Skip to main content
Log in

RO4938581, a novel cognitive enhancer acting at GABAA α5 subunit-containing receptors

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

GABAA α5 subunit-containing receptors are primarily expressed in the hippocampus and their role in learning and memory has been demonstrated recently by both genetic and pharmacological approaches.

Objectives

The objective of the study is to evaluate the cognitive effects of a novel GABAA α5 receptor inverse agonist, RO4938581 in rats and monkeys.

Materials and methods

The in vitro profile was determined using radioligand binding and electrophysiological assays for the GABAA α1, α2, α3, and α5 receptors. Long-term potentiation (LTP) was performed in mouse hippocampal slices. Cognitive effects were assessed in rats in the delayed match to position (DMTP) task and the Morris water maze. In monkeys, the object retrieval task was used. Pro-convulsant and anxiogenic potentials were evaluated in mice and rats. In vivo receptor occupancy was determined using [3H]-RO0154513.

Results

RO4938581 is a potent inverse agonist at the GABAA α5 receptor, with both binding and functional selectivity, enhancing hippocampal LTP. RO4938581 reversed scopolamine-induced working memory impairment in the DMTP task (0.3–1 mg/kg p.o.) and diazepam-induced spatial learning impairment (1–10 mg/kg p.o.). RO4938581 improved executive function in monkeys (3-10 mg/kg p.o.). Importantly, RO4938581 showed no anxiogenic and pro-convulsive potential. RO4938581 dose-dependently bound to GABAA α5 receptors and approximately 30% receptor occupancy was sufficient to produce enhanced cognition in the rat.

Conclusions

The data further support the potential of GABAA α5 receptors as a target for cognition-enhancing drugs. The dual binding and functional selectivity offers an ideal profile for cognition-enhancing effects without the unwanted side effects associated with activity at other GABAA receptor subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aggleton JP, Keith AB, Rawlins JN, Hunt PR, Sahgal A (1992) Removal of the hippocampus and transection of the fornix produce comparable deficits on delayed non-matching to position by rats. Behav Brain Res 52:61–71

    Article  PubMed  CAS  Google Scholar 

  • Akbarian S, Huntsman MM, Kim JJ, Tafazzoli A, Potkin SG, Bunney WE Jr, Jones EG (1995) GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls. Cereb Cortex 5(6):550–560

    Article  PubMed  CAS  Google Scholar 

  • Atack JR, Bayley PJ, Fletcher SR, McKernan RM, Wafford KA, Dawson GR (2006a) The proconvulsant effects of the GABAA α5 subtype-selective compound RY-080 may not be α5-mediated. Eur J Pharmacol 548:77–82

    Article  PubMed  CAS  Google Scholar 

  • Atack JR, Bayley PJ, Seabrook GR, Wafford KA, McKernan RM, Dawson GR (2006b) L-655,708 enhances cognition in rats but is not proconvulsant at a dose selective for α5-containing GABAA receptors. Neuropharmacology 51:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Ballard TM, Woolley ML, Prinssen E, Huwyler J, Porter R, Spooren W (2005) The effect of the mGlu5 receptor antagonist MPEP in rodent tests of anxiety and cognition: a comparison. Psychopharmacology (Berl) 179:218–229

    Article  CAS  Google Scholar 

  • Birks J, Harvey RJ (2006) Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst Rev:CD001190

  • Bonin RP, Martin LJ, Macdonald JF, Orser BA (2007) α5 GABAA receptors regulate the intrinsic excitability of mouse hippocampal pyramidal neurons. J Neurophysiol

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  PubMed  CAS  Google Scholar 

  • Collinson N, Atack JR, Laughton P, Dawson GR, Stephens DN (2006) An inverse agonist selective for α5 subunit-containing GABAA receptors improves encoding and recall but not consolidation in the Morris water maze. Psychopharmacology (Berl) 188:619–628

    Article  CAS  Google Scholar 

  • Collinson N, Kuenzi FM, Jarolimek W, Maubach KA, Cothliff R, Sur C, Smith A, Otu FM, Howell O, Atack JR, McKernan RM, Seabrook GR, Dawson GR, Whiting PJ, Rosahl TW (2002) Enhanced learning and memory and altered GABAergic synaptic transmission in mice lacking the α5 subunit of the GABAA receptor. J Neurosci 22:5572–5580

    PubMed  CAS  Google Scholar 

  • Crestani F, Keist R, Fritschy JM, Benke D, Vogt K, Prut L, Blüthmann H, Möhler H, Rudolph U (2002) Trace fear conditioning involves hippocampal α5 GABAA receptors. Proc Natl Acad Sci U S A 99:8980–8985

    Article  PubMed  CAS  Google Scholar 

  • Dawson GR, Maubach KA, Collinson N, Cobain M, Everitt BJ, MacLeod AM, Choudhury HI, McDonald LM, Pillai G, Rycroft W, Smith AJ, Sternfeld F, Tattersall FD, Wafford KA, Reynolds DS, Seabrook GR, Atack JR (2006) An inverse agonist selective for α5 subunit-containing GABAA receptors enhances cognition. J Pharmacol Exp Ther 316:1335–1345

    Article  PubMed  CAS  Google Scholar 

  • del Cerro S, Jung M, Lynch G (1992) Benzodiazepines block long-term potentiation in slices of hippocampus and piriform cortex. Neuroscience 49:1–6

    Article  PubMed  CAS  Google Scholar 

  • Diamond A, Zola-Morgan S, Squire LR (1989) Successful performance by monkeys with lesions of the hippocampal formation on AB and object retrieval, two tasks that mark developmental changes in human infants. Behav Neurosci 103:526–537

    Article  PubMed  CAS  Google Scholar 

  • Dorow R, Horowski R, Paschelke G, Amin M (1983) Severe anxiety induced by FG 7142, a beta-carboline ligand for benzodiazepine receptors. Lancet 2:98–99

    Article  PubMed  CAS  Google Scholar 

  • Duka T, Ott H, Rohloff A, Voet B (1996) The effects of a benzodiazepine receptor antagonist beta-carboline ZK-93426 on scopolamine-induced impairment on attention, memory and psychomotor skills. Psychopharmacology (Berl) 123:361–373

    Article  CAS  Google Scholar 

  • Faingold CL (2002) Role of GABA abnormalities in the inferior colliculus pathophysiology—audiogenic seizures. Hear Res 168(1-2):223–237

    Article  PubMed  CAS  Google Scholar 

  • Fritschy JM, Möhler H (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits. J Comp Neurol 359:154–194

    Article  PubMed  CAS  Google Scholar 

  • Glykys J, Mann EO, Mody I (2008) Which GABA(A) receptor subunits are necessary for tonic inhibition in the hippocampus. J Neurosci 28:1421–1426

    Article  PubMed  CAS  Google Scholar 

  • Hadingham KL, Wingrove P, Le Bourdelles B, Palmer KJ, Ragan CI, Whiting PJ (1993) Cloning of cDNA sequences encoding human α2 and α3 GABAA receptor subunits and characterization of the benzodiazepine pharmacology of recombinant α1-, α2-, α3-, and α5-containing human GABAA receptors. Mol Pharmacol 43:970–975

    PubMed  CAS  Google Scholar 

  • Haefely WE (1989) Pharmacology of the benzodiazepine receptor. Eur Arch Psychiatry Neurol Sci 238:294–301

    Article  PubMed  CAS  Google Scholar 

  • Hampson RE, Jarrard LE, Deadwyler SA (1999) Effects of ibotenate hippocampal and extrahippocampal destruction on delayed-match and -nonmatch-to-sample behavior in rats. J Neurosci 19:1492–1507

    PubMed  CAS  Google Scholar 

  • Higgins GA, Grottick AJ, Ballard TM, Richards JG, Messer J, Takeshima H, Pauly-Evers M, Jenck F, Adam G, Wichmann J (2001) Influence of the selective ORL1 receptor agonist, Ro64-6198, on rodent neurological function. Neuropharmacology 41:97–107

    Article  PubMed  CAS  Google Scholar 

  • Higgins GA, Enderlin M, Fimbel R, Haman M, Grottick AJ, Soriano M, Richards JG, Kemp JA, Gill R (2002) Donepezil reverses a mnemonic deficit produced by scopolamine but not by perforant path lesion or transient cerebral ischaemia. Eur J Neurosci 15:1827–1840

    Article  PubMed  CAS  Google Scholar 

  • Higgins GA, Ballard TM, Kew JN, Richards JG, Kemp JA, Adam G, Woltering T, Nakanishi S, Mutel V (2004) Pharmacological manipulation of mGlu2 receptors influences cognitive performance in the rodent. Neuropharmacology 46:907–917

    Article  PubMed  CAS  Google Scholar 

  • Howell O, Atack JR, Dewar D, McKernan RM, Sur C (2000) Density and pharmacology of α5 subunit-containing GABAA receptors are preserved in hippocampus of Alzheimer’s disease patients. Neuroscience 98:669–675

    Article  PubMed  CAS  Google Scholar 

  • Jensen LH, Stephens DN, Sarter M, Petersen EN (1987) Bidirectional effects of beta-carbolines and benzodiazepines on cognitive processes. Brain Res Bull 19:359–364

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki K, Eigyo M, Ikeda M, Kihara T, Koike K, Matsushita A, Murata S, Shiomi T, Takada S, Yasui M (1996) A novel benzodiazepine inverse agonist, S-8510, as a cognitive enhancer. Prog Neuropsychopharmacol Biol Psychiatry 20:1413–1425

    Article  PubMed  CAS  Google Scholar 

  • Kemp JA, Marshall GR, Wong EH, Woodruff GN (1987) The affinities, potencies and efficacies of some benzodiazepine-receptor agonists, antagonists and inverse-agonists at rat hippocampal GABAA-receptors. Br J Pharmacol 91:601–608

    PubMed  CAS  Google Scholar 

  • Lingford-Hughes A, Hume SP, Feeney A, Hirani E, Osman S, Cunningham VJ, Pike VW, Brooks DJ, Nutt DJ (2002) Imaging the GABA-benzodiazepine receptor subtype containing the α5-subunit in vivo with [11C]Ro15 4513 positron emission tomography. J Cereb Blood Flow Metab 22:878–889

    Article  PubMed  CAS  Google Scholar 

  • Little HJ, Nutt DJ, Taylor SC (1984) Acute and chronic effects of the benzodiazepine receptor ligand FG 7142: proconvulsant properties and kindling. Br J Pharmacol 83:951–958

    PubMed  CAS  Google Scholar 

  • Liu R, Hu RJ, Zhang P, Skolnick P, Cook JM (1996) Synthesis and pharmacological properties of novel 8-substituted imidazobenzodiazepines: high-affinity, selective probes for α5-containing GABAA receptors. J Med Chem 39:1928–1934

    Article  PubMed  CAS  Google Scholar 

  • Löw K, Crestani F, Keist R, Benke D, Brünig I, Benson JA, Fritschy JM, Rülicke T, Bluethmann H, Möhler H, Rudolph U (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134

    Article  PubMed  Google Scholar 

  • Maeda J, Suhara T, Kawabe K, Okauchi T, Obayashi S, Hojo J, Suzuki K (2003) Visualization of α5 subunit of GABAA/benzodiazepine receptor by 11C Ro15-4513 using positron emission tomography. Synapse 47:200–208

    Article  PubMed  CAS  Google Scholar 

  • Martin JR, Ballard TM, Higgins GA (2002) Influence of the 5-HT2C receptor antagonist, SB-242084, in tests of anxiety. Pharmacol Biochem Behav 71:615–625

    Article  PubMed  CAS  Google Scholar 

  • Maubach K (2003) GABAA receptor subtype selective cognition enhancers. Curr Drug Targets CNS Neurol Disord 2:233–239

    Article  PubMed  CAS  Google Scholar 

  • McKernan RM, Rosahl TW, Reynolds DS, Sur C, Wafford KA, Atack JR, Farrar S, Myers J, Cook G, Ferris P, Garrett L, Bristow L, Marshall G, Macaulay A, Brown N, Howell O, Moore KW, Carling RW, Street LJ, Castro JL, Ragan CI, Dawson GR, Whiting PJ (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABAA receptor α1 subtype. Nat Neurosci 3:587–592

    Article  PubMed  CAS  Google Scholar 

  • McNamara RK, Skelton RW (1993) Benzodiazepine receptor antagonists flumazenil and CGS 8216 and inverse- agonist beta-CCM enhance spatial learning in the rat: dissociation from anxiogenic actions. Psychobiology 21:101–108

    CAS  Google Scholar 

  • McNaughton N, Morris RG (1987) Chlordiazepoxide, an anxiolytic benzodiazepine, impairs place navigation in rats. Behav Brain Res 24:39–46

    Article  PubMed  CAS  Google Scholar 

  • McShane R, Areosa Sastre A, Minakaran N (2006) Memantine for dementia. Cochrane Database Syst Rev:CD003154

  • Möhler H (2006) GABAA receptor diversity and pharmacology. Cell Tissue Res 326:505–516

    Article  PubMed  Google Scholar 

  • Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60

    Article  PubMed  CAS  Google Scholar 

  • Nicolas LB, Prinssen EP (2006) Social approach-avoidance behavior of a high-anxiety strain of rats: effects of benzodiazepine receptor ligands. Psychopharmacology (Berl) 184:65–74

    Article  CAS  Google Scholar 

  • Nutt DJ, Besson M, Wilson SJ, Dawson GR, Lingford-Hughes AR (2007) Blockade of alcohol’s amnestic activity in humans by an α5 subtype benzodiazepine receptor inverse agonist. Neuropharmacology 53:810–820

    Article  PubMed  CAS  Google Scholar 

  • Petersen EN, Jensen LH, Honore T, Braestrup C (1983) Differential pharmacological effects of benzodiazepine receptor inverse agonists. Adv Biochem Psychopharmacol 38:57–64

    PubMed  CAS  Google Scholar 

  • Pirker S, Schwarzer C, Wieselthaler A, Sieghart W, Sperk G (2000) GABAA receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815–850

    Article  PubMed  CAS  Google Scholar 

  • Quirk K, Blurton P, Fletcher S, Leeson P, Tang F, Mellilo D, Ragan CI, McKernan RM (1996) [3H]L-655,708, a novel ligand selective for the benzodiazepine site of GABAA receptors which contain the α5 subunit. Neuropharmacology 35:1331–1335

    Article  PubMed  CAS  Google Scholar 

  • Ross KC, Coleman JR (2000) Developmental and genetic audiogenic seizure models: behavior and biological substrates. Neurosci Biobehav Rev 24(6):639–653

    Article  PubMed  CAS  Google Scholar 

  • Rudolph U, Möhler H (2004) Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol 44:475–498

    Article  PubMed  CAS  Google Scholar 

  • Rudolph U, Crestani F, Benke D, Brünig I, Benson JA, Fritschy JM, Martin JR, Bluethmann H, Möhler H (1999) Benzodiazepine actions mediated by specific GABAA receptor subtypes. Nature 401:796–800

    Article  PubMed  CAS  Google Scholar 

  • Rutten K, Basile JL, Prickaerts J, Blokland A, Vivian JA (2008) Selective PDE inhibitors rolipram and sildenafil improve object retrieval performance in adult cynomolgus macaques. Psychopharmacology (Berl) 196:643–648

    Article  CAS  Google Scholar 

  • Savic MM, Clayton T, Furtmuller R, Gavrilovic I, Samardzic J, Savic S, Huck S, Sieghart W, Cook JM (2008) PWZ-029, a compound with moderate inverse agonist functional selectivity at GABAA receptors containing α5 subunits, improves passive, but not active, avoidance learning in rats. Brain Res 1208:150–159

    Article  PubMed  CAS  Google Scholar 

  • Seabrook GR, Easter A, Dawson GR, Bowery BJ (1997) Modulation of long-term potentiation in CA1 region of mouse hippocampal brain slices by GABAA receptor benzodiazepine site ligands. Neuropharmacology 36:823–830

    Article  PubMed  CAS  Google Scholar 

  • Sternfeld F, Carling RW, Jelley RA, Ladduwahetty T, Merchant KJ, Moore KW, Reeve AJ, Street LJ, O’Connor D, Sohal B, Atack JR, Cook S, Seabrook G, Wafford K, Tattersall FD, Collinson N, Dawson GR, Castro JL, MacLeod AM (2004) Selective, orally active GABAA α5 receptor inverse agonists as cognition enhancers. J Med Chem 47:2176–2179

    Article  PubMed  CAS  Google Scholar 

  • Venault P, Chapouthier G, de Carvalho LP, Simiand J, Morre M, Dodd RH, Rossier J (1986) Benzodiazepine impairs and beta-carboline enhances performance in learning and memory tasks. Nature 321:864–866

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson LS, Dias R, Thomas KL, Augood SJ, Everitt BJ, Robbins TW, Roberts AC (1997) Contrasting effects of excitotoxic lesions of the prefrontal cortex on the behavioural response to D-amphetamine and presynaptic and postsynaptic measures of striatal dopamine function in monkeys. Neuroscience 80:717–730

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the expert technical assistance of Sebastian Debilly, Michel Enderlin, Patricia Glaentzlin, Jasmin Graehler, Cecile Guizani, Rachel Haab, Marie Haman, Marie-Laurence Harle-Yge, Maria Karg, Yeter Kolb, Roland Mory, Marie Claire Pflimlin, Pascal Pflimlin, Stefanie Saenger, Severine Weil-Bandinelli, Michael Weber, Roger Wyler. We would like to thank Dr. Joachim Manns for formulation support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria-Clemencia Hernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballard, T.M., Knoflach, F., Prinssen, E. et al. RO4938581, a novel cognitive enhancer acting at GABAA α5 subunit-containing receptors. Psychopharmacology 202, 207–223 (2009). https://doi.org/10.1007/s00213-008-1357-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1357-7

Keywords

Navigation