Skip to main content
Log in

Pharmacology of neuropeptide S in mice: therapeutic relevance to anxiety disorders

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Neuropeptide S (NPS) and its receptor (NPSR) comprise a recently deorphaned G protein-coupled receptor system. Recent reports implicate NPS in the mediation of anxiolytic-like activity in rodents.

Objectives

To extend the characterization of NPS, the present studies examined the in vitro pharmacology of mouse NPSR and the in vivo pharmacology of NPS in three preclinical mouse models predictive of anxiolytic action: the four-plate test (FPT), elevated zero maze (EZM), and stress-induced hyperthermia (SIH). The ability of NPS to produce antidepressant-like effects in the tail suspension test (TST) was also investigated.

Results

In vitro, mouse NPS1–20 (mNPS1–20) and the C-terminal glutamine-truncated mouse NPS1–19 bound mNPSR with high affinity (K i  = 0.203 ± 0.060, 0.635 ± 0.141 nM, respectively) and potently activated intracellular calcium release (EC50 = 3.73 ± 1.08, 4.10 ± 1.25 nM). NPS produced effects in vivo consistent with anxiolytic-like activity. In FPT, NPS increased punished crossings (minimal effective dose [MED]: mNPS1–20 = 0.2 μg, mNPS1–19 = 0.02 μg), similar to the reference anxiolytic, alprazolam (MED 0.5 μg). NPS increased the percentage of time spent in the open quadrants of EZM (MED: mNPS1–20 = 0.1 μg, mNPS1–19 = 1.0 μg), like the reference anxiolytic, chlordiazepoxide (MED 56 μg). In SIH, NPS attenuated stress-induced increases in body temperature similar to alprazolam but with a large potency difference between the NPS peptides (MED: mNPS1–20 = 2.0 μg, mNPS1–19 = 0.0002 μg) and mNPS1–20 increased baseline temperature. Unlike fluoxetine, NPS did not effect immobility time in TST, indicating a lack of antidepressant-like activity.

Conclusions

These data provide an important confirmation and expansion of the anxiolytic-like effects of NPS and implicate the NPS system as a novel target for anxiolytic drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aron C, Simon P, Larousse C, Boissier JR (1971) Evaluation of a rapid technique for detecting minor tranquilizers. Neuropharmacology 10:459–469

    Article  PubMed  CAS  Google Scholar 

  • Beck B, Fernette B, Stricker-Krongrad A (2005) Peptide S is a novel potent inhibitor of voluntary and fast-induced food intake in rats. Biochem Biophys Res Commun 332:859–865

    Article  PubMed  CAS  Google Scholar 

  • Bernier V, Stocco R, Bogusky MJ, Joyce JG, Parachoniak C, Grenier K, Arget M, Mathieu MC, O’Neill GP, Slipetz D, Crackower MA, Tan CM, Therien AG (2006) Structure–function relationships in the neuropeptide S receptor: molecular consequences of the asthma-associated mutation N107I. J Biol Chem 281:24704–24712

    Article  PubMed  CAS  Google Scholar 

  • Borsini F, Lecci A, Volterra G, Meli A (1989) A model to measure anticipatory anxiety in mice? Psychopharmacology (Berl) 98:207–211

    Article  CAS  Google Scholar 

  • Boules M, Shaw A, Fredrickson P, Richelson E (2007) Neurotensin agonists: potential in the treatment of schizophrenia. CNS Drugs 21:13–23

    Article  PubMed  CAS  Google Scholar 

  • Bourin M, Hascoet M, Mansouri B, Colombel MC, Bradwejn J (1992) Comparison of behavioral effects after single and repeated administrations of four benzodiazepines in three mice behavioral models. J Psychiatry Neurosci 17:72–77

    PubMed  CAS  Google Scholar 

  • Bouwknecht JA, Olivier B, Paylor RE (2007) The stress-induced hyperthermia paradigm as a physiological animal model for anxiety: a review of pharmacological and genetic studies in the mouse. Neurosci Biobehav Rev 31:41–59

    Article  CAS  Google Scholar 

  • Bystritsky A (2006) Treatment-resistant anxiety disorders. Mol Psychiatry 11:805–814

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  PubMed  CAS  Google Scholar 

  • Chiou LC, Liao YY, Fan PC, Kuo PH, Wang CH, Riemer C, Prinssen EP (2007) Nociceptin/orphanin FQ peptide receptors: pharmacology and clinical implications. Curr Drug Targets 8:117–135

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Mombereau C, Vassout A (2005) The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625

    Article  PubMed  CAS  Google Scholar 

  • Gupte J, Cutler G, Chen JL, Tian H (2004) Elucidation of signaling properties of vasopressin receptor-related receptor 1 by using the chimeric receptor approach. Proc Natl Acad Sci USA 101:1508–1513

    Article  PubMed  CAS  Google Scholar 

  • Hascoet M, Bourin M, Colombel MC, Fiocco AJ, Baker GB (2000) Anxiolytic-like effects of antidepressants after acute administration in a four-plate test in mice. Pharmacol Biochem Behav 65:339–344

    Article  PubMed  CAS  Google Scholar 

  • Hunkeler W, Mohler H, Pieri L, Polc P, Bonetti EP, Cumin R, Schaffner R, Haefely W (1981) Selective antagonists of benzodiazepines. Nature 290:514–516

    Article  PubMed  CAS  Google Scholar 

  • Kash SF, Tecott LH, Hodge C, Baekkeskov S (1999) Increased anxiety and altered responses to anxiolytics in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA 96:1698–1703

    Article  PubMed  CAS  Google Scholar 

  • Kinkead B, Nemeroff CB (2006) Novel treatments of schizophrenia: targeting the neurotensin system. CNS Neurol Disord Drug Targets 5:205–218

    PubMed  CAS  Google Scholar 

  • Koob GF, Greenwell TN (2004) Neuropeptide S: a novel activating anxiolytic? Neuron 43:441–442

    Article  PubMed  CAS  Google Scholar 

  • Malberg JE, Platt B, Rizzo SJ, Ring RH, Lucki I, Schechter LE, Rosenzweig-Lipson S (2007) Increasing the levels of insulin-like growth factor-i by an igf binding protein inhibitor produces anxiolytic and antidepressant-like effects. Neuropsychopharmacology 32:2360–2368

    Article  PubMed  CAS  Google Scholar 

  • Mori M, Hayashi K, Miya H, Sato S, Kitada C, Matsumoto H, Nagi T, Shimomura T (2002) Novel polypeptide, DNA thereof and use of the same. European Patent EP1433849

  • Nielsen DM (2006) Corticotropin-releasing factor type-1 receptor antagonists: the next class of antidepressants? Life Sci 78:909–919

    Article  PubMed  CAS  Google Scholar 

  • Olivier B, Zethof T, Pattij T, van Boogaert M, van Oorschot R, Leahy C, Oosting R, Bouwknecht A, Veening J, van der Gugten J, Groenink L (2003) Stress-induced hyperthermia and anxiety: pharmacological validation. Eur J Pharmacol 463:117–132

    Article  PubMed  CAS  Google Scholar 

  • Pellow S, Chopin P, File SE, Briley M (1985) Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 14:149–67

    Article  PubMed  CAS  Google Scholar 

  • Porsolt RD, Deniel M, Jalfre M (1979) Forced swimming in rats: hypothermia, immobility and the effects of imipramine. Eur J Pharmacol 57:431–436

    Article  PubMed  CAS  Google Scholar 

  • Pulkkinen V, Majuri ML, Wang G, Holopainen P, Obase Y, Vendelin J, Wolff H, Rytila P, Laitinen LA, Haahtela T, Laitinen T, Alenius H, Kere J, Rehn M (2006) Neuropeptide S and G protein-coupled receptor 154 modulate macrophage immune responses. Hum Mol Genet 15:1667–1679

    Article  PubMed  CAS  Google Scholar 

  • Rajarao SJ, Platt B, Sukoff SJ, Lin Q, Bender CN, Nieuwenhuijsen BW, Ring RH, Schechter LE, Rosenzweig-Lipson S, Beyer CE (2007) Anxiolytic-like activity of the non-selective galanin receptor agonist, galnon. Neuropeptides 41:307–320

    Article  PubMed  CAS  Google Scholar 

  • Reinscheid RK (2007) Phylogenetic appearance of neuropeptide S precursor proteins in tetrapods. Peptides 28:830–837

    Article  PubMed  CAS  Google Scholar 

  • Ring RH (2005) The central vasopressinergic system: examining the opportunities for psychiatric drug development. Curr Pharm Des 11:205–225

    Article  PubMed  CAS  Google Scholar 

  • Ring RH, Malberg JE, Potestio L, Ping J, Boikess S, Luo B, Schechter LE, Rizzo S, Rahman Z, Rosenzweig-Lipson S (2006) Anxiolytic-like activity of oxytocin in male mice: behavioral and autonomic evidence, therapeutic implications. Psychopharmacology (Berl) 185:218–225

    Article  CAS  Google Scholar 

  • Roth AL, Marzola E, Rizzi A, Arduin M, Trapella C, Corti C, Vergura R, Martinelli P, Salvadori S, Regoli D, Corsi M, Cavanni P, Calo G, Guerrini R (2006) Structure-activity studies on neuropeptide S: identification of the amino acid residues crucial for receptor activation. J Biol Chem 281:20809–20816

    Article  PubMed  CAS  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richarson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:1 (page following 696)

    Article  PubMed  Google Scholar 

  • Shepherd JK, Grewal SS, Fletcher A, Bill DJ, Dourish CT (1994) Behavioural and pharmacological characterisation of the elevated “zero-maze” as an animal model of anxiety. Psychopharmacology (Berl) 116:56–64

    Article  CAS  Google Scholar 

  • Shimazaki T, Yoshimizu T, Chaki S (2006) Melanin-concentrating hormone MCH1 receptor antagonists: a potential new approach to the treatment of depression and anxiety disorders. CNS Drugs 20:801–811

    Article  PubMed  CAS  Google Scholar 

  • Smith KL, Patterson M, Dhillo WS, Patel SR, Semjonous NM, Gardiner JV, Ghatei MA, Bloom SR (2006) Neuropeptide S stimulates the hypothalamo–pituitary–adrenal axis and inhibits food intake. Endocrinology 147:3510–3518

    Article  PubMed  CAS  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 85:367–370

    Article  CAS  Google Scholar 

  • Valdez GR (2006) Development of CRF1 receptor antagonists as antidepressants and anxiolytics: progress to date. CNS Drugs 20:887–896

    Article  PubMed  CAS  Google Scholar 

  • Varty GB, Cohen-Williams ME, Hunter JC (2003) The antidepressant-like effects of neurokinin NK1 receptor antagonists in a gerbil tail suspension test. Behav Pharmacol 14:87–95

    PubMed  CAS  Google Scholar 

  • Vendelin J, Pulkkinen V, Rehn M, Pirskanen A, Raisanen-Sokolowski A, Laitinen A, Laitinen LA, Kere J, Laitinen T (2005) Characterization of GPRA, a novel G protein-coupled receptor related to asthma. Am J Respir Cell Mol Biol 33:262–270

    Article  PubMed  CAS  Google Scholar 

  • Xu YL, Reinscheid RK, Huitron-Resendiz S, Clark SD, Wang Z, Lin SH, Brucher FA, Zeng J, Ly NK, Henriksen SJ, de Lecea L, Civelli O (2004) Neuropeptide S: a neuropeptide promoting arousal and anxiolytic-like effects. Neuron 43:487–497

    Article  PubMed  CAS  Google Scholar 

  • Xu YL, Gall CM, Jackson VR, Civelli O, Reinscheid RK (2007) Distribution of neuropeptide S receptor mRNA and neurochemical characteristics of neuropeptide S-expressing neurons in the rat brain. J Comp Neurol 500:84–102

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Kowal D, Kramer A, Dunlop J (2003) Evaluation of FLIPR Calcium 3 Assay Kit—a new no-wash fluorescence calcium indicator reagent. J Biomol Screen 8:571–577

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah K. Leonard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonard, S.K., Dwyer, J.M., Sukoff Rizzo, S.J. et al. Pharmacology of neuropeptide S in mice: therapeutic relevance to anxiety disorders. Psychopharmacology 197, 601–611 (2008). https://doi.org/10.1007/s00213-008-1080-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1080-4

Keywords

Navigation