Skip to main content

Advertisement

Log in

Impact of metabotropic glutamate 2/3 receptor stimulation on activated dopamine release and locomotion

  • original investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Activation of metabotropic glutamate (mGlu) 2/3 receptors may provide a novel strategy for treating schizophrenia. This effect is thought to be mediated through dopamine-independent mechanisms because mGlu2/3-receptor agonists have no considerable affinity for dopamine receptors. These agonists, however, reduce amphetamine-induced hyperlocomotion suggesting that they influence dopamine neurotransmission.

Objective

We evaluated whether the inhibitory effect of mGlu2/3-receptor activation on amphetamine-induced hyperlocomotion correlates with attenuated dopamine release. We also assessed whether mGlu 2/3 receptor activation has inhibitory effects on activity-dependent vesicular release of dopamine in behaving animals.

Methods

Microdialysis was used to measure extracellular levels of dopamine in the dorsal striatum (DStr) and nucleus accumbens (NAc) of freely moving rats. The effect of the mGlu2/3-receptor agonist LY354740 on dopamine release and locomotion elicited by amphetamine, electrical stimulation of the ventral tegmental area, or L-dopa was assessed.

Results

We find that the inhibitory effect of mGlu2/3 activation on amphetamine-induced hyperlocomotion correlates with an attenuated increase in dopamine release in the NAc and DStr. However, when dopamine levels were increased by electrical stimulation of dopamine neurons or by administration of the dopamine precursor L-dopa, activation of mGlu2/3 receptors had no effect on dopamine release or on behavior.

Conclusions

Activation of mGlu2/3 receptors attenuates amphetamine-induced dopamine release through a mechanism that does not affect activity dependent vesicular release, reuptake or synthesis of dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams B, Moghaddam B (1998) Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci 18:5545–5554

    PubMed  CAS  Google Scholar 

  • Antelman SM, Eichler AJ, Black CA, Kocan D (1980) Interchangeability of stress and amphetamine in sensitization. Science 207:329–331

    Article  PubMed  CAS  Google Scholar 

  • Beninger RJ (1983) The role of dopamine in locomotor activity and learning. Brain Res Rev 6:173–196

    Article  CAS  Google Scholar 

  • Bjijou Y, De Deurwaerdere P, Spampinato U, Stinus L, Cador M (2002) D-amphetamine-induced behavioral sensitization: effect of lesioning dopaminergic terminals in the medial prefrontal cortex, the amygdala and the entorhinal cortex. Neuroscience 109:499–516

    Article  PubMed  CAS  Google Scholar 

  • Cadoni C, Pinna A, Russi G, Consolo S, Di Chiara G (1995) Role of vesicular dopamine in the in vivo stimulation of striatal dopamine transmission by amphetamine: evidence from microdialysis and Fos immunohistochemistry. Neuroscience 65:1027–1039

    Article  PubMed  CAS  Google Scholar 

  • Cartmell J, Monn JA, Schoepp DD (1999) The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats. J Pharmacol Exp Ther 291:161–170

    PubMed  CAS  Google Scholar 

  • Cartmell J, Monn JA, Schoepp DD (2000) The mGlu(2/3) receptor agonist LY379268 selectively blocks amphetamine ambulations and rearing. Eur J Pharmacol 400:221–224

    Article  PubMed  CAS  Google Scholar 

  • Chiueh CC, Moore KE (1975) D-amphetamine-induced release of "newly synthesized" and "stored" dopamine from the caudate nucleus in vivo. J Pharmacol Exp Ther 192:642–653

    PubMed  CAS  Google Scholar 

  • Dalley JW, Thomas KL, Howes SR, Tsai TH, Aparicio-Legarza MI, Reynolds GP, Everitt BJ, Robbins TW (1999) Effects of excitotoxic lesions of the rat prefrontal cortex on CREB regulation and presynaptic markers of dopamine and amino acid function in the nucleus accumbens. Eur J Neurosci 11:1265–1274

    Article  PubMed  CAS  Google Scholar 

  • Darracq L, Blanc G, Glowinski J, Tassin JP (1998) Importance of the noradrenaline-dopamine coupling in the locomotor activating effects of d-amphetamine. J Neurosci 18:2729–2739

    PubMed  CAS  Google Scholar 

  • Darracq L, Drouin C, Blanc G, Glowinski J, Tassin JP (2001) Stimulation of metabotropic but not ionotropic glutamatergic receptors in the nucleus accumbens is required for the D-amphetamine-induced release of functional dopamine. Neuroscience 103:395–403

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Otanez CS, Capriles NR, Cancela LM (1997) D1 and D2 dopamine and opiate receptors are involved in the restraint stress-induced sensitization to the psychostimulant effects of amphetamine. Pharmacol Biochem Behav 58:9–14

    Article  PubMed  CAS  Google Scholar 

  • Dluzen DE, Liu B (1994) The effect of reserpine treatment in vivo upon L-dopa and amphetamine evoked dopamine and DOPAC efflux in vitro from the corpus striatum of male rats. J Neural Transm Gen Sect 95:209–222

    Article  PubMed  CAS  Google Scholar 

  • Dohovics R, Janaky R, Varga V, Saransaari P, Oja SS (2003) Cyclic AMP-mediated regulation of striatal glutamate release: interactions of presynaptic ligand- and voltage-gated ion channels and G-protein-coupled receptors. Neurochem Int 43:425–430

    Article  PubMed  CAS  Google Scholar 

  • Fell MJ, Perry KW, Falcone JF, Johnson BG, Barth VN, Rash KS, Lucaites VL, Threlkeld PG, Monn JA, McKinzie DL, Marek GJ, Svensson KA, Nelson DL (2009) In vitro and in vivo evidence for a lack of interaction with dopamine D2 receptors by the metabotropic glutamate 2/3 receptor agonists 1S, 2S, 5R, 6S-2-aminobicyclo[3.1.0]hexane-2, 6-bicaroxylate monohydrate (LY354740) and (−)-2-oxa-4-aminobicyclo[3.1.0] hexane-4, 6-dicarboxylic acid (LY379268). J Pharmacol Exp Ther 331:1126–1136

    Article  PubMed  CAS  Google Scholar 

  • Fell MJ, Svensson KA, Johnson BG, Schoepp DD (2008) Evidence for the role of metabotropic glutamate (mGlu)2 not mGlu3 receptors in the preclinical antipsychotic pharmacology of the mGlu2/3 receptor agonist (−)-(1R, 4S, 5S, 6S)-4-amino-2-sulfonylbicyclo[3.1.0]hexane-4, 6-dicarboxylic acid (LY404039). J Pharmacol Exp Ther 326:209–217

    Article  PubMed  CAS  Google Scholar 

  • Gewirtz JC, Marek GJ (2000) Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors. Neuropsychopharmacology 23:569–576

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, Lopez-Gimenez JF, Zhou M, Okawa Y, Callado LF, Milligan G, Gingrich JA, Filizola M, Meana JJ, Sealfon SC (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:93–97

    Article  PubMed  CAS  Google Scholar 

  • Greenslade RG, Mitchell SN (2004) Selective action of (−)-2-oxa-4-aminobicyclo[3.1.0]hexane-4, 6-dicarboxylate (LY379268), a group II metabotropic glutamate receptor agonist, on basal and phencyclidine-induced dopamine release in the nucleus accumbens shell. Neuropharmacology 47:1–8

    Article  PubMed  CAS  Google Scholar 

  • Guillot TS, Richardson JR, Wang MZ, Li YJ, Taylor TN, Ciliax BJ, Zachrisson O, Mercer A, Miller GW (2008) PACAP38 increases vesicular monoamine transporter 2 (VMAT2) expression and attenuates methamphetamine toxicity. Neuropeptides 42:423–434

    Article  PubMed  CAS  Google Scholar 

  • Herman JP, Stinus L, Le Moal M (1984) Repeated stress increases locomotor response to amphetamine. Psychopharmacology (Berl) 84:431–435

    Article  CAS  Google Scholar 

  • Homayoun H, Jackson ME, Moghaddam B (2004) Activation of metabotropic glutamate 2/3 (mGlu2/3) receptors reverses the effects of NMDA receptor hypofunction on prefrontal cortex unit activity in awake rats. J Neurophysiol 93:1989–2001

    Article  PubMed  CAS  Google Scholar 

  • Homayoun H, Jackson ME, Moghaddam B (2005) Activation of metabotropic glutamate 2/3 receptors reverses the effects of NMDA receptor hypofunction on prefrontal cortex unit activity in awake rats. J Neurophysiol 93:1989–2001

    Article  PubMed  CAS  Google Scholar 

  • Hu G, Duffy P, Swanson C, Ghasemzadeh MB, Kalivas PW (1999) The regulation of dopamine transmission by metabotropic glutamate receptors. J Pharmacol Exp Ther 289:412–416

    PubMed  CAS  Google Scholar 

  • Imperato A, Tanda G, Frau R, Di Chiara G (1988) Pharmacological profile of dopamine receptor agonists as studied by brain dialysis in behaving rats. J Pharmacol Exp Ther 245:257–264

    PubMed  CAS  Google Scholar 

  • Inglis FM, Moghaddam B (1999) Dopaminergic innervation of the amygdala is highly responsive to stress. J Neurochem 72:1088–1094

    Article  PubMed  CAS  Google Scholar 

  • Karasawa J, Yoshimizu T, Chaki S (2006) A metabotropic glutamate 2/3 receptor antagonist, MGS0039, increases extracellular dopamine levels in the nucleus accumbens shell. Neurosci Lett 393:127–130

    Article  PubMed  CAS  Google Scholar 

  • Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, Van Heertum RL, Cooper TB, Carlsson A, Laruelle M (2000) Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 48:627–640

    Article  PubMed  CAS  Google Scholar 

  • Kilbride J, Huang L, Rowan M, Anwyl R (1998) Presynaptic inhibitory action of the group II meatbotropic glutamate receptor agonists, LY354740 and DCG-IV. Eur J Pharmacol 356:149–157

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Austin JD, Tanabe L, Creekmore E, Vezina P (2005) Activation of group II mGlu receptors blocks the enhanced drug taking induced by previous exposure to amphetamine. Eur J Neurosci 21:295–300

    Article  PubMed  Google Scholar 

  • Kim JH, Vezina P (2002) The mGlu2/3 receptor agonist LY379268 blocks the expression of locomotor sensitization by amphetamine. Pharmacol Biochem Behav 73:333–337

    Article  PubMed  CAS  Google Scholar 

  • Krebs-Kraft DL, Frantz KJ, Parent MB (2007) In vivo microdialysis: a method for sampling extracellular fluid in discrete brain regions. In: Lajtha A, Baker D, Dunn S, Holt A (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer Science and Buisness Media, L.L.C., New York, pp 221–239

    Google Scholar 

  • Krystal JH, Abi-Saab W, Perry E, D'Souza DC, Liu N, Gueorguieva R, McDougall L, Hunsberger T, Belger A, Levine L, Breier A (2005) Preliminary evidence of attenuation of the disruptive effects of the NMDA glutamate receptor antagonist, ketamine, on working memory by pretreatment with the group II metabotropic glutamate receptor agonist, LY354740, in healthy human subjects. Psychopharmacology (Berl) 179:303–309

    Article  CAS  Google Scholar 

  • Kuczenski R, Melega WP, Cho AK, Segal DS (1997) Extracellular dopamine and amphetamine after systemic amphetamine administration: comparison to the behavioral response. J Pharmacol Exp Ther 282:591–596

    PubMed  CAS  Google Scholar 

  • Kuczenski R, Segal DS (1989) Concomitant characterization of behavioral and striatal neurotransmitter response to amphetamine using in vivo microdialysis. J Neurosci 9:2051–2065

    PubMed  CAS  Google Scholar 

  • Lacroix L, Spinelli S, White W, Feldon J (2000) The effects of ibotenic acid lesions of the medial and lateral prefrontal cortex on latent inhibition, prepulse inhibition and amphetamine-induced hyperlocomotion. Neuroscience 97:459–468

    Article  PubMed  CAS  Google Scholar 

  • Lanteri C, Salomon L, Torrens Y, Glowinski J, Tassin JP (2008) Drugs of abuse specifically sensitize noreadrenergic and serotonergic neurons via a non-dopaminergic mechanism. Neuropsychopharmacology 33:1724–1734

    Article  PubMed  CAS  Google Scholar 

  • Lapin IaMR (1995) Effects of D1 and D2 dopamine receptor antagonists and catecholamine depleting agents on the locomotor stimulation induced by dizocilpine in mice. Behav Brain Res 70:145–151

    Article  PubMed  CAS  Google Scholar 

  • Lecourtier L, Defrancesco A, Moghaddam B (2008) Differential tonic influence of lateral habenula on prefrontal cortex and nucleus accumbens dopamine release. Eur J Neurosci 27:1755–1762

    Article  PubMed  Google Scholar 

  • Linden AM, Shannon H, Baez M, Yu JL, Koester A, Schoepp DD (2005) Anxiolytic-like activity of the mGLU2/3 receptor agonist LY354740 in the elevated plus maze test is disrupted in metabotropic glutamate receptor 2 and 3 knock-out mice. Psychopharmacology (Berl) 179:284–291

    Article  CAS  Google Scholar 

  • Lorrain DS, Baccei CS, Bristow LJ, Anderson JJ, Varney MA (2003) Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 117:697–706

    Article  PubMed  CAS  Google Scholar 

  • Marek GJ, Wright RA, Schoepp DD, Monn JA, Aghajanian GK (2000) Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex. J Pharmacol Exp Ther 292:76–87

    PubMed  CAS  Google Scholar 

  • Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998) Dopamine receptors: from structure to function. Physiol Rev 78:189–225

    PubMed  CAS  Google Scholar 

  • Moghaddam B, Adams B (1998) Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science 281:1349–1352

    Article  PubMed  CAS  Google Scholar 

  • O'Neill MF, Heron-Maxwell CL, Shaw G (1999) 5-HT2 receptor antagonism reduces hyperactivity induced by amphetamine, cocaine, and MK-801 but not D1 agonist C-APB. Pharmacol Biochem Behav 63:237–243

    Article  PubMed  Google Scholar 

  • O'Neill MF, Shaw G (1999) Comparison of dopamine receptor antagonists on hyperlocomotion induced by cocaine, amphetamine, MK-801 and the dopamine D1 agonist C-APB in mice. Psychopharmacology (Berl) 145:237–250

    Article  Google Scholar 

  • Pacchioni AM, Cador M, Bregonzio C, Cancela LM (2007) A glutamate-dopamine interaction in the persistent enhanced response to amphetamine in nucleus accumbens core but not shell following a single restraint stress. Neuropsychopharmacology 32:682–692

    Article  PubMed  CAS  Google Scholar 

  • Pacchioni AM, Gioino G, Assis A, Cancela LM (2002) A single exposure to restraint stress induces behavioral and neurochemical sensitization to stimulating effects of amphetamine: involvement of NMDA receptors. Ann N Y Acad Sci 965:233–246

    Article  PubMed  CAS  Google Scholar 

  • Page G, Barc-Pain S, Pontcharraud R, Cante A, Piriou A, Barrier L (2004) The up-regulation of the striatal dopamine transporter's activity by cAMP is PKA-, CaMK II- and phosphatase-dependent. Neurochem Int 45:627–632

    Article  PubMed  CAS  Google Scholar 

  • Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized phase 2 clinical trial. Nat Med 13:1102–1107

    Article  PubMed  CAS  Google Scholar 

  • Patrick RL, Berkowitz AL, Regenstein AC (1981) Effects of in vivo amphetamine administration on dopamine synthesis regulation in rat brain striatal synaptosomes. J Pharmacol Exp Ther 217:686–691

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Porras G, Di Matteo V, Fracasso C, Lucas G, De Deurwaerdere P, Caccia S, Esposito E, Spampinato U (2002) 5-HT2A and 5-HT2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology 26:311–324

    Article  PubMed  CAS  Google Scholar 

  • Richards G, Messer J, Malherbe P, Pink R, Brockhaus M, Stadler H, Wichmann J, Schaffhauser H, Mutel V (2005) Distribution and abundance of metabotropic glutamate receptor subtype 2 in rat brain revealed by [3H]LY354740 binding in vitro and quantitative radioautography: correlation with the sites of synthesis, expression, and agonist stimulation of [35S]GTPgammas binding. J Comp Neurol 487:15–27

    Article  PubMed  CAS  Google Scholar 

  • Rorick-Kehn LM, Johnson BG, Knitowski KM, Salhoff CR, Witkin JM, Perry KW, Griffey KI, Tizzano JP, Monn JA, McKinzie DL, Schoepp DD (2007) In vivo pharmacological characterization of the structurally novel, potent, selective mGlu2/3 receptor agonist LY404039 in animal models of psychiatric disorders. Psychopharmacology (Berl) 193:121–136

    Article  CAS  Google Scholar 

  • Ross SM (2003) Peirce's criterion for the elimination of suspect experimental data. J Eng Technol 20:38–41

    Google Scholar 

  • Schlumberger C, Pietraszek M, Gravius A, Klein KU, Greco S, More L, Danysz W (2009a) Comparison of the mGlu(5) receptor positive allosteric modulator ADX47273 and the mGlu(2/3) receptor agonist LY354740 in tests for antipsychotic-like activity. Eur J Pharmacol 623:73–83

    Article  PubMed  CAS  Google Scholar 

  • Schlumberger C, Schafer D, Barberi C, More L, Nagel J, Pietraszek M, Schmidt WJ, Danysz W (2009b) Effects of a metabotropic glutamate receptor group II agonist LY354740 in animal models of positive schizophrenia symptoms and cognition. Behav Pharmacol 20:56–66

    Article  PubMed  CAS  Google Scholar 

  • See RE (1994) Differential effects of 3-PPP enantiomers on extracellular dopamine concentration in the caudate-putamen and nucleus accumbens of rats. Naunyn Schmiedebergs Arch Pharmacol 350:605–610

    Article  PubMed  CAS  Google Scholar 

  • Seeman P (2008) Glutamate agonists for schizophrenia stimulate dopamine D2High receptors. Schizophr Res 99:373–374

    Article  PubMed  Google Scholar 

  • Seeman P, Caruso C, Lasaga M (2008) Dopamine partial agonist actions of the glutamate receptor agonists LY 354, 740 and LY 379, 268. Synapse 62:154–158

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Guan HC (2009) Glutamate agonists for treating schizophrenia have affinity for dopamine D2High and D3 receptors. Synapse 63:705–709

    Article  PubMed  CAS  Google Scholar 

  • Sorensen SM, Kehne JH, Fadayel GM, Humphreys TM, Ketteler HJ, Sullivan CK, Taylor VL, Schmidt CJ (1993) Characterization of the 5-HT2 receptor antagonist MDL 100907 as a putative atypical antipsychotic: behavioral, electrophysiological and neurochemical studies. J Pharmacol Exp Ther 266:684–691

    PubMed  CAS  Google Scholar 

  • Speckenbach W, Kehr W (1976) Effect of (+) amphetamine on monoamine synthesis and metabolism after axotomy in rat forebrain. Naunyn Schmiedebergs Arch Pharmacol 296:25–30

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 15:4102–4108

    PubMed  CAS  Google Scholar 

  • Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433

    Article  PubMed  CAS  Google Scholar 

  • Uslaner JM, Smith SM, Huszar SL, Pachmerhiwala R, Hinchliffe RM, Vardigan JD, Hutson PH (2009) Combined administration of an mGlu2/3 receptor agonist and a 5-HT 2A receptor antagonist markedly attenuate the psychomotor-activating and neurochemical effects of psychostimulants. Psychopharmacology (Berl) 206:641–651

    Article  CAS  Google Scholar 

  • van Berckel BN, Kegeles LS, Waterhouse R, Guo N, Hwang DR, Huang Y, Narendran R, Van Heertum R, Laruelle M (2006) Modulation of amphetamine-induced dopamine release by group II metabotropic glutamate receptor agonist LY354740 in non-human primates studied with positron emission tomography. Neuropsychopharmacology 31:967–977

    Article  PubMed  CAS  Google Scholar 

  • Ventura R, Cabib S, Alcaro A, Orsini C, Puglisi-Allegra S (2003) Norepinephrine in the prefrontal cortex is critical for amphetamine-induced reward and mesoaccumbens dopamine release. J Neurosci 23:1879–1885

    PubMed  CAS  Google Scholar 

  • Wilkinson LS, Dias R, Thomas KL, Augood SJ, Everitt BJ, Robbins TW, Roberts AC (1997) Contrasting effects of excitotoxic lesions of the prefrontal cortex on the behavioural response to D-amphetamine and presynaptic and postsynaptic measures of striatal dopamine function in monkeys. Neuroscience 80:717–730

    Article  PubMed  CAS  Google Scholar 

  • Woolley ML, Pemberton DJ, Bate S, Corti C, Jones DN (2008) The mGlu2 but not the mGlu3 receptor mediates the actions of the mGluR2/3 agonist, LY379268, in mouse models predictive of antipsychotic activity. Psychopharmacology (Berl) 196:431–440

    Article  CAS  Google Scholar 

  • Wright RA, Arnold MB, Wheeler WJ, Ornstein PL, Schoepp DD (2001) [3H]LY341495 binding to group II metabotropic glutamate receptors in rat brain. J Pharmacol Exp Ther 298:453–460

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institute of Mental Health Grant MH48404. The authors thank Alicia Lisowitz for her technical assistance and Eli Lilly and Company for providing LY354740.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bita Moghaddam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pehrson, A.L., Moghaddam, B. Impact of metabotropic glutamate 2/3 receptor stimulation on activated dopamine release and locomotion. Psychopharmacology 211, 443–455 (2010). https://doi.org/10.1007/s00213-010-1914-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-010-1914-8

Keywords

Navigation