Skip to main content
Log in

Cocaine sensitization and dopamine mediation of cue effects in rodents, monkeys, and humans: areas of agreement, disagreement, and implications for addiction

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Sensitization of mesocorticolimbic dopamine projections has been a valuable model of neurobiological adaptation to chronic exposure to cocaine and other psychostimulants.

Discussions

In addition to providing an explanation of exaggerated responses to drugs that might explain their increased ability to serve as reinforcers, sensitization has also been incorporated into influential theories of how drug associated cues can acquire increased salience and incentive motivation. However, almost all of the work exploring behavioral and neurochemical sensitization has been conducted in rodents. Importantly, the relatively small amount of work conducted in human and nonhuman primates differs from the rodent work in some important regards. This review will examine areas of convergence and divergence between the rodent and primate literature on sensitization and the ability of drug associated environmental cues to elicit dopamine release. The implications of this comparison for expanding addiction research beyond dopaminergic mechanisms in the striatum/nucleus accumbens will be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Angrist B (1994) Amphetamine psychosis: clinical variations of the syndrome. In: Cho AK, Segal DS (eds) Amphetamine and its analogs. Academic, San Diego, pp 387–414

    Google Scholar 

  • Bartlett E, Hallin A, Chapman B, Angrist B (1997) Selective sensitization to the psychosis-inducing effects of cocaine: a possible marker for addiction relapse vulnerability? Neuropsychopharmacology 16:77–82

    Article  PubMed  CAS  Google Scholar 

  • Beveridge TJ, Smith HR, Daunais JB, Nader MA, Porrino LJ (2006) Chronic cocaine self-administration is associated with altered functional activity in the temporal lobes of non human primates. Eur J Neurosci 23:3109–3118

    Article  PubMed  Google Scholar 

  • Boileau I, Dagher A, Leyton M, Gunn RN, Baker GB, Diksic M, Benkelfat C (2006) Modeling sensitization to stimulants in humans: a [11C]]raclopride/PET study in healthy volunteers. Arch Gen Psychiatry (in press)

  • Bolla KI, Eldreth DA, London ED, Kiehl KA, Mouratidis M, Contoreggi C, Matochik JA, Kurian V, Cadet JL, Kimes AS (2003) Orbitofrontal cortex dysfunction in abstinent cocaine abusers performing a decision-making task. Neuroimage 19:1085–1094

    Article  PubMed  CAS  Google Scholar 

  • Bradberry CW (2000) Acute and chronic dopamine dynamics in a nonhuman primate model of recreational cocaine use. J Neurosci 20:7109–7115

    PubMed  CAS  Google Scholar 

  • Bradberry CW, Rubino SR (2004) Phasic alterations in dopamine and serotonin release in striatum and prefrontal cortex in response to cocaine predictive cues in behaving rhesus macaques. Neuropsychopharmacology 29:676–685

    PubMed  CAS  Google Scholar 

  • Bradberry CW, Rubino SR (2006) Dopaminergic responses to self-administered cocaine in rhesus monkeys do not sensitize following high cumulative intake. Eur J Neurosci 23:2773–2778

    Article  PubMed  Google Scholar 

  • Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 94:2569–2574

    Article  PubMed  CAS  Google Scholar 

  • Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N, Berke JD, Goodman JM, Kantor HL, Gastfriend DR, Riorden JP, Mathew RT, Rosen BR, Hyman SE (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611

    Article  PubMed  CAS  Google Scholar 

  • Brown EE, Fibiger HC (1992) Cocaine-induced conditioned locomotion: absence of associated increases in dopamine release. Neuroscience 48:621–629

    Article  PubMed  CAS  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    Article  PubMed  Google Scholar 

  • Castner SA, Goldman-Rakic PS (1999) Long-lasting psychotomimetic consequences of repeated low-dose amphetamine exposure in rhesus monkeys. Neuropsychopharmacology 20:10–28

    Article  PubMed  CAS  Google Scholar 

  • Castner SA, al-Tikriti MS, Baldwin RM, Seibyl JP, Innis RB, Goldman-Rakic PS (2000) Behavioral changes and [123I]IBZM equilibrium SPECT measurement of amphetamine-induced dopamine release in rhesus monkeys exposed to subchronic amphetamine. Neuropsychopharmacology 22:4–13

    Article  PubMed  CAS  Google Scholar 

  • Childress AR, Mozley PD, McElgin W, Fitzgerald J, Reivich M, O’Brien CP (1999) Limbic activation during cue-induced cocaine craving. Am J Psychiatr 156:11–18

    PubMed  CAS  Google Scholar 

  • de Wit H, Stewart J (1981) Reinstatement of cocaine-reinforced responding in the rat. Psychopharmacology (Berl) 75:134–143

    Article  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    Article  PubMed  Google Scholar 

  • Di Ciano P, Everitt BJ (2003) Differential control over drug-seeking behavior by drug-associated conditioned reinforcers and discriminative stimuli predictive of drug availability. Behav Neurosci 117:952–960

    Article  PubMed  Google Scholar 

  • Duvauchelle C, Ikegami AE, Castaneda E (2000) Conditioned increases in behavioral activity and accumbens dopamine levels produced by intravenous cocaine. Behav Neurosci 114:1156–1166

    Article  PubMed  CAS  Google Scholar 

  • Erb S, Shaham Y, Stewart J (1996) Stress reinstates cocaine-seeking behavior after prolonged extinction and a drug-free period. Psychopharmacology (Berl) 128:408–412

    Article  CAS  Google Scholar 

  • Everitt BJ, Wolf ME (2002) Psychomotor stimulant addiction: a neural systems perspective. J Neurosci 22:3312–3320

    PubMed  CAS  Google Scholar 

  • Farfel GM, Kleven MS, Woolverton WL, Seiden LS, Perry BD (1992) Effects of repeated injections of cocaine on catecholamine receptor binding sites, dopamine transporter binding sites and behavior in rhesus monkey. Brain Res 578:235–243

    Article  PubMed  CAS  Google Scholar 

  • Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ, Salmeron BJ, Risinger R, Kelley D, Stein EA (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatr 157:1789–1798

    Article  PubMed  CAS  Google Scholar 

  • Garver DL, Schlemmer R Jr, Maas JW, Davis JM (1975) A schizophreniform behavioral psychosis mediated by dopamine. Am J Psychiatr 132:33–38

    PubMed  CAS  Google Scholar 

  • Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex [Review]. Am J Psychiatr 159:1642–1652

    Article  PubMed  Google Scholar 

  • Grant S, London ED, Newlin DB, Villemagne VL, Liu X, Contoreggi C, Phillips RL, Kimes AS, Margolin A (1996) Activation of memory circuits during cue-elicited cocaine craving. Proc Natl Acad Sci USA 93:12040–12045

    Article  PubMed  CAS  Google Scholar 

  • Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382

    PubMed  CAS  Google Scholar 

  • Howell LL, Hoffman JM, Votaw JR, Landrum AM, Wilcox KM, Lindsey KP (2002) Cocaine-induced brain activation determined by positron emission tomography neuroimaging in conscious rhesus monkeys. Psychopharmacology (Berl) 159:154–160

    Article  CAS  Google Scholar 

  • Hyman SE (2005) Addiction: a disease of learning and memory. Am J Psychiatr 162:1414–1422

    Article  PubMed  Google Scholar 

  • Ito R, Dalley JW, Howes SR, Robbins TW, Everitt BJ (2000) Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J Neurosci 20:7489–7495

    PubMed  CAS  Google Scholar 

  • Ito R, Dalley JW, Robbins TW, Everitt BJ (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci 22:6247–6253

    PubMed  CAS  Google Scholar 

  • Jaffe JH, Cascella NG, Kumor KM, Sherer MA (1989) Cocaine-induced cocaine craving. Psychopharmacology (Berl) 97:59–64

    Article  CAS  Google Scholar 

  • Kalivas PW, Stewart J (1991) Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity. [Review]. Brain Res Brain Res Rev 16:223–244

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatr 162:1403–1413

    Article  PubMed  Google Scholar 

  • Kalivas PW, Volkow N, Seamans J (2005) Unmanageable motivation in addiction: a pathology in prefrontal-accumbens glutamate transmission. Neuron 45:647–650

    Article  PubMed  CAS  Google Scholar 

  • Kegeles LS, Zea-Ponce Y, Abi-Dargham A, Rodenhiser J, Wang T, Weiss R, Van Heertum RL, Mann JJ, Laruelle M (1999) Stability of [123I]IBZM SPECT measurement of amphetamine-induced striatal dopamine release in humans. Synapse 31:302–308

    Article  PubMed  CAS  Google Scholar 

  • Kilts CD, Schweitzer JB, Quinn CK, Gross RE, Faber TL, Muhammad F, Ely TD, Hoffman JM, Drexler KP (2001) Neural activity related to drug craving in cocaine addiction. Arch Gen Psychiatry 58:334–341

    Article  PubMed  CAS  Google Scholar 

  • Kimmel HL, Ginsburg BC, Howell LL (2005) Changes in extracellular dopamine during cocaine self-administration in squirrel monkeys. Synapse 56:129–134

    Article  PubMed  CAS  Google Scholar 

  • Kleven MS, Woolverton WL (1990) Effects of continuous infusions of SCH 23390 on cocaine- or food-maintained behavior in rhesus monkeys. Behav Pharmacol 1:365–373

    Article  PubMed  Google Scholar 

  • Kleven MS, Woolverton WL (1996) Effects of exposure regimen on changes in sensitivity to the effects of cocaine on schedule-controlled behavior in rhesus monkeys. Behav Brain Res 79:101–107

    Article  PubMed  CAS  Google Scholar 

  • Koepp MJ, Gunn RN, Lawrence AD, Cunningham VJ, Dagher A, Jones T, Brooks DJ, Bench CJ, Grasby PM (1998) Evidence for striatal dopamine release during a video game. Nature 393:266–268

    Article  PubMed  CAS  Google Scholar 

  • Kuczenski R, Segal DS, Todd PK (1997) Behavioral sensitization and extracellular dopamine responses to amphetamine after various treatments. Psychopharmacology 134:221–229

    Article  PubMed  CAS  Google Scholar 

  • Kufahl PR, Li Z, Risinger RC, Rainey CJ, Wu G, Bloom AS, Li SJ (2005) Neural responses to acute cocaine administration in the human brain detected by fMRI. Neuroimage 28:904–914

    Article  PubMed  Google Scholar 

  • Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451

    Article  PubMed  CAS  Google Scholar 

  • Leyton M, Boileau I, Benkelfat C, Diksic M, Baker G, Dagher A (2002) Amphetamine-induced increases in extracellular dopamine, drug wanting, and novelty seeking: a PET. Neuropsychopharmacology 27:1027–1035

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Roberts DC, Morgan D (2005) Sensitization of the reinforcing effects of self-administered cocaine in rats: effects of dose and intravenous injection speed. Eur J Neurosci 22:195–200

    Article  PubMed  Google Scholar 

  • London ED, Cascella NG, Wong DF, Phillips RL, Dannals RF, Links JM, Herning R, Grayson R, Jaffe JH, Wagner H Jr (1990) Cocaine-induced reduction of glucose utilization in human brain. A study using positron emission tomography and [fluorine 18]-fluorodeoxyglucose. Arch Gen Psychiatry 47:567–574

    PubMed  CAS  Google Scholar 

  • Martinez D, Foltin R, Kegeles L, Hwang D, Huang Y, Hackett E, Frankle G, Laruelle M (2003) PET imaging of dopamine transmission in the striatal substructures of humans and predictors of relapse. Soc Neurosci Abstr 29:354.8

    Google Scholar 

  • Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936–1947

    PubMed  CAS  Google Scholar 

  • Montague PR, Hyman SE, Cohen JD (2004) Computational roles for dopamine in behavioural control. Nature 431:760–767

    Article  PubMed  CAS  Google Scholar 

  • Morgan D, Liu Y, Roberts DC (2006) Rapid and persistent sensitization to the reinforcing effects of cocaine. Neuropsychopharmacology 31:121–128

    Article  PubMed  CAS  Google Scholar 

  • Neisewander JL, O’Dell LE, Tran-Nguyen LT, Castaneda E, Fuchs RA (1996) Dopamine overflow in the nucleus accumbens during extinction and reinstatement of cocaine self-administration behavior. Neuropsychopharmacology 15:506–514

    Article  PubMed  CAS  Google Scholar 

  • Nicola SM, Taha SA, Kim SW, Fields HL (2005) Nucleus accumbens dopamine release is necessary and sufficient to promote the behavioral response to reward-predictive cues. Neuroscience 135:1025–1033

    Article  PubMed  CAS  Google Scholar 

  • Oswald LM, Wong DF, McCaul M, Zhou Y, Kuwabara H, Choi L, Brasic J, Wand GS (2005) Relationships among ventral striatal dopamine release, cortisol secretion, and subjective responses to amphetamine. Neuropsychopharmacology 30:821–832

    PubMed  CAS  Google Scholar 

  • Pan WX, Schmidt R, Wickens JR, Hyland BI (2005) Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network. J Neurosci 25:6235–6242

    Article  PubMed  CAS  Google Scholar 

  • Panlilio LV, Weiss SJ, Schindler CW (1996) Cocaine self-administration increased by compounding discriminative stimuli. Psychopharmacology (Berl) 125:202–208

    Article  CAS  Google Scholar 

  • Panlilio LV, Weiss SJ, Schindler CW (1998) Motivational effects of compounding discriminative stimuli associated with food and cocaine. Psychopharmacology (Berl) 136:70–74

    Article  CAS  Google Scholar 

  • Pearlson GD, Jeffery PJ, Harris GJ, Ross CA, Fischman MW, Camargo EE (1993) Correlation of acute cocaine-induced changes in local cerebral blood flow with subjective effects. Am J Psychiatr 150:495–497

    PubMed  CAS  Google Scholar 

  • Porrino LJ, Lyons D (2000) Orbital and medial prefrontal cortex and psychostimulant abuse: studies in animal models. Cereb Cortex 10:326–333

    Article  PubMed  CAS  Google Scholar 

  • Post RM, Kopanda RT, Black KE (1976) Progressive effects of cocaine on behavior and central amine metabolism in rhesus monkeys: relationship to kindling and psychosis. Biol Psychiatry 11:403–419

    PubMed  CAS  Google Scholar 

  • Reid MS, Ciplet D, O’Leary S, Branchey M, Buydens-Branchey L, Angrist B (2004) Sensitization to the psychosis-inducing effects of cocaine compared with measures of cocaine craving and cue reactivity. Am J Addict 13:305–315

    Article  PubMed  Google Scholar 

  • Ridley RM, Baker HF, Owen F, Cross AJ, Crow TJ (1982) Behavioural and biochemical effects of chronic amphetamine treatment in the vervet monkey. Psychopharmacology (Berl) 78:245–251

    Article  CAS  Google Scholar 

  • Risinger RC, Salmeron BJ, Ross TJ, Amen SL, Sanfilipo M, Hoffmann RG, Bloom AS, Garavan H, Stein EA (2005) Neural correlates of high and craving during cocaine self-administration using BOLD fMRI. Neuroimage 26:1097–1108

    Article  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53

    Article  PubMed  Google Scholar 

  • Robinson TE, Becker JB, Presty SK (1982) Long-term facilitation of amphetamine-induced rotational behavior and striatal dopamine release produced by a single exposure to amphetamine: sex differences. Brain Res 253:231–241

    Article  PubMed  CAS  Google Scholar 

  • Robinson TE, Jurson PA, Bennett JA, Bentgen KM (1988) Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by prior experience with (+)-amphetamine: a microdialysis study in freely moving rats. Brain Res 462:211–222

    Article  PubMed  CAS  Google Scholar 

  • Rothman RB, Gorelick DA, Baumann MH, Guo XY, Herning RI, Pickworth WB, Gendron TM, Koeppl B, Thomson LE, Henningfield JE (1994) Lack of evidence for context-dependent cocaine-induced sensitization in humans: preliminary studies. Pharmacol Biochem Behav 49:583–588

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M, Mingote S, Weber SM (2003) Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther 305:1–8

    Article  PubMed  CAS  Google Scholar 

  • Samaha AN, Li Y, Robinson TE (2002) The rate of intravenous cocaine administration determines susceptibility to sensitization. J Neurosci 22:3244–3250

    PubMed  CAS  Google Scholar 

  • Satel SL, Southwick SM, Gawin FH (1991) Clinical features of cocaine induced paranoia. NIDA Res Monogr 105:371

    Google Scholar 

  • Schultz W (1997) Dopamine neurons and their role in reward mechanisms. [Review] [83 refs]. Curr Opin Neurobiol 7:191–197

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. [Review] [302 refs]. J Neurophysiol 80:1–27

    PubMed  CAS  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. [Review] [37 refs]. Science 275:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • See RE, Grimm JW, Kruzich PJ, Rustay N (1999) The importance of a compound stimulus in conditioned drug-seeking behavior following one week of extinction from self-administered cocaine in rats. Drug Alcohol Depend 57:41–49

    Article  PubMed  CAS  Google Scholar 

  • Shaham Y, Stewart J (1995) Stress reinstates heroin-seeking in drug free animals: an effect mimicking heroin, not withdrawal. Psychopharmacology (Berl) 119:334–341

    Article  CAS  Google Scholar 

  • Shaham Y, Shalev U, Lu L, De Wit H, Stewart J (2003) The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl) 168:3–20

    Article  CAS  Google Scholar 

  • Strafella AP, Paus T, Barrett J, Dagher A (2001) Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci 21(15):RC157

    PubMed  CAS  Google Scholar 

  • Strakowski SM, Sax KW (1998) Progressive behavioral response to repeated d-amphetamine challenge: further evidence for sensitization in humans. Biol Psychiatry 44:1171–1177

    Article  PubMed  CAS  Google Scholar 

  • Strakowski SM, Sax KW, Setters MJ, Keck P Jr (1996) Enhanced response to repeated d-amphetamine challenge: evidence for behavioral sensitization in humans [see comments]. Biol Psychiatry 40:872–880

    Article  PubMed  CAS  Google Scholar 

  • Stretch R, Gerber GJ (1973) Drug-induced reinstatement of amphetamine self-administration behaviour in monkeys. Can J Psychol 27:168–177

    PubMed  CAS  Google Scholar 

  • Stuber GD, Wightman RM, Carelli RM (2005) Extinction of cocaine self-administration reveals functionally and temporally distinct dopaminergic signals in the nucleus accumbens. Neuron 46:661–669

    Article  PubMed  CAS  Google Scholar 

  • Ujike H, Sato M (2004) Clinical features of sensitization to methamphetamine observed in patients with methamphetamine dependence and psychosis. Ann N Y Acad Sci 1025:279–287

    Article  PubMed  CAS  Google Scholar 

  • Vanderschuren LJ, Kalivas PW (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology (Berl) 151:99–120

    Article  CAS  Google Scholar 

  • Vanderschuren LJ, Schmidt ED, De Vries TJ, Van Moorsel CA, Tilders FJ, Schoffelmeer AN (1999) A single exposure to amphetamine is sufficient to induce long-term behavioral, neuroendocrine, and neurochemical sensitization in rats. J Neurosci 19:9579–9586

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Hitzemann R, Chen AD, Dewey SL, Pappas N (1997) Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386:830–833

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Hitzemann R, Angrist B, Gatley SJ, Logan J, Ding YS, Pappas N (1999) Association of methylphenidate-induced craving with changes in right striato-orbitofrontal metabolism in cocaine abusers: implications in addiction. Am J Psychiatr 156:19–26

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Ma Y, Fowler JS, Wong C, Ding YS, Hitzemann R, Swanson JM, Kalivas P (2005) Activation of orbital and medial prefrontal cortex by methylphenidate in cocaine-addicted subjects but not in controls: relevance to addiction. J Neurosci 25:3932–3939

    Article  PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Telang FW, Fowler JS, Logan J, Childress AR, Jayne M, Ma Y, Wong C (2006) Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci 26:6583–6588

    Article  PubMed  CAS  Google Scholar 

  • Wachtel SR, de Wit H (1999) Subjective and behavioral effects of repeated d-amphetamine in humans. Behav Pharmacol 10:271–281

    Article  PubMed  CAS  Google Scholar 

  • Wallace EA, Wisniewski G, Zubal G, van Dyck CH, Pfau SE, Smith EO, Rosen MI, Sullivan MC, Woods SW, Kosten TR (1996) Acute cocaine effects on absolute cerebral blood flow. Psychopharmacology (Berl) 128:17–20

    Article  CAS  Google Scholar 

  • Wang GJ, Volkow ND, Fowler JS, Cervany P, Hitzemann RJ, Pappas NR, Wong CT, Felder C (1999) Regional brain metabolic activation during craving elicited by recall of previous drug experiences. Life Sci 64:775–784

    Article  PubMed  CAS  Google Scholar 

  • Weiss F, Maldonado-Vlaar CS, Parsons LH, Kerr TM, Smith DL, Ben-Shahar O (2000) Control of cocaine-seeking behavior by drug-associated stimuli in rats: effects on recovery of extinguished operant-responding and extracellular dopamine levels in amygdala and nucleus accumbens. Proc Natl Acad Sci USA 97:4321–4326

    Article  PubMed  CAS  Google Scholar 

  • Wexler BE, Gottschalk CH, Fulbright RK, Prohovnik I, Lacadie CM, Rounsaville BJ, Gore JC (2001) Functional magnetic resonance imaging of cocaine craving. Am J Psychiatr 158:86–95

    Article  PubMed  CAS  Google Scholar 

  • Wickens JR, Reynolds JN, Hyland BI (2003) Neural mechanisms of reward-related motor learning. Curr Opin Neurobiol 13:685–690

    Article  PubMed  CAS  Google Scholar 

  • Wojnicki FH, Glowa JR (1996) Effects of drug history on the acquisition of responding maintained by GBR 12909 in rhesus monkeys. Psychopharmacology (Berl) 123:34–41

    Article  CAS  Google Scholar 

  • Wolf ME, Xue CJ, Li Y, Wavak D (2000) Amphetamine increases glutamate efflux in the rat ventral tegmental area by a mechanism involving glutamate transporters and reactive oxygen species. J Neurochem 75:1634–1644

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Bradberry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradberry, C.W. Cocaine sensitization and dopamine mediation of cue effects in rodents, monkeys, and humans: areas of agreement, disagreement, and implications for addiction. Psychopharmacology 191, 705–717 (2007). https://doi.org/10.1007/s00213-006-0561-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0561-6

Keywords

Navigation