Skip to main content

Advertisement

Log in

Repeated aripiprazole administration attenuates cocaine seeking in a rat model of relapse

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Aripiprazole (Abilify) is an atypical antipsychotic drug characterized by partial agonist activity at dopamine (DA) D2/D3 receptors and a low side-effect profile. While we previously demonstrated that acute aripiprazole blocked the reinstatement of cocaine seeking in an animal model of relapse, clinical treatment of relapse prevention necessitates testing the effects of aripiprazole following prolonged abstinence, as well as after repeated administration during withdrawal from cocaine.

Objectives

We assessed the effects of repeated aripiprazole treatment on cocaine seeking after abstinence and during conditioned cue-induced and cocaine-primed reinstatement in rats.

Materials and methods

Rats self-administered intravenous cocaine paired with a light + tone stimulus for 10–14 days, followed by 2 weeks of abstinence. Following post-abstinence relapse testing, lever responding was allowed to extinguish, with subsequent reinstatement testing occurring either in the presence of the conditioned stimulus, or after a cocaine-priming injection (10 mg/kg, intraperitoneal (IP)). Following 3 or 7 days of pretreatment, rats received an injection of aripiprazole (0.25, 0.5, and 1.0 mg/kg, IP) or vehicle prior to post-abstinence relapse and reinstatement testing.

Results

Vehicle-pretreated animals showed robust cocaine seeking during relapse and reinstatement testing, an effect that was significantly attenuated by aripiprazole pretreatment, although no lasting effects were found in the absence of acute injection.

Discussion

These findings support the possibility that repeated aripiprazole may be an effective therapeutic agent for the prevention of relapse in abstinent cocaine users. Based on its antipsychotic profile, aripiprazole may be particularly useful for individuals diagnosed with comorbid psychoses, such as schizophrenia or bipolar disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ariens EJ (1983) Intrinsic activity: partial agonists and partial antagonists. J Cardiovasc Pharmacol 5:S8–S15

    Article  PubMed  Google Scholar 

  • Assié MB, Ravailhe V, Faucillon V, Newman-Tancredi A (2005) Contrasting contribution of 5-hydroxytryptamine 1A receptor activation to neurochemical profile of novel antipsychotics: frontocortical dopamine and hippocampal serotonin release in rat brain. J Pharmacol Exp Ther 315:265–272

    Article  PubMed  CAS  Google Scholar 

  • Beresford TP, Clapp L, Martin B, Wiberg JL, Alfers J, Beresford HF (2005) Aripiprazole in schizophrenia with cocaine dependence: a pilot study. J Clin Psychopharmacol 25:363–366

    Article  CAS  PubMed  Google Scholar 

  • Bergman J (2008) Medications for stimulant abuse: agonist-based strategies and preclinical evaluation of the mixed-action D-sub-2 partial agonist aripiprazole (Abilify). Exp Clin Psychopharmacol 16:475–483

    Article  CAS  PubMed  Google Scholar 

  • Bortolozzi A, Diaz-Mataix L, Toth M, Celada P, Artigas F (2007) In vivo actions of aripiprazole on serotonergic and dopaminergic systems in rodent brain. Psychopharmacology (Berl) 191:745–758

    Article  CAS  Google Scholar 

  • Bowles TM, Levin GM (2003) Aripiprazole: a new atypical antipsychotic drug. Ann Pharmacother 37:687–694

    Article  CAS  PubMed  Google Scholar 

  • Brown ES, Jeffress J, Liggin JD, Garza M, Beard L (2005) Switching outpatients with bipolar or schizoaffective disorders and substance abuse from their current antipsychotic to aripiprazole. J Clin Psychiatry 66:756–760

    Article  PubMed  Google Scholar 

  • Burris KD, Molski TF, Xu C, Ryan E, Tottori K, Kikuchi T, Yocca FD, Molinoff PB (2002) Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 302:381–389

    Article  CAS  PubMed  Google Scholar 

  • Cahill K, Stead LF, Lancaster T (2008) Nicotine receptor partial agonists for smoking cessation. Cochrane Database Syst Rev: CD006103

  • Cervo L, Carnovali F, Stark JA, Mennini T (2003) Cocaine-seeking behavior in response to drug-associated stimuli in rats: involvement of D3 and D2 dopamine receptors. Neuropsychopharmacology 28:1150–1159

    CAS  PubMed  Google Scholar 

  • Childress AR, O’Brien CP (2000) Dopamine receptor partial agonists could address the duality of cocaine craving. Trends Pharmacol Sci 21:6–9

    Article  CAS  PubMed  Google Scholar 

  • Childress AR, Hole AV, Ehrman RN, Robbins SJ, McLellan AT, O’Brien CP (1993) Cue reactivity and cue reactivity interventions in drug dependence. NIDA Res Monogr 137:73–95

    CAS  PubMed  Google Scholar 

  • Cornish JL, Duffy P, Kalivas PW (1999) A role for nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience 93:1359–1367

    Article  CAS  PubMed  Google Scholar 

  • Creese I, Chen A (1985) Selective D-1 dopamine receptor increase following chronic treatment with SCH 23390. Eur J Pharmacol 109:127–128

    Article  CAS  PubMed  Google Scholar 

  • Dackis CA, O’Brien CP (2001) Cocaine dependence: a disease of the brain’s reward centers. J Subst Abuse Treat 21:111–117

    Article  CAS  PubMed  Google Scholar 

  • Davies MA, Sheffler DJ, Roth BL (2004) Aripiprazole: a novel atypical antipsychotic drug with a uniquely robust pharmacology. CNS Drug Rev 10:317–336

    CAS  PubMed  Google Scholar 

  • DeLeon A, Patel NC, Crismon ML (2004) Aripiprazole: a comprehensive review of its pharmacology, clinical efficacy, and tolerability. Clin Ther 26:649–666

    Article  CAS  PubMed  Google Scholar 

  • Duarte C, Lefebvre C, Chaperon F, Hamon M, Thiebot MH (2003) Effects of a dopamine D3 receptor ligand, BP 897, on acquisition and expression of food-, morphine-, and cocaine-induced conditioned place preference, and food-seeking behavior in rats. Neuropsychopharmacology 28:1903–1915

    CAS  PubMed  Google Scholar 

  • Feltenstein MW, See RE (2008) The neurocircuitry of addiction: an overview. Br J Pharmacol 154:261–274

    Article  CAS  PubMed  Google Scholar 

  • Feltenstein MW, Altar CA, See RE (2007) Aripiprazole blocks reinstatement of cocaine seeking in an animal model of relapse. Biol Psychiatry 61:582–590

    Article  CAS  PubMed  Google Scholar 

  • Filip M (2005) Role of serotonin (5-HT)2 receptors in cocaine self-administration and seeking behavior in rats. Pharmacol Rep 57:35–46

    CAS  PubMed  Google Scholar 

  • Fletcher PJ, Grottick AJ, Higgins GA (2002) Differential effects of the 5-HT(2A) receptor antagonist M100907 and the 5-HT(2C) receptor antagonist SB242084 on cocaine-induced locomotor activity, cocaine self-administration and cocaine-induced reinstatement of responding. Neuropsychopharmacology 27:576–586

    CAS  PubMed  Google Scholar 

  • Fuchs RA, Evans KA, Parker MP, See RE (2004) Differential involvement of orbitofrontal cortex subregions in conditioned cue-induced and cocaine-primed reinstatement of cocaine seeking in rats. J Neurosci 24:6600–6610

    Article  CAS  PubMed  Google Scholar 

  • Fuchs RA, Branham RK, See RE (2006) Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate–putamen. J Neurosci 26:3584–3588

    Article  CAS  PubMed  Google Scholar 

  • Gal K, Gyertyan I (2006) Dopamine D3 as well as D2 receptor ligands attenuate the cue-induced cocaine-seeking in a relapse model in rats. Drug Alcohol Depend 81:63–70

    Article  CAS  PubMed  Google Scholar 

  • Gilbert JG, Newman AH, Gardner EL, Ashby CR Jr, Heidbreder CA, Pak AC, Peng XQ, Xi ZX (2005) Acute administration of SB-277011A, NGB 2904, or BP 897 inhibits cocaine cue-induced reinstatement of drug-seeking behavior in rats: role of dopamine D3 receptors. Synapse 57:17–28

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez G, Oliveto A, Kosten TR (2004) Combating opiate dependence: a comparison among the available pharmacological options. Expert Opin Pharmacother 5:713–725

    Article  CAS  PubMed  Google Scholar 

  • Grunder G, Carlsson A, Wong DF (2003) Mechanism of new antipsychotic medications: occupancy is not just antagonism. Arch Gen Psychiatry 60:974–977

    Article  PubMed  Google Scholar 

  • Gyertyan I, Gal K (2003) Dopamine D3 receptor ligands show place conditioning effect but do not influence cocaine-induced place preference. NeuroReport 14:93–98

    Article  CAS  PubMed  Google Scholar 

  • Haney M, Spealman R (2008) Controversies in translational research: drug self-administration. Psychopharmacology (Berl) 199:403–419

    Article  CAS  Google Scholar 

  • Haney M, Ward AS, Foltin RW, Fischman MW (2001) Effects of ecopipam, a selective dopamine D1 antagonist, on smoked cocaine self-administration by humans. Psychopharmacology (Berl) 155:330–337

    Article  CAS  Google Scholar 

  • Hess EJ, Albers LJ, Le H, Creese I (1986) Effects of chronic SCH23390 treatment on the biochemical and behavioral properties of D1 and D2 dopamine receptors: potentiated behavioral responses to a D2 dopamine agonist after selective D1 dopamine receptor upregulation. J Pharmacol Exp Ther 238:846–854

    CAS  PubMed  Google Scholar 

  • Jaffe JH, Cascella NG, Kumor KM, Sherer MA (1989) Cocaine-induced cocaine craving. Psychopharmacology 97:59–64

    Article  CAS  PubMed  Google Scholar 

  • Janiri L, Martinotti G, Di Nicola M (2007) Aripiprazole for relapse prevention and craving in alcohol-dependent subjects: results from a pilot study. J Clin Psychopharmacol 27:519–520

    Article  PubMed  Google Scholar 

  • Jerlhag E (2008) The antipsychotic aripiprazole antagonizes the ethanol- and amphetamine-induced locomotor stimulation in mice. Alcohol 42:123–127

    Article  CAS  PubMed  Google Scholar 

  • Jordan S, Chen R, Johnson J, Regardie K, Tadori Y, Kikuchi T (2002a) Aripiprazole is a potent, partial agonist at cloned human D2L and native rat 5-HT1A receptors. Eur Neuropsychopharmacol 12:S293

    Article  Google Scholar 

  • Jordan S, Koprivica V, Chen R, Tottori K, Kikuchi T, Altar CA (2002b) The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. Eur J Pharmacol 441:137–140

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, Volkow N, Seamans J (2005) Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 45:647–650

    Article  CAS  PubMed  Google Scholar 

  • Kane JM, Carson WH, Saha AR, McQuade RD, Ingenito GG, Zimbroff DL, Ali MW (2002) Efficacy and safety of aripiprazole and haloperidol versus placebo in patients with schizophrenia and schizoaffective disorder. J Clin Psychiatry 63:763–771

    CAS  PubMed  Google Scholar 

  • Kasper S, Lerman MN, McQuade RD, Saha A, Carson WH, Ali M, Archibald D, Ingenito G, Marcus R, Pigott T (2003) Efficacy and safety of aripiprazole vs. haloperidol for long-term maintenance treatment following acute relapse of schizophrenia. Int J Neuropsychopharmacol 6:325–337

    Article  CAS  PubMed  Google Scholar 

  • Keck PE Jr, Marcus R, Tourkodimitris S, Ali M, Liebeskind A, Saha A, Ingenito G (2003) A placebo-controlled, double-blind study of the efficacy and safety of aripiprazole in patients with acute bipolar mania. Am J Psychiatry 160:1651–1658

    Article  PubMed  Google Scholar 

  • Khroyan TV, Barrett-Larimore RL, Rowlett JK, Spealman RD (2000) Dopamine D1- and D2-like receptor mechanisms in relapse to cocaine- seeking behavior: effects of selective antagonists and agonists. J Pharmacol Exp Ther 294:680–687

    CAS  PubMed  Google Scholar 

  • Kleven MS, Woolverton WL (1990) Effects of continuous infusions of SCH 23390 on cocaine- or food-maintained behavior in rhesus monkeys. Behav Pharmacol 1:365–373

    PubMed  Google Scholar 

  • Kosten TA (1997) Enhanced neurobehavioral effects of cocaine with chronic neuroleptic exposure in rats. Schizophr Bull 23:203–213

    CAS  PubMed  Google Scholar 

  • Kosten TR, George TP, Kosten TA (2002) The potential of dopamine agonists in drug addiction. Expert Opin Investig Drugs 11:491–499

    Article  CAS  PubMed  Google Scholar 

  • Langlois X, te Riele P, Ashton D (2005) In vivo receptor occupancy profile of aripiprazole in rat brain. Society for Neuroscience Abstracts 444:3

    Google Scholar 

  • Lawler CP, Prioleau C, Lewis MM, Mak C, Jiang D, Schetz JA, Gonzalez AM, Sibley DR, Mailman RB (1999) Interactions of the novel antipsychotic aripiprazole (OPC-14597) with dopamine and serotonin receptor subtypes. Neuropsychopharmacology 20:612–627

    Article  CAS  PubMed  Google Scholar 

  • LeDuc PA, Mittleman G (1993) Interactions between chronic haloperidol treatment and cocaine in rats: an animal model of intermittent cocaine use in neuroleptic treated populations. Psychopharmacology (Berl) 110:427–436

    Article  CAS  Google Scholar 

  • Li Z, Ichikawa J, Dai J, Meltzer HY (2004) Aripiprazole, a novel antipsychotic drug, preferentially increases dopamine release in the prefrontal cortex and hippocampus in rat brain. Eur J Pharmacol 493:75–83

    Article  CAS  PubMed  Google Scholar 

  • Li SX, Zou Y, Liu LJ, Wu P, Lu L (2009) Aripiprazole blocks reinstatement but not expression of morphine conditioned place preference in rats. Pharmacol Biochem Behav 92:370–375

    Article  CAS  PubMed  Google Scholar 

  • Lieberman JA (2004) Dopamine partial agonists: a new class of antipsychotic. CNS Drugs 18:251–267

    Article  CAS  PubMed  Google Scholar 

  • Lile JA, Stoops WW, Vansickel AR, Glaser PE, Hays LR, Rush CR (2005) Aripiprazole attenuates the discriminative-stimulus and subject-rated effects of D-amphetamine in humans. Neuropsychopharmacology 30:2103–2114

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Sun HQ, Bao YP, Li SX, Beveridge TJ, Di XL, Yang FD, Lu L (2009) Subjective, cognitive/psychomotor, and physiological effects of aripiprazole in Chinese light and heavy smokers. Drug Alcohol Depend 101:42–52

    Article  CAS  PubMed  Google Scholar 

  • Mamo D, Graff A, Mizrahi R, Shammi CM, Romeyer F, Kapur S (2007) Differential effects of aripiprazole on D(2), 5-HT(2), and 5-HT(1A) receptor occupancy in patients with schizophrenia: a triple tracer PET study. Am J Psychiatry 164:1411–1417

    Article  PubMed  Google Scholar 

  • Matsubayashi H, Amano T, Sasa M (1999) Inhibition by aripiprazole of dopaminergic inputs to striatal neurons from substantia nigra. Psychopharmacology (Berl) 146:139–143

    Article  CAS  Google Scholar 

  • McGavin JK, Goa KL (2002) Aripiprazole. CNS Drugs 16:779–786 discussion 787-778

    Article  CAS  PubMed  Google Scholar 

  • McQuade RD, Stock E, Marcus R, Jody D, Gharbia NA, Vanveggel S, Archibald D, Carson WH (2004) A comparison of weight change during treatment with olanzapine or aripiprazole: results from a randomized, double-blind study. J Clin Psychiatry 65(Suppl 18):47–56

    CAS  PubMed  Google Scholar 

  • Momiyama T, Amano T, Todo N, Sasa M (1996) Inhibition by a putative antipsychotic quinolinone derivative (OPC-14597) of dopaminergic neurons in the ventral tegmental area. Eur J Pharmacol 310:1–8

    Article  CAS  PubMed  Google Scholar 

  • Natesan S, Reckless GE, Nobrega JN, Fletcher PJ, Kapur S (2006) Dissociation between in vivo occupancy and functional antagonism of dopamine D2 receptors: comparing aripiprazole to other antipsychotics in animal models. Neuropsychopharmacology 31:1854–1863

    Article  CAS  PubMed  Google Scholar 

  • Newcomer JW (2005) Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review. CNS Drugs 19(Suppl 1):1–93

    CAS  PubMed  Google Scholar 

  • Newton TF, Reid MS, De La Garza R, Mahoney JJ, Abad A, Condos R, Palamar J, Halkitis PN, Mojisak J, Anderson A, Li SH, Elkashef A (2008) Evaluation of subjective effects of aripiprazole and methamphetamine in methamphetamine-dependent volunteers. Int J Neuropsychopharmacol 11:1037–1045

    Article  CAS  PubMed  Google Scholar 

  • O’Brien MS, Anthony JC (2005) Risk of becoming cocaine dependent: epidemiological estimates for the United States, 2000–2001. Neuropsychopharmacology 30:1006–1018

    Article  PubMed  Google Scholar 

  • Pickens R, Thompson T (1968) Cocaine-reinforced behavior in rats: effects of reinforcement magnitude and fixed-ratio size. J Pharmacol Exp Ther 161:122–129

    CAS  PubMed  Google Scholar 

  • Pilla M, Perachon S, Sautel F, Garrido F, Mann A, Wermuth CG, Schwartz JC, Everitt BJ, Sokoloff P (1999) Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 receptor agonist. Nature 400:371–375

    Article  CAS  PubMed  Google Scholar 

  • Platt DM, Rowlett JK, Spealman RD (2002) Behavioral effects of cocaine and dopaminergic strategies for preclinical medication development. Psychopharmacology (Berl) 163:265–282

    Article  CAS  Google Scholar 

  • Platt DM, Rodefer JS, Rowlett JK, Spealman RD (2003) Suppression of cocaine- and food-maintained behavior by the D2-like receptor partial agonist terguride in squirrel monkeys. Psychopharmacology (Berl) 166:298–305

    CAS  Google Scholar 

  • Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive- sensitization view. Addiction 95(Suppl 2):S91–S117

    PubMed  Google Scholar 

  • Romach MK, Glue P, Kampman K, Kaplan HL, Somer GR, Poole S, Clarke L, Coffin V, Cornish J, O’Brien CP, Sellers EM (1999) Attenuation of the euphoric effects of cocaine by the dopamine D1/D5 antagonist ecopipam (SCH 39166). Arch Gen Psychiatry 56:1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Schuster CR, Johanson CE (1981) An analysis of drug-seeking behavior in animals. Neurosci Biobehav Rev 5:315–323

    Article  CAS  PubMed  Google Scholar 

  • Schwabe K, Koch M (2007) Effects of aripiprazole on operant responding for a natural reward after psychostimulant withdrawal in rats. Psychopharmacology (Berl) 191:759–765

    Article  CAS  Google Scholar 

  • See RE, Elliott JC, Feltenstein MW (2007) The role of dorsal vs ventral striatal pathways in cocaine-seeking behavior after prolonged abstinence in rats. Psychopharmacology (Berl) 194:321–331

    Article  CAS  Google Scholar 

  • Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl) 168:3–20

    Article  CAS  Google Scholar 

  • Shimokawa Y, Akiyama H, Kashiyama E, Koga T, Miyamoto G (2005) High performance liquid chromatographic methods for the determination of aripiprazole with ultraviolet detection in rat plasma and brain: application to the pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 821:8–14

    Article  CAS  PubMed  Google Scholar 

  • Sloboda Z (2002) Changing patterns of "drug abuse" in the United States: connecting findings from macro- and microepidemiologic studies. Subst Use Misuse 37:1229–1251

    Article  PubMed  Google Scholar 

  • Sørensen G, Sager TN, Petersen JH, Brennum LT, Thogersen P, Hee Bengtsen C, Thomsen M, Wortwein G, Fink-Jensen A, Woldbye DP (2008) Aripiprazole blocks acute self-administration of cocaine and is not self-administered in mice. Psychopharmacology (Berl) 199:37–46

    Article  CAS  Google Scholar 

  • Stahl SM (2001) Dopamine system stabilizers, aripiprazole, and the next generation of antipsychotics, part 2: illustrating their mechanism of action. J Clin Psychiatry 62:923–924

    CAS  PubMed  Google Scholar 

  • Stewart J (2000) Pathways to relapse: the neurobiology of drug- and stress-induced relapse to drug-taking. J Psychiatry Neurosci 25:125–136

    CAS  PubMed  Google Scholar 

  • Stoops W, Lile J, Glaser P, Rush C (2006) A low dose of aripiprazole attenuates the subject-rated effects of D-amphetamine. Drug Alcohol Depend 84:206–209

    Article  CAS  PubMed  Google Scholar 

  • Stoops WW, Lile JA, Lofwall MR, Rush CR (2007) The safety, tolerability, and subject-rated effects of acute intranasal cocaine administration during aripiprazole maintenance. Am J Drug Alcohol Abuse 33:769–776

    Article  PubMed  Google Scholar 

  • Thomsen M, Fink-Jensen A, Woldbye DP, Wortwein G, Sager TN, Holm R, Pepe LM, Caine SB (2008) Effects of acute and chronic aripiprazole treatment on choice between cocaine self-administration and food under a concurrent schedule of reinforcement in rats. Psychopharmacology (Berl) 201:43–53

    Article  CAS  Google Scholar 

  • Tiihonen J, Kuoppasalmi K, Föhr J, Tuomola P, Kuikanmäki O, Vorma H, Sokero P, Haukka J, Meririnne E (2007) A comparison of aripiprazole, methylphenidate, and placebo for amphetamine dependence. Am J Psychiatry 164:160–160

    Article  PubMed  Google Scholar 

  • Tonstad S (2007) Varenicline for smoking cessation. Expert Rev Neurother 7:121–127

    Article  CAS  PubMed  Google Scholar 

  • Vocci FJ, Acri J, Elkashef A (2005) Medication development for addictive disorders: the state of the science. Am J Psychiatry 162:1432–1440

    Article  PubMed  Google Scholar 

  • Wagner FA, Anthony JC (2002) From first drug use to drug dependence; developmental periods of risk for dependence upon marijuana, cocaine, and alcohol. Neuropsychopharmacology 26:479–488

    Article  PubMed  Google Scholar 

  • Wee S, Wang Z, Woolverton W, Pulvirenti L, Koob G (2007) Effects of aripiprazole, a partial dopamine D2 receptor agonist, on increased rate of methamphetamine self-administration in rats with prolonged session duration. Neuropsychopharmacology 32:2238–2247

    Article  CAS  PubMed  Google Scholar 

  • White FJ, Kalivas PW (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend 51:141–153

    Article  CAS  PubMed  Google Scholar 

  • Wilcox RE, Erikson CK (2004) Prevention of relapse to addiction: information for the practitioner. Tex Med 100:52–61

    PubMed  Google Scholar 

  • Yang TT, Wang SJ (2008) Aripiprazole and its human metabolite OPC14857 reduce, through a presynaptic mechanism, glutamate release in rat prefrontal cortex: possible relevance to neuroprotective interventions in schizophrenia. Synapse 62:804–818

    Article  CAS  PubMed  Google Scholar 

  • Yokoi F, Grunder G, Biziere K, Stephane M, Dogan AS, Dannals RF, Ravert H, Suri A, Bramer S, Wong DF (2002) Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C]raclopride. Neuropsychopharmacology 27:248–259

    Article  CAS  PubMed  Google Scholar 

  • Zocchi A, Fabbri D, Heidbreder CA (2005) Aripiprazole increases dopamine but not noradrenaline and serotonin levels in the mouse prefrontal cortex. Neurosci Lett 387:157–161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by NIDA Grant Nos. DA015369 and DA016511 (RES), HD055885 (MWF), and NIH grant C06 RR015455. The authors thank Sara Deptula for technical assistance and Dr. C. Anthony Altar for the generous gift of aripiprazole.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Feltenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feltenstein, M.W., Do, P.H. & See, R.E. Repeated aripiprazole administration attenuates cocaine seeking in a rat model of relapse. Psychopharmacology 207, 401–411 (2009). https://doi.org/10.1007/s00213-009-1671-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1671-8

Keywords

Navigation