAY-100635 modifies fluoxetine’s antidepressant-like profile on the differential reinforcement of low rates 72-s schedule in rats. Psychopharmacology (Berl) 148:438–442

    CAS  Google Scholar 

  • Cremers TI, Rea K, Bosker FJ, Wikstrom HV, Hogg S, Mork A, Westerink BH (2007) Augmentation of SSRI effects on serotonin by 5-HT2C antagonists: mechanistic studies. Neuropsychopharmacology 32:1550–1557

    CAS  PubMed  Google Scholar 

  • Crowley JJ, Blendy JA, Lucki I (2005) Strain-dependent antidepressant-like effects of citalopram in the mouse tail suspension test. Psychopharmacology (Berl) 183:257–264

    CAS  Google Scholar 

  • Crowley JJ, Brodkin ES, Blendy JA, Berrettini WH, Lucki I (2006) Pharmacogenomic evaluation of the antidepressant citalopram in the mouse tail suspension test. Neuropsychopharmacology 31:2433–2442

    CAS  PubMed  Google Scholar 

  • Cryan JF, Lucki I (2000a) 5-HT4 receptors do not mediate the antidepressant-like behavioral effects of fluoxetine in a modified forced swim test. Eur J Pharmacol 409:295–299

    CAS  PubMed  Google Scholar 

  • Cryan JF, Lucki I (2000b) Antidepressant-like behavioral effects mediated by 5-Hydroxytryptamine(2 C) receptors. J Pharmacol Exp Ther 295:1120–1126

    CAS  PubMed  Google Scholar 

  • Cryan JF, Slattery DA (2007) Animal models of mood disorders: recent developments. Curr Opin Psychiatry 20:1–7

    PubMed  Google Scholar 

  • Cryan JF, Redmond AM, Kelly JP, Leonard BE (1997) The effects of the 5-HT1A agonist flesinoxan, in three paradigms for assessing antidepressant potential in the rat. Eur Neuropsychopharmacol 7:109–114

    CAS  PubMed  Google Scholar 

  • Cryan JF, Mombereau C, Vassout A (2005a) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625

    CAS  PubMed  Google Scholar 

  • Cryan JF, Page ME, Lucki I (2005b) Differential behavioral effects of the antidepressants reboxetine, fluoxetine, and moclobemide in a modified forced swim test following chronic treatment. Psychopharmacology (Berl) 182:335–344

    CAS  Google Scholar 

  • Cryan JF, Valentino RJ, Lucki I (2005c) Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 29:547–569

    CAS  PubMed  Google Scholar 

  • David DJ, Renard CE, Jolliet P, Hascoet M, Bourin M (2003) Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology (Berl) 166:373–382

    CAS  Google Scholar 

  • David DJ, Samuels BA, Rainer Q, Wang JW, Marsteller D, Mendez I, Drew M, Craig DA, Guiard BP, Guilloux JP, Artymyshyn RP, Gardier AM, Gerald C, Antonijevic IA, Leonardo ED, Hen R (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479–493

    CAS  PubMed  Google Scholar 

  • Dawson LA, Watson JM (2009) Vilazodone: a 5-HT1A receptor agonist/serotonin transporter inhibitor for the treatment of affective disorders. CNS Neurosci Ther 15:107–117

    CAS  PubMed  Google Scholar 

  • Dawson LA, Hughes ZA, Starr KR, Storey JD, Bettelini L, Bacchi F, Arban R, Poffe A, Melotto S, Hagan JJ, Price GW (2006) Characterisation of the selective 5-HT1B receptor antagonist SB-616234-A (1-[6-(cis-3, 5-dimethylpiperazin-1-yl)-2, 3-dihydro-5-methoxyindol-1-yl]-1- [2′-methyl-4′-(5-methyl-1, 2, 4-oxadiazol-3-yl)biphenyl-4-yl]methanone hydrochloride): in vivo neurochemical and behavioural evidence of anxiolytic/antidepressant activity. Neuropharmacology 50:975–983

    CAS  PubMed  Google Scholar 

  • de Bodinat C, Guardiola-Lemaitre B, Mocaer E, Renard P, Munoz C, Millan MJ (2010) Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov 9:628–642

    PubMed  Google Scholar 

  • De Vry J (1995) 5-HT1A receptor agonists: recent developments and controversial issues. Psychopharmacology (Berl) 121:1–26

    Google Scholar 

  • Dekeyne A, Millan MJ (2003) Discriminative stimulus properties of antidepressant agents: a review. Behav Pharmacol 14:391–407

    CAS  PubMed  Google Scholar 

  • Dekeyne A, Mannoury la Cour C, Gobert A, Brocco M, Lejeune F, Serres F, Sharp T, Daszuta A, Soumier A, Papp M, Rivet JM, Flik G, Cremers TI, Muller O, Lavielle G, Millan MJ (2008) S32006, a novel 5-HT2C receptor antagonist displaying broad-based antidepressant and anxiolytic properties in rodent models. Psychopharmacology (Berl) 199:549–568

    CAS  Google Scholar 

  • Delgado PL (2004) How antidepressants help depression: mechanisms of action and clinical response. J Clin Psychiatry 65(Suppl 4):25–30

    CAS  PubMed  Google Scholar 

  • Delgado PL, Price LH, Miller HL, Salomon RM, Licinio J, Krystal JH, Heninger GR, Charney DS (1991) Rapid serotonin depletion as a provocative challenge test for patients with major depression: relevance to antidepressant action and the neurobiology of depression. Psychopharmacol Bull 27:321–330

    CAS  PubMed  Google Scholar 

  • Detke MJ, Lucki I (1996) Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test: the effects of water depth. Behav Brain Res 73:43–46

    CAS  PubMed  Google Scholar 

  • Detke MJ, Rickels M, Lucki I (1995a) Active behaviors in the rat forced swimming test differentially produced by serotonergic and noradrenergic antidepressants. Psychopharmacology (Berl) 121:66–72

    CAS  Google Scholar 

  • Detke MJ, Wieland S, Lucki I (1995b) Blockade of the antidepressant-like effects of 8-OH-DPAT, buspirone and desipramine in the rat forced swim test by 5HT1A receptor antagonists. Psychopharmacology (Berl) 119:47–54

    CAS  Google Scholar 

  • Detke MJ, Johnson J, Lucki I (1997) Acute and chronic antidepressant drug treatment in the rat forced swimming test model of depression. Exp Clin Psychopharmacol 5:107–112

    CAS  PubMed  Google Scholar 

  • Di Matteo V, Di Giovanni G, Pierucci M, Esposito E (2008) Serotonin control of central dopaminergic function: focus on in vivo microdialysis studies. Prog Brain Res 172:7–44

    PubMed  Google Scholar 

  • Dremencov E, Newman ME, Kinor N, Blatman-Jan G, Schindler CJ, Overstreet DH, Yadid G (2005) Hyperfunctionality of serotonin-2 C receptor-mediated inhibition of accumbal dopamine release in an animal model of depression is reversed by antidepressant treatment. Neuropharmacology 48:34–42

    CAS  PubMed  Google Scholar 

  • Dremencov E, Weizmann Y, Kinor N, Gispan-Herman I, Yadid G (2006) Modulation of dopamine transmission by 5HT2C and 5HT3 receptors: a role in the antidepressant response. Curr Drug Targets 7:165–175

    CAS  PubMed  Google Scholar 

  • Dremencov E, El Mansari M, Blier P (2007) Noradrenergic augmentation of escitalopram response by risperidone: electrophysiologic studies in the rat brain. Biol Psychiatry 61:671–678

    CAS  PubMed  Google Scholar 

  • Dulawa SC, Hen R (2005) Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci Biobehav Rev 29:771–783

    CAS  PubMed  Google Scholar 

  • Dulawa SC, Holick KA, Gundersen B, Hen R (2004) Effects of chronic fluoxetine in animal models of anxiety and depression. Neuropsychopharmacology 29:1321–1330

    CAS  PubMed  Google Scholar 

  • Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127

    CAS  PubMed  Google Scholar 

  • Edwards E, Harkins K, Wright G, Henn FA (1991) 5-HT1b receptors in an animal model of depression. Neuropharmacology 30:101–105

    CAS  PubMed  Google Scholar 

  • Eisensamer B, Rammes G, Gimpl G, Shapa M, Ferrari U, Hapfelmeier G, Bondy B, Parsons C, Gilling K, Zieglgansberger W, Holsboer F, Rupprecht R (2003) Antidepressants are functional antagonists at the serotonin type 3 (5-HT3) receptor. Mol Psychiatry 8:994–1007

    CAS  PubMed  Google Scholar 

  • Esposito E (2006) Serotonin-dopamine interaction as a focus of novel antidepressant drugs. Curr Drug Targets 7:177–185

    CAS  PubMed  Google Scholar 

  • Fabre V, Beaufour C, Evrard A, Rioux A, Hanoun N, Lesch KP, Murphy DL, Lanfumey L, Hamon M, Martres MP (2000) Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur J Neurosci 12:2299–2310

    CAS  PubMed  Google Scholar 

  • Fone KC (2008) An update on the role of the 5-hydroxytryptamine6 receptor in cognitive function. Neuropharmacology 55:1015–1022

    CAS  PubMed  Google Scholar 

  • Fox MA, Andrews AM, Wendland JR, Lesch KP, Holmes A, Murphy DL (2007) A pharmacological analysis of mice with a targeted disruption of the serotonin transporter. Psychopharmacology (Berl) 195:147–166

    CAS  Google Scholar 

  • Frazer A, Benmansour S (2002) Delayed pharmacological effects of antidepressants. Mol Psychiatry 7(Suppl 1):S23–S28

    CAS  PubMed  Google Scholar 

  • Gaddum JH, Picarelli ZP (1957) Two kinds of tryptamine receptor. Br J Pharmacol Chemother 12:323–328

    CAS  PubMed  Google Scholar 

  • Gavioli EC, Vaughan CW, Marzola G, Guerrini R, Mitchell VA, Zucchini S, De Lima TC, Rae GA, Salvadori S, Regoli D, Calo G (2004) Antidepressant-like effects of the nociceptin/orphanin FQ receptor antagonist UFP-101: new evidence from rats and mice. Naunyn Schmiedebergs Arch Pharmacol 369:547–553

    CAS  PubMed  Google Scholar 

  • Gobbi G, Murphy DL, Lesch K, Blier P (2001) Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J Pharmacol Exp Ther 296:987–995

    CAS  PubMed  Google Scholar 

  • Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R (2002) Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416:396–400

    CAS  PubMed  Google Scholar 

  • Gur E, Lerer B, Dremencov E, Newman ME (2000) Chronic repetitive transcranial magnetic stimulation induces subsensitivity of presynaptic serotonergic autoreceptor activity in rat brain. Neuroreport 11:2925–2929

    CAS  PubMed  Google Scholar 

  • Guscott M, Bristow LJ, Hadingham K, Rosahl TW, Beer MS, Stanton JA, Bromidge F, Owens AP, Huscroft I, Myers J, Rupniak NM, Patel S, Whiting PJ, Hutson PH, Fone KC, Biello SM, Kulagowski JJ, McAllister G (2005) Genetic knockout and pharmacological blockade studies of the 5-HT7 receptor suggest therapeutic potential in depression. Neuropharmacology 48:492–502

    CAS  PubMed  Google Scholar 

  • Guzzetti S, Calcagno E, Canetta A, Sacchetti G, Fracasso C, Caccia S, Cervo L, Invernizzi RW (2008) Strain differences in paroxetine-induced reduction of immobility time in the forced swimming test in mice: role of serotonin. Eur J Pharmacol 594:117–124

    CAS  PubMed  Google Scholar 

  • Haddjeri N, Blier P, de Montigny C (1998) Long-term antidepressant treatments result in a tonic activation of forebrain 5-HT1A receptors. J Neurosci 18:10150–10156

    CAS  PubMed  Google Scholar 

  • Hall RD, Macrides F (1983) Olfactory bulbectomy impairs the rat’s radial-maze behavior. Physiol Behav 30:797–803

    CAS  PubMed  Google Scholar 

  • Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195:198–213

    CAS  PubMed  Google Scholar 

  • Harkin A, Connor TJ, Walsh M, St John N, Kelly JP (2003) Serotonergic mediation of the antidepressant-like effects of nitric oxide synthase inhibitors. Neuropharmacology 44:616–623

    CAS  PubMed  Google Scholar 

  • Hedlund PB, Huitron-Resendiz S, Henriksen SJ, Sutcliffe JG (2005) 5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern. Biol Psychiatry 58:831–837

    CAS  PubMed  Google Scholar 

  • Heisler LK, Chu HM, Brennan TJ, Danao JA, Bajwa P, Parsons LH, Tecott LH (1998) Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci U S A 95:15049–15054

    CAS  PubMed  Google Scholar 

  • Heisler LK, Zhou L, Bajwa P, Hsu J, Tecott LH (2007) Serotonin 5-HT(2 C) receptors regulate anxiety-like behavior. Genes Brain Behav 6:491–496

    CAS  PubMed  Google Scholar 

  • Hodes GE, Hill-Smith TE, Lucki I (2010) Fluoxetine treatment induces dose-dependent alterations in depression associated behavior and neural plasticity in female mice. Neurosci Lett 484:12–16

    CAS  PubMed  Google Scholar 

  • Hogg S, Dalvi A (2004) Acceleration of onset of action in schedule-induced polydipsia: combinations of SSRI and 5-HT1A and 5-HT1B receptor antagonists. Pharmacol Biochem Behav 77:69–75

    CAS  PubMed  Google Scholar 

  • Holick KA, Lee DC, Hen R, Dulawa SC (2008) Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology 33:406–417

    CAS  PubMed  Google Scholar 

  • Holmes A, Yang RJ, Murphy DL, Crawley JN (2002) Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 27:914–923

    CAS  PubMed  Google Scholar 

  • Jans LA, Riedel WJ, Markus CR, Blokland A (2007) Serotonergic vulnerability and depression: assumptions, experimental evidence and implications. Mol Psychiatry 12:522–543

    CAS  PubMed  Google Scholar 

  • Jayatissa MN, Bisgaard C, Tingstrom A, Papp M, Wiborg O (2006) Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology 31:2395–2404

    CAS  PubMed  Google Scholar 

  • Jeltsch-David H, Koenig J, Cassel JC (2008) Modulation of cholinergic functions by serotonin and possible implications in memory: general data and focus on 5-HT(1A) receptors of the medial septum. Behav Brain Res 195:86–97

    CAS  PubMed  Google Scholar 

  • Jolly DC, Richards JB, Seiden LS (1999) Serotonergic mediation of DRL 72 s behavior: receptor subtype involvement in a behavioral screen for antidepressant drugs. Biol Psychiatry 45:1151–1162

    CAS  PubMed  Google Scholar 

  • Jones MD, Lucki I (2005) Sex differences in the regulation of serotonergic transmission and behavior in 5-HT receptor knockout mice. Neuropsychopharmacology 30:1039–1047

    CAS  PubMed  Google Scholar 

  • Kendler KS, Kuhn J, Prescott CA (2004) The interrelationship of neuroticism, sex, and stressful life events in the prediction of episodes of major depression. Am J Psychiatry 161:631–636

    PubMed  Google Scholar 

  • Kim SW, Shin IS, Kim JM, Lee SH, Lee JH, Yoon BH, Yang SJ, Hwang MY, Yoon JS (2007) Amisulpride versus risperidone in the treatment of depression in patients with schizophrenia: a randomized, open-label, controlled trial. Prog Neuropsychopharmacol Biol Psychiatry 31:1504–1509

    CAS  PubMed  Google Scholar 

  • Knobelman DA, Hen R, Lucki I (2001) Genetic regulation of extracellular serotonin by 5-hydroxytryptamine(1A) and 5-hydroxytryptamine(1B) autoreceptors in different brain regions of the mouse. J Pharmacol Exp Ther 298:1083–1091

    CAS  PubMed  Google Scholar 

  • Kostowski W, Dyr W, Krzascik P, Jarbe T, Archer T (1992) 5-Hydroxytryptamine1A receptor agonists in animal models of depression and anxiety. Pharmacol Toxicol 71:24–30

    CAS  PubMed  Google Scholar 

  • Kreiss DS, Lucki I (1994) Discriminative stimulus properties of the serotonin uptake inhibitor sertraline. Experimental and Clinical Psychopharmacology 2:25–36

    CAS  Google Scholar 

  • Kroczka B, Zieba A, Dudek D, Pilc A, Nowak G (2000) Zinc exhibits an antidepressant-like effect in the forced swimming test in mice. Pol J Pharmacol 52:403–406

    CAS  PubMed  Google Scholar 

  • Le Francois B, Czesak M, Steubl D, Albert PR (2008) Transcriptional regulation at a HTR1A polymorphism associated with mental illness. Neuropharmacology 55:977–985

    PubMed  Google Scholar 

  • Lira A, Zhou M, Castanon N, Ansorge MS, Gordon JA, Francis JH, Bradley-Moore M, Lira J, Underwood MD, Arango V, Kung HF, Hofer MA, Hen R, Gingrich JA (2003) Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol Psychiatry 54:960–971

    CAS  PubMed  Google Scholar 

  • Lopez-Gil X, Artigas F, Adell A (2010) Unraveling monoamine receptors involved in the action of typical and atypical antipsychotics on glutamatergic and serotonergic transmission in prefrontal cortex. Curr Pharm Des 16:502–515

    CAS  PubMed  Google Scholar 

  • Lucas G, Rymar VV, Du J, Mnie-Filali O, Bisgaard C, Manta S, Lambas-Senas L, Wiborg O, Haddjeri N, Pineyro G, Sadikot AF, Debonnel G (2007) Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 55:712–725

    CAS  PubMed  Google Scholar 

  • Lucas G, Du J, Romeas T, Mnie-Filali O, Haddjeri N, Pineyro G, Debonnel G (2010) Selective serotonin reuptake inhibitors potentiate the rapid antidepressant-like effects of serotonin4 receptor agonists in the rat. PLoS One 5:e9253

    PubMed  Google Scholar 

  • Lucassen PJ, Meerlo P, Naylor AS, van Dam AM, Dayer AG, Fuchs E, Oomen CA, Czeh B (2010) Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: implications for depression and antidepressant action. Eur Neuropsychopharmacol 20:1–17

    CAS  PubMed  Google Scholar 

  • Lucki I, Singh A, Kreiss DS (1994) Antidepressant-like behavioral effects of serotonin receptor agonists. Neurosci Biobehav Rev 18:85–95

    CAS  PubMed  Google Scholar 

  • Lucki I, Dalvi A, Mayorga AJ (2001) Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 155:315–322

    CAS  Google Scholar 

  • Mac Sweeney CP, Lesourd M, Gandon JM (1998) Antidepressant-like effects of alnespirone (S 20499) in the learned helplessness test in rats. Eur J Pharmacol 345:133–137

    CAS  PubMed  Google Scholar 

  • Maes M, Meltzer HY (1995) The serotonin hypothesis of major depression. In: Bloom F, Kupfer D (eds) Psychopharmacology: the fourth generation of progress. Raven, New York, pp 933–944

    Google Scholar 

  • Mahesh R, Rajkumar R, Minasri B, Venkatesha Perumal R (2007) Potential antidepressants: pharmacology of 2-(4-methyl piperazin-1-yl)-1, 8-naphthyridine-3-carbonitrile in rodent behavioural models. Pharmazie 62:919–924

    CAS  PubMed  Google Scholar 

  • Maier S, Seligman M (1976) Learned helplessness: theory and evidence. J Experimental Psychology: General 105:3–46

    Google Scholar 

  • Malatynska E, Knapp RJ (2005) Dominant-submissive behavior as models of mania and depression. Neurosci Biobehav Rev 29:715–737

    PubMed  Google Scholar 

  • Malberg JE, Eisch AJ, Nestler EJ, Duman RS (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    CAS  PubMed  Google Scholar 

  • Mann J (2003) Neurobiology of suicidal behaviour. Nature Reviews 4:819–828

    CAS  PubMed  Google Scholar 

  • Marek GJ, Carpenter LL, McDougle CJ, Price LH (2003) Synergistic action of 5-HT2A antagonists and selective serotonin reuptake inhibitors in neuropsychiatric disorders. Neuropsychopharmacology 28:402–412

    CAS  PubMed  Google Scholar 

  • Marek GJ, Martin-Ruiz R, Abo A, Artigas F (2005) The selective 5-HT2A receptor antagonist M100907 enhances antidepressant-like behavioral effects of the SSRI fluoxetine. Neuropsychopharmacology 30:2205–2215

    CAS  PubMed  Google Scholar 

  • Marona-Lewicka D, Nichols DE (1997) The effect of selective serotonin releasing agents in the chronic mild stress model of depression in rats. Stress 2:91–100

    CAS  PubMed  Google Scholar 

  • Marona-Lewicka D, Nichols DE (1998) Drug discrimination studies of the interoceptive cues produced by selective serotonin uptake inhibitors and selective serotonin releasing agents. Psychopharmacology (Berl) 138:67–75

    CAS  Google Scholar 

  • Martin P, Gozlan H, Puech AJ (1992) 5-HT3 receptor antagonists reverse helpless behaviour in rats. Eur J Pharmacol 212:73–78

    CAS  PubMed  Google Scholar 

  • Matsuda T, Somboonthum P, Suzuki M, Asano S, Baba A (1995) Antidepressant-like effect by postsynaptic 5-HT1A receptor activation in mice. Eur J Pharmacol 280:235–238

    CAS  PubMed  Google Scholar 

  • Mayorga AJ, Dalvi A, Page ME, Zimov-Levinson S, Hen R, Lucki I (2001) Antidepressant-like behavioral effects in 5-hydroxytryptamine(1A) and 5-hydroxytryptamine(1B) receptor mutant mice. J Pharmacol Exp Ther 298:1101–1107

    CAS  PubMed  Google Scholar 

  • McMahon FJ, Buervenich S, Charney D, Lipsky R, Rush AJ, Wilson AF, Sorant AJ, Papanicolaou GJ, Laje G, Fava M, Trivedi MH, Wisniewski SR, Manji H (2006) Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet 78:804–814

    CAS  PubMed  Google Scholar 

  • Meneses A (2007) Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2 C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: short- and long-term memory. Behav Brain Res 184:81–90

    CAS  PubMed  Google Scholar 

  • Merali Z, Levac C, Anisman H (2003) Validation of a simple, ethologically relevant paradigm for assessing anxiety in mice. Biol Psychiatry 54:552–565

    PubMed  Google Scholar 

  • Meyer JH, McMain S, Kennedy SH, Korman L, Brown GM, DaSilva JN, Wilson AA, Blak T, Eynan-Harvey R, Goulding VS, Houle S, Links P (2003) Dysfunctional attitudes and 5-HT2 receptors during depression and self-harm. Am J Psychiatry 160:90–99

    PubMed  Google Scholar 

  • Millan MJ (2006) Multi-target strategies for the improved treatment of depressive states: conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 110:135–370

    CAS  PubMed  Google Scholar 

  • Millan MJ, Brocco M, Veiga S, Cistarelli L, Melon C, Gobert A (1998) WAY 100, 635 enhances both the ‘antidepressant’ actions of duloxetine and its influence on dialysate levels of serotonin in frontal cortex. Eur J Pharmacol 341:165–167

    CAS  PubMed  Google Scholar 

  • Millan MJ, Gobert A, Girardon S, Dekeyne A (1999) Citalopram elicits a discriminative stimulus in rats at a dose selectively increasing extracellular levels of serotonin vs. dopamine and noradrenaline. Eur J Pharmacol 364:147–150

    CAS  PubMed  Google Scholar 

  • Miller BH, Schultz LE, Gulati A, Cameron MD, Pletcher MT (2008) Genetic regulation of behavioral and neuronal responses to fluoxetine. Neuropsychopharmacology 33:1312–1322

    CAS  PubMed  Google Scholar 

  • Murphy DL, Fox MA, Timpano KR, Moya PR, Ren-Patterson R, Andrews AM, Holmes A, Lesch KP, Wendland JR (2008) How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. Neuropharmacology 55:932–960

    CAS  PubMed  Google Scholar 

  • Muscat R, Papp M, Willner P (1992) Reversal of stress-induced anhedonia by the atypical antidepressants, fluoxetine and maprotiline. Psychopharmacology (Berl) 109:433–438

    CAS  Google Scholar 

  • Nakagawa Y, Ishima T, Takashima T (1998) The 5-HT3 receptor agonist attenuates the action of antidepressants in the forced swim test in rats. Brain Res 786:189–193

    CAS  PubMed  Google Scholar 

  • Nelson JC, Papakostas GI (2009) Atypical antipsychotic augmentation in major depressive disorder: a meta-analysis of placebo-controlled randomized trials. Am J Psychiatry 166:980–991

    PubMed  Google Scholar 

  • Nesterova IV, Gurevich EV, Nesterov VI, Otmakhova NA, Bobkova NV (1997) Bulbectomy-induced loss of raphe neurons is counteracted by antidepressant treatment. Prog Neuropsychopharmacol Biol Psychiatry 21:127–140

    CAS  PubMed  Google Scholar 

  • Neumaier JF, Root DC, Hamblin MW (1996) Chronic fluoxetine reduces serotonin transporter mRNA and 5-HT1B mRNA in a sequential manner in the rat dorsal raphe nucleus. Neuropsychopharmacology 15:515–522

    CAS  PubMed  Google Scholar 

  • Neumaier JF, Petty F, Kramer GL, Szot P, Hamblin MW (1997) Learned helplessness increases 5-hydroxytryptamine1B receptor mRNA levels in the rat dorsal raphe nucleus. Biol Psychiatry 41:668–674

    CAS  PubMed  Google Scholar 

  • Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15:7539–7547

    CAS  PubMed  Google Scholar 

  • Nowak G, Siwek M, Dudek D, Zieba A, Pilc A (2003a) Effect of zinc supplementation on antidepressant therapy in unipolar depression: a preliminary placebo-controlled study. Pol J Pharmacol 55:1143–1147

    CAS  PubMed  Google Scholar 

  • Nowak G, Szewczyk B, Wieronska JM, Branski P, Palucha A, Pilc A, Sadlik K, Piekoszewski W (2003b) Antidepressant-like effects of acute and chronic treatment with zinc in forced swim test and olfactory bulbectomy model in rats. Brain Res Bull 61:159–164

    CAS  PubMed  Google Scholar 

  • O’Donnell JM, Marek GJ, Seiden LS (2005) Antidepressant effects assessed using behavior maintained under a differential-reinforcement-of-low-rate (DRL) operant schedule. Neurosci Biobehav Rev 29:785–798

    PubMed  Google Scholar 

  • O’Leary OF, Bechtholt AJ, Crowley JJ, Hill TE, Page ME, Lucki I (2007) Depletion of serotonin and catecholamines block the acute behavioral response to different classes of antidepressant drugs in the mouse tail suspension test. Psychopharmacology (Berl) 192:357–371

    Google Scholar 

  • Page ME, Detke MJ, Dalvi A, Kirby LG, Lucki I (1999) Serotonergic mediation of the effects of fluoxetine, but not desipramine, in the rat forced swimming test. Psychopharmacology (Berl) 147:162–167

    CAS  Google Scholar 

  • Page ME, Cryan JF, Sullivan A, Dalvi A, Saucy B, Manning DR, Lucki I (2002) Behavioral and neurochemical effects of 5-(4-[4-(5-Cyano-3-indolyl)-butyl)-butyl]-1-piperazinyl)-benzofuran-2-carb oxamide (EMD 68843): a combined selective inhibitor of serotonin reuptake and 5-hydroxytryptamine(1A) receptor partial agonist. J Pharmacol Exp Ther 302:1220–1227

    CAS  PubMed  Google Scholar 

  • Pandey DK, Mahesh R, Kumar AA, Rao VS, Arjun M, Rajkumar R (2010) A novel 5-HT(2A) receptor antagonist exhibits antidepressant-like effects in a battery of rodent behavioural assays: approaching early-onset antidepressants. Pharmacol Biochem Behav 94:363–373

    CAS  PubMed  Google Scholar 

  • Parks CL, Robinson PS, Sibille E, Shenk T, Toth M (1998) Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci U S A 95:10734–10739

    CAS  PubMed  Google Scholar 

  • Patel JG, Bartoszyk GD, Edwards E, Ashby CR Jr (2004) The highly selective 5-hydroxytryptamine (5-HT)2A receptor antagonist, EMD 281014, significantly increases swimming and decreases immobility in male congenital learned helpless rats in the forced swim test. Synapse 52:73–75

    CAS  PubMed  Google Scholar 

  • Pause BM, Miranda A, Goder R, Aldenhoff JB, Ferstl R (2001) Reduced olfactory performance in patients with major depression. J Psychiatr Res 35:271–277

    CAS  PubMed  Google Scholar 

  • Pehek EA, Nocjar C, Roth BL, Byrd TA, Mabrouk OS (2006) Evidence for the preferential involvement of 5-HT2A serotonin receptors in stress- and drug-induced dopamine release in the rat medial prefrontal cortex. Neuropsychopharmacology 31:265–277

    CAS  PubMed  Google Scholar 

  • Peroutka SJ, Snyder SH (1980) Long-term antidepressant treatment decreases spiroperidol-labeled serotonin receptor binding. Science 210:88–90

    CAS  PubMed  Google Scholar 

  • Petit-Demouliere B, Chenu F, Bourin M (2005) Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl) 177:245–255

    CAS  Google Scholar 

  • Petty F, Davis LL, Kabel D, Kramer GL (1996) Serotonin dysfunction disorders: a behavioral neurochemistry perspective. J Clin Psychiatry 57(Suppl 8):11–16

    PubMed  Google Scholar 

  • Philip NS, Carpenter LL, Tyrka AR, Price LH (2008) Augmentation of antidepressants with atypical antipsychotics: a review of the current literature. J Psychiatr Pract 14:34–44

    PubMed  Google Scholar 

  • Pineyro G, Blier P (1999) Autoregulation of serotonin neurons: role in antidepressant drug action. Pharmacol Rev 51:533–591

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Blavet N, Deniel M, Jalfre M (1979) Immobility induced by forced swimming in rats: effects of agents which modify central catecholamine and serotonin activity. Eur J Pharmacol 57:201–210

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977a) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977b) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    CAS  PubMed  Google Scholar 

  • Przegalinski E, Moryl E, Papp M (1995) The effect of 5-HT1A receptor ligands in a chronic mild stress model of depression. Neuropharmacology 34:1305–1310

    CAS  PubMed  Google Scholar 

  • Rakjumar R, Mahesh R (2010) The auspicious role of the 5-HT3 receptor in depression: a probable neuronal target? J Psychopharmacol 24:455–469

    Google Scholar 

  • Ramamoorthy R, Radhakrishnan M, Borah M (2008) Antidepressant-like effects of serotonin type-3 antagonist, ondansetron: an investigation in behaviour-based rodent models. Behav Pharmacol 19:29–40

    CAS  PubMed  Google Scholar 

  • Redrobe JP, Bourin M (1997) Partial role of 5-HT2 and 5-HT3 receptors in the activity of antidepressants in the mouse forced swimming test. Eur J Pharmacol 325:129–135

    CAS  PubMed  Google Scholar 

  • Reneric JP, Lucki I (1998) Antidepressant behavioral effects by dual inhibition of monoamine reuptake in the rat forced swimming test. Psychopharmacology (Berl) 136:190–197

    CAS  Google Scholar 

  • Richardson-Jones JW, Craige CP, Guiard BP, Stephen A, Metzger KL, Kung HF, Gardier AM, Dranovsky A, David DJ, Beck SG, Hen R, Leonardo ED (2010) 5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants. Neuron 65:40–52

    CAS  PubMed  Google Scholar 

  • Rickels K, Athanasiou M, Robinson DS, Gibertini M, Whalen H, Reed CR (2009) Evidence for efficacy and tolerability of vilazodone in the treatment of major depressive disorder: a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry 70:326–333

    CAS  PubMed  Google Scholar 

  • Ripoll N, David DJ, Dailly E, Hascoet M, Bourin M (2003) Antidepressant-like effects in various mice strains in the tail suspension test. Behav Brain Res 143:193–200

    CAS  PubMed  Google Scholar 

  • Rosa AO, Lin J, Calixto JB, Santos AR, Rodrigues AL (2003) Involvement of NMDA receptors and L-arginine-nitric oxide pathway in the antidepressant-like effects of zinc in mice. Behav Brain Res 144:87–93

    CAS  PubMed  Google Scholar 

  • Rosenzweig-Lipson S, Sabb A, Stack G, Mitchell P, Lucki I, Malberg JE, Grauer S, Brennan J, Cryan JF, Sukoff Rizzo SJ, Dunlop J, Barrett JE, Marquis KL (2007) Antidepressant-like effects of the novel, selective, 5-HT2C receptor agonist WAY-163909 in rodents. Psychopharmacology (Berl) 192:159–170

    CAS  Google Scholar 

  • Ruf BM, Bhagwagar Z (2009) The 5-HT1B receptor: a novel target for the pathophysiology of depression. Curr Drug Targets 10:1118–1138

    CAS  PubMed  Google Scholar 

  • Rush AJ, Trivedi MH, Wisniewski SR, Stewart JW, Nierenberg AA, Thase ME, Ritz L, Biggs MM, Warden D, Luther JF, Shores-Wilson K, Niederehe G, Fava M (2006) Bupropion-SR, sertraline, or venlafaxine-XR after failure of SSRIs for depression. N Engl J Med 354:1231–1242

    CAS  PubMed  Google Scholar 

  • Rygula R, Abumaria N, Flugge G, Fuchs E, Ruther E, Havemann-Reinecke U (2005) Anhedonia and motivational deficits in rats: impact of chronic social stress. Behav Brain Res 162:127–134

    PubMed  Google Scholar 

  • Rygula R, Abumaria N, Flugge G, Hiemke C, Fuchs E, Ruther E, Havemann-Reinecke U (2006) Citalopram counteracts depressive-like symptoms evoked by chronic social stress in rats. Behav Pharmacol 17:19–29

    CAS  PubMed  Google Scholar 

  • Sahay A, Drew MR, Hen R (2007) Dentate gyrus neurogenesis and depression. Prog Brain Res 163:697–722

    CAS  PubMed  Google Scholar 

  • Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110–1115

    CAS  PubMed  Google Scholar 

  • Sanchez C, Hyttel J (1999) Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding. Cell Mol Neurobiol 19:467–489

    CAS  PubMed  Google Scholar 

  • Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    CAS  PubMed  Google Scholar 

  • Sari Y (2004) Serotonin1B receptors: from protein to physiological function and behavior. Neurosci Biobehav Rev 28:565–582

    CAS  PubMed  Google Scholar 

  • Savelieva KV, Zhao S, Pogorelov VM, Rajan I, Yang Q, Cullinan E, Lanthorn TH (2008) Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PLoS ONE 3:e3301

    PubMed  Google Scholar 

  • Savitz J, Lucki I, Drevets WC (2009) 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol 88:17–31

    CAS  PubMed  Google Scholar 

  • Schechter LE, Lin Q, Smith DL, Zhang G, Shan Q, Platt B, Brandt MR, Dawson LA, Cole D, Bernotas R, Robichaud A, Rosenzweig-Lipson S, Beyer CE (2008) Neuropharmacological profile of novel and selective 5-HT6 receptor agonists: WAY-181187 and WAY-208466. Neuropsychopharmacology 33:1323–1335

    CAS  PubMed  Google Scholar 

  • Schreiber R, De Vry J (1993) Neuroanatomical basis for the antidepressant-like effects of the 5-HT(1A) receptor agonists 8-OH-DPAT and ipsapirone in the rat forced swimming test. Behav Pharmacol 4:625–636

    CAS  PubMed  Google Scholar 

  • Scruggs JL, Schmidt D, Deutch AY (2003) The hallucinogen 1-[2, 5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) increases cortical extracellular glutamate levels in rats. Neurosci Lett 346:137–140

    CAS  PubMed  Google Scholar 

  • Shelton RC, Sanders-Bush E, Manier DH, Lewis DA (2009) Elevated 5-HT 2A receptors in postmortem prefrontal cortex in major depression is associated with reduced activity of protein kinase A. Neuroscience 158:1406–1415

    CAS  PubMed  Google Scholar 

  • Shen C, Li H, Meller E (2002) Repeated treatment with antidepressants differentially alters 5-HT1A agonist-stimulated [35 S]GTP gamma S binding in rat brain regions. Neuropharmacology 42:1031–1038

    CAS  PubMed  Google Scholar 

  • Shephard RA, Broadhurst PL (1982) Effects of diazepam and picrotoxin on hyponeophagia in rats. Neuropharmacology 21:771–773

    CAS  PubMed  Google Scholar 

  • Siesser WB, Zhang X, Jacobsen JP, Sotnikova TD, Gainetdinov RR, Caron MG (2010) Tryptophan hydroxylase 2 genotype determines brain serotonin synthesis but not tissue content in C57Bl/6 and BALB/c congenic mice. Neurosci Lett 481:6–11

    CAS  PubMed  Google Scholar 

  • Singh A, Lucki I (1993) Antidepressant-like activity of compounds with varying efficacy at 5-HT1A receptors. Neuropharmacology 32:331–340

    CAS  PubMed  Google Scholar 

  • Smriga M, Torii K (2003) L-Lysine acts like a partial serotonin receptor 4 antagonist and inhibits serotonin-mediated intestinal pathologies and anxiety in rats. Proc Natl Acad Sci U S A 100:15370–15375

    CAS  PubMed  Google Scholar 

  • Song C, Leonard BE (2005) The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 29:627–647

    PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367–370

    CAS  Google Scholar 

  • Stockmeier CA, DiCarlo JJ, Zhang Y, Thompson P, Meltzer HY (1993) Characterization of typical and atypical antipsychotic drugs based on in vivo occupancy of serotonin2 and dopamine2 receptors. J Pharmacol Exp Ther 266:1374–1384

    CAS  PubMed  Google Scholar 

  • Svenningsson P, Chergui K, Rachleff I, Flajolet M, Zhang X, El Yacoubi M, Vaugeois JM, Nomikos GG, Greengard P (2006) Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 311:77–80

    CAS  PubMed  Google Scholar 

  • Svenningsson P, Tzavara ET, Qi H, Carruthers R, Witkin JM, Nomikos GG, Greengard P (2007) Biochemical and behavioral evidence for antidepressant-like effects of 5-HT6 receptor stimulation. J Neurosci 27:4201–4209

    CAS  PubMed  Google Scholar 

  • Szewczyk B, Poleszak E, Wlaz P, Wrobel A, Blicharska E, Cichy A, Dybala M, Siwek A, Pomierny-Chamiolo L, Piotrowska A, Branski P, Pilc A, Nowak G (2009) The involvement of serotonergic system in the antidepressant effect of zinc in the forced swim test. Prog Neuropsychopharmacol Biol Psychiatry 33:323–329

    CAS  PubMed  Google Scholar 

  • Tardito D, Perez J, Tiraboschi E, Musazzi L, Racagni G, Popoli M (2006) Signaling pathways regulating gene expression, neuroplasticity, and neurotrophic mechanisms in the action of antidepressants: a critical overview. Pharmacol Rev 58:115–134

    CAS  PubMed  Google Scholar 

  • Tatarczynska E, Klodzinska A, Chojnacka-Wojcik E (2002) Effects of combined administration of 5-HT1A and/or 5-HT1B receptor antagonists and paroxetine or fluoxetine in the forced swimming test in rats. Pol J Pharmacol 54:615–623

    CAS  PubMed  Google Scholar 

  • Tatarczynska E, Klodzinska A, Stachowicz K, Chojnacka-Wojcik E (2004) Effect of combined administration of 5-HT1A or 5-HT1B/1D receptor antagonists and antidepressants in the forced swimming test. Eur J Pharmacol 487:133–142

    CAS  PubMed  Google Scholar 

  • Tatarczynska E, Antkiewicz-Michaluk L, Klodzinska A, Stachowicz K, Chojnacka-Wojcik E (2005) Antidepressant-like effect of the selective 5-HT1B receptor agonist CP 94253: a possible mechanism of action. Eur J Pharmacol 516:46–50

    CAS  PubMed  Google Scholar 

  • Tordera RM, Monge A, Del Rio J, Lasheras B (2002) Antidepressant-like activity of VN2222, a serotonin reuptake inhibitor with high affinity at 5-HT1A receptors. Eur J Pharmacol 442:63–71

    CAS  PubMed  Google Scholar 

  • Trillat AC, Malagie I, Scearce K, Pons D, Anmella MC, Jacquot C, Hen R, Gardier AM (1997) Regulation of serotonin release in the frontal cortex and ventral hippocampus of homozygous mice lacking 5-HT1B receptors: in vivo microdialysis studies. J Neurochem 69:2019–2025

    CAS  PubMed  Google Scholar 

  • Ulak G, Mutlu O, Tanyeri P, Komsuoglu FI, Akar FY, Erden BF (2010) Involvement of serotonin receptor subtypes in the antidepressant-like effect of trim in the rat forced swimming test. Pharmacol Biochem Behav 95:308–314

    CAS  PubMed  Google Scholar 

  • Valentine G, Dow A, Banasr M, Pittman B, Duman R (2008) Differential effects of chronic antidepressant treatment on shuttle box escape deficits induced by uncontrollable stress. Psychopharmacology (Berl) 200:585–596

    CAS  Google Scholar 

  • van der Heyden JA, Molewijk E, Olivier B (1987) Strain differences in response to drugs in the tail suspension test for antidepressant activity. Psychopharmacology (Berl) 92:127–130

    Google Scholar 

  • Vieyra-Reyes P, Mineur YS, Picciotto MR, Tunez I, Vidaltamayo R, Drucker-Colin R (2008) Antidepressant-like effects of nicotine and transcranial magnetic stimulation in the olfactory bulbectomy rat model of depression. Brain Res Bull 77:13–18

    CAS  PubMed  Google Scholar 

  • Walther DJ, Bader M (2003) A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 66:1673–1680

    CAS  PubMed  Google Scholar 

  • Walther DJ, Peter JU, Bashammakh S, Hortnagl H, Voits M, Fink H, Bader M (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299:76

    CAS  PubMed  Google Scholar 

  • Warner-Schmidt JL, Flajolet M, Maller A, Chen EY, Qi H, Svenningsson P, Greengard P (2009) Role of p11 in cellular and behavioral effects of 5-HT4 receptor stimulation. J Neurosci 29:1937–1946

    CAS  PubMed  Google Scholar 

  • Weiss J, Goodman P, Losito B, Corrigan S, Charry J, Bailey W (1981) Behavioral depression produced by and uncontrollable stressor: relationship to norepinephrine, dopamine and serotonin levels in various regions of the rat brain. Brain Res Rev 3:167–205

    CAS  Google Scholar 

  • Welch WM (1995) Discovery and preclinical development of the serotonin reuptake inhibitor sertraline. Adv Med Chem 3:113–148

    CAS  Google Scholar 

  • Wesolowska A (2007) Study into a possible mechanism responsible for the antidepressant-like activity of the selective 5-HT6 receptor antagonist SB-399885 in rats. Pharmacol Rep 59:664–671

    CAS  PubMed  Google Scholar 

  • Wesolowska A (2010) Potential role of the 5-HT6 receptor in depression and anxiety: an overview of preclinical data. Pharmacol Rep 62:564–577

    PubMed  Google Scholar 

  • Wesolowska A, Nikiforuk A (2007) Effects of the brain-penetrant and selective 5-HT6 receptor antagonist SB-399885 in animal models of anxiety and depression. Neuropharmacology 52:1274–1283

    CAS  PubMed  Google Scholar 

  • Wesolowska A, Nikiforuk A (2008) The selective 5-HT(6) receptor antagonist SB-399885 enhances anti-immobility action of antidepressants in rats. Eur J Pharmacol 582:88–93

    CAS  PubMed  Google Scholar 

  • Wesolowska A, Nikiforuk A, Stachowicz K, Tatarczynska E (2006) Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression. Neuropharmacology 51:578–586

    CAS  PubMed  Google Scholar 

  • Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134:319–329

    CAS  Google Scholar 

  • Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90–110

    CAS  PubMed  Google Scholar 

  • Wolff MC, Leander JD (1999) The discriminative stimulus properties of LY233708, a selective serotonin reuptake inhibitor, in the pigeon. Psychopharmacology (Berl) 146:275–279

    CAS  Google Scholar 

  • Wong DT, Perry KW, Bymaster FP (2005) Case history: the discovery of fluoxetine hydrochloride (Prozac). Nat Rev Drug Discov 4:764–774

    CAS  PubMed  Google Scholar 

  • Wood MD, Scott C, Clarke K, Cato KJ, Patel N, Heath J, Worby A, Gordon L, Campbell L, Riley G, Davies CH, Gribble A, Jones DN (2006) Pharmacological profile of antipsychotics at monoamine receptors: atypicality beyond 5-HT2A receptor blockade. CNS Neurol Disord Drug Targets 5:445–452

    CAS  PubMed  Google Scholar 

  • Yalcin I, Belzung C, Surget A (2008) Mouse strain differences in the unpredictable chronic mild stress: a four-antidepressant survey. Behav Brain Res 193:140–143

    CAS  PubMed  Google Scholar 

  • Zazpe A, Artaiz I, Labeaga L, Lucero ML, Orjales A (2007) Reversal of learned helplessness by selective serotonin reuptake inhibitors in rats is not dependent on 5-HT availability. Neuropharmacology 52:975–984

    CAS  PubMed  Google Scholar 

  • Zhang X, Beaulieu JM, Sotnikova TD, Gainetdinov RR, Caron MG (2004) Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305:217

    CAS  PubMed  Google Scholar 

  • Zhuang X, Gross C, Santarelli L, Compan V, Trillat AC, Hen R (1999) Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology 21:52S–60S

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irwin Lucki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carr, G.V., Lucki, I. The role of serotonin receptor subtypes in treating depression: a review of animal studies. Psychopharmacology 213, 265–287 (2011). https://doi.org/10.1007/s00213-010-2097-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-2097-z

Keywords

Navigation