Skip to main content

Advertisement

Log in

Deletion of the beta 2 nicotinic acetylcholine receptor subunit alters development of tolerance to nicotine and eliminates receptor upregulation

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Chronic nicotine exposure induces both tolerance and upregulation of [3H]nicotine binding sites in rodent and human brain. However, the mechanism for chronic tolerance is unclear because a direct relationship between tolerance and receptor upregulation is not consistently observed.

Objectives

In the present experiments, the role of β2* nicotinic acetylcholine receptors (nAChRs) on tolerance development and nAChR upregulation was examined following chronic nicotine treatment of β2 wild-type (+/+), heterozygous (+/−), and null mutant (−/−) mice.

Methods

Saline or nicotine (1, 2, or 4 mg/kg/h) was infused intravenously for 10 days. Locomotor activity and body temperature responses were measured before and after nicotine challenge injection to observe changes in nicotine sensitivity. [3H]Epibatidine binding was then measured in ten brain regions.

Results

β2+/+ mice developed dose-dependent tolerance and upregulation of [3H]epibatidine binding sites. In contrast, β2−/− mice, initially less sensitive to acute nicotine's effects, became more sensitive following treatment with the lowest chronic dose (1 mg/kg/h). β2−/− mice treated with 4.0 mg/kg/h nicotine were no longer supersensitive, indicating that tolerance developed at this higher dose. However, these changes in nicotine sensitivity occurred in the absence of any nAChR changes in either low- or high-affinity [3H]epibatidine sites. Responses of β2+/− mice were intermediate between wild-type and mutant mice.

Conclusions

Upregulation of nAChRs in vivo requires the presence of the β2 subunit. Changes in nicotine sensitivity occurred both in the presence (β2+/+) and absence (β2−/−) of β2* nAChRs and suggest that mechanisms involving both β2* and non-β2* nAChR subtypes modulate adaptation to chronic nicotine exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avila AM, Davila-Garcia MI, Ascarrunz VS, Xiao Y, Kellar KJ (2003) Differential regulation of nicotinic acetylcholine receptors in PC12 cells by nicotine and nerve growth factor. J Pharmacol Exp Ther 64:974–986

    CAS  Google Scholar 

  • Badio B, Daly JW (1994) Epibatidine: a potent analgetic and nicotinic agonist. Mol Pharmacol 45:563–569

    PubMed  CAS  Google Scholar 

  • Barr JE, Holmes DB, Ryan LM, Sharpless SH (1979) Techniques for the chronic cannulation of the jugular vein in mice. Pharmacol Biochem Behav 11:115–118

    Article  PubMed  CAS  Google Scholar 

  • Barrantes GE, Rogers AT, Lindstrom J, Wonnacott S (1995) Alpha-bungarotoxin binding sites in rat hippocampal and cortical cultures: initial characterization, colocalisation with alpha 7 subunits and up-regulation by chronic nicotine treatment. Brain Res 672:228–236

    Article  PubMed  CAS  Google Scholar 

  • Benwell ME, Balfour DJ, Anderson JM (1988) Evidence that tobacco smoking increases the density of (−)-[3H]nicotine binding sites in human brain. J Neurochem 50:1243–1247

    Article  PubMed  CAS  Google Scholar 

  • Breese CR, Marks MJ, Logel J, Adams CE, Sullivan B, Collins AC, Leonard S (1997) Effect of smoking history on [3H]nicotine binding in human postmortem brain. J Pharmacol Exp Ther 282:7–13

    PubMed  CAS  Google Scholar 

  • Carlson J, Armstrong B, Switzer RC III, Ellison G (2000) Selective neurotoxic effects of nicotine on axons in fasciculus retroflexus further support evidence that this is a weak link in brain across multiple drugs of abuse. Neuropharmacology 39:2792–2798

    Article  PubMed  CAS  Google Scholar 

  • Carlson J, Noguchi K, Ellison G (2001) Nicotine produces selective degeneration in the medial habenula and fasciculus retroflexus. Brain Res 906:127–134

    Article  PubMed  CAS  Google Scholar 

  • Champtiaux N, Han Z-Y, Bessis A, Rossi FM, Zoli M, Marubio L, McIntosh JM, Changeux J-P (2002) Distribution and pharmacology of α6 containing nicotinic acetylcholine receptors analyzed with mutant mice. J Neurosci 22:1208–1217

    PubMed  CAS  Google Scholar 

  • Collins AC, Miner LL, Marks MJ (1988) Genetic influences on acute responses to nicotine and nicotine tolerance in the mouse. Pharmacol Biochem Behav 30:269–278

    Article  PubMed  CAS  Google Scholar 

  • Davila-Garcia MI, Musachio JL, Kellar KJ (2003) Chronic nicotine administration does not increase nicotinic receptors labeled by [125I]-epibatidine in adrenal gland, superior cervical ganglia, pineal or retina. J Neurochem 85:1237–1246

    Article  PubMed  CAS  Google Scholar 

  • Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha4 and beta2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41:31–37

    PubMed  CAS  Google Scholar 

  • Flores CM, Davila-Garcia MI, Ulrich YM, Kellar KJ (1997) Differential regulation of neuronal nicotinic receptor binding sites following chronic nicotine administration. J Neurochem 69:2216–2219

    Article  PubMed  CAS  Google Scholar 

  • Glick SD, Maisonneuve IM, Kitchen BA (2002) Modulation of nicotine self-administration in rats by combination therapy with agents blocking α3β4 nicotinic receptors. Eur J Pharmacol 448:185–191

    Article  PubMed  CAS  Google Scholar 

  • Lukas RJ, Changeux JP, Le Novere N, Albuquerque EX, Balfour DJ, Berg DK, Bertrand D, Chiappinelli VA, Clarke PB, Collins AC, Dani JA, Grady SR, Kellar KJ, Lindstrom JM, Marks MJ, Quik M, Taylor PW, Wonnacott S (1999) International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev 51:397–401

    PubMed  CAS  Google Scholar 

  • Marks MJ, Burch LB, Collins AC (1983) Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J Pharmacol Exp Ther 226:817–825

    PubMed  CAS  Google Scholar 

  • Marks MJ, Romm E, Bealer SM, Collins AC (1985) A test battery for measuring nicotine effects in mice. Pharmacol Biochem Behav 23:325–330

    Article  PubMed  CAS  Google Scholar 

  • Marks MJ, Stitzel JA, Collins AC (1989) Genetic influences on nicotine responses. Pharmacol Biochem Behav 33:667–678

    Article  PubMed  CAS  Google Scholar 

  • Marks MJ, Campbell SM, Romm E, Collins AC (1991) Genotype influences the development of tolerance to nicotine in the mouse. J Pharmacol Exp Ther 259:392–402

    PubMed  CAS  Google Scholar 

  • Marks MJ, Smith KW, Collins AC (1998) Differential agonist inhibition identifies multiple epibatidine binding sites in mouse brain. J Pharmacol Exp Ther 285:377–386

    PubMed  CAS  Google Scholar 

  • Marks MJ, Whiteaker P, Calcaterra J, Stitzel JA, Bullock AE, Grady SR, Picciotto MR, Changeux JP, Collins AC (1999) Two pharmacologically distinct components of nicotinic receptor-mediated rubidium efflux in mouse brain require the beta2 subunit. J Pharmacol Exp Ther 289:1090–1103

    PubMed  CAS  Google Scholar 

  • Marks MJ, Stitzel JA, Grady SR, Picciotto MR, Changeux JP, Collins AC (2000) Nicotinic-agonist stimulated 86Rb+ efflux and [3H]epibatidine binding of mice differing in beta2 genotype. Neuropharmacology 39:2632–2645

    Article  PubMed  CAS  Google Scholar 

  • Marks MJ, Rowell PP, Cao J-Z, Grady SR, McCallum SE, Collins AC (2004) Subsets of acetylcholine-stimulated 86RB+ efflux and [125I]-epibatidine binding sites in C57BL/6 mouse brain are differentially affected by chronic nicotine treatment. Neuropharmacology 46:1141–1157

    Article  PubMed  CAS  Google Scholar 

  • Marubio LM, Mar Arroyo-Jimenez M, Cordero-Erausquin M, Lena C, Le Novere N, de Kerchove A, Huchet M, Damaj MI, Changeux JP (1999) Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Nature 398:805–810

    Article  PubMed  CAS  Google Scholar 

  • McCallum SE, Caggiula AR, Booth S, Breese CR, Lee MJ, Donny EC, Leonard S, Sved AF (2000) Mecamylamine prevents tolerance but enhances whole brain [3H]epibatidine binding in response to repeated nicotine administration in rats. Psychopharmacology 150:1–8

    Article  PubMed  CAS  Google Scholar 

  • Nguyen HN, Rasmussen BA, Perry DC (2003) Subtype-selective up-regulation by chronic nicotine of high-affinity nicotinic receptors in rat brain demonstrated by receptor autoradiography. J Pharmacol Exp Ther 307:1090–1097

    Article  PubMed  CAS  Google Scholar 

  • Olale F, Gerzanich V, Kuryatov A, Wang F, Lindstrom J (1997) Chronic nicotine exposure differentially affects the function of human α3, α4, and α7 neuronal receptor subtypes. J Pharmacol Exp Ther 283:675–683

    PubMed  CAS  Google Scholar 

  • Parker MJ, Beck A, Luetje CW (1998) Neuronal nicotinic receptor β2 and β4 subunits confer large differences in agonist binding affinity. Mol Pharmacol 54:1132–1139

    PubMed  CAS  Google Scholar 

  • Pauly JR, Marks MJ, Gross SD, Collins AC (1991) An autoradiographic analysis of cholinergic receptors in mouse brain after chronic nicotine treatment. J Pharmacol Exp Ther 258:1127–1136

    PubMed  CAS  Google Scholar 

  • Pauly JR, Grun EU, Collins AC (1992) Tolerance to nicotine following chronic treatment by injections: a potential role for corticosterone. Psychopharmacology 108:33–39

    Article  PubMed  CAS  Google Scholar 

  • Perkins KA (2002) Chronic tolerance to nicotine in humans and its relationship to tobacco dependence. Nicotine Tob Res 4:405–422

    Article  PubMed  CAS  Google Scholar 

  • Perry DC, Kellar KJ (1995) [3H]Epibatidine labels nicotinic receptors in rat brain: an autoradiographic study. J Pharmacol Exp Ther 275:1030–1034

    PubMed  CAS  Google Scholar 

  • Perry DC, Davila-Garcia MI, Stockmeier CA, Kellar KJ (1999) Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. J Pharmacol Exp Ther 289:1545–1552

    PubMed  CAS  Google Scholar 

  • Perry DC, Xiao Y, Nguyen HN, Musachio JL, Davila-Garcia MI, Kellar KJ (2002) Measuring nicotinic receptors with characteristics of alpha4beta2, alpha3beta2 and alpha3beta4 subtypes in rat tissues by autoradiography. J Neurochem 82:468–481

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR, Zoli M, Lena C, Bessis A, Lallemand Y, LeNovere N, Vincent P, Merlo EM, Brulet P, Changeux J-P (1995) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374:65–67

    Article  PubMed  CAS  Google Scholar 

  • Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM, Fuxe K, Changeux JP (1998) Acetylcholine receptors containing the beta2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177

    Article  PubMed  CAS  Google Scholar 

  • Pietila K, Ahtee L (2000) Chronic nicotine administration in the drinking water affects the striatal dopamine in mice. Pharmacol Biochem Behav 66:95–103

    Article  PubMed  CAS  Google Scholar 

  • Pietila K, Lahde T, Attila M, Ahtee L, Nordberg A (1998) Regulation of nicotinic receptors in the brain of mice withdrawn from chronic oral nicotine treatment. Naunyn Schmiedebergs Arch Pharmacol 357:176–182

    Article  PubMed  CAS  Google Scholar 

  • Ross SA, Wong JY, Clifford JJ, Kinsella A, Massalas JS, Horne MK, Scheffer IE, Kola I, Waddington JL, Berkovic SF, Drago J (2000) Phenotypic characterization of an alpha 4 neuronal nicotinic acetylcholine receptor subunit knock-out mouse. J Neurosci 20:6431–6441

    PubMed  CAS  Google Scholar 

  • Salas R, Pieri F, DeBiasi M (2004) Decreased signs of nicotine withdrawal in mice null for the beta4 nicotinic acetylcholine receptor subunit. J Neurosci 24:10035–10039

    Article  PubMed  CAS  Google Scholar 

  • Sallette J, Bohler S, Benoit P, Soudant M, Pons S, leNoviere N, Changeux J-P, Corringer J (2004) An extracellular protein microdomain controls up-regulation of neuronal nicotinic acetylcholine receptors by nicotine. J Biol Chem 279:18767–18775

    Article  PubMed  CAS  Google Scholar 

  • Schwartz RD, Kellar KJ (1983) Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science 220:214–216

    Article  PubMed  CAS  Google Scholar 

  • Shoaib M, Thorndike E, Schindler CW, Goldberg SR (1997) Discriminative stimulus effects of nicotine and chronic tolerance. Pharmacol Biochem Behav 56:167–173

    Article  PubMed  CAS  Google Scholar 

  • Sparks JA, Pauly JR (1999) Effects of continuous oral nicotine administration on brain nicotinic receptors and responsiveness to nicotine in C57Bl/6 mice. Psychopharmacology 141:145–153

    Article  PubMed  CAS  Google Scholar 

  • Stolerman IP, Fink R, Jarvik ME (1973) Acute and chronic tolerance to nicotine measured by activity in rats. Psychopharmacologia 30:329–342

    Article  PubMed  CAS  Google Scholar 

  • Tritto T, McCallum SE, Waddle SA, Hutton SH, Paylor R, Collins AC, Marks MJ (2004) Null mutant analysis of responses to nicotine: deletion of beta2 nAChR subunit but not alpha7 subunit reduces sensitivity to nicotine-induced locomotor depression and hypothermia. Nicotine Tob Res 6:145–157

    Article  PubMed  CAS  Google Scholar 

  • Wang F, Nelson ME, Kuryatov A, Olale F, Cooper J, Keyser K, Lindstrom J (1998) Chronic nicotine treatment up-regulates human alpha beta2 but not alpha3 beta4 acetylcholine receptors stably transfected in human embryonic kidney cells. J Biol Chem 273:28721–28732

    Article  PubMed  CAS  Google Scholar 

  • Whiteaker P, Jimenez M, McIntosh JM, Collins AC, Marks MJ (2000) Identification of a novel nicotinic binding site in mouse brain using [125I]-epibatidine. Br J Pharmacol 131:729–739

    Article  PubMed  CAS  Google Scholar 

  • Whiting PJ, Lindstrom J (1988) Characterization of bovine and human neuronal nicotinic acetylcholine receptors using monoclonal antibodies. J Neurosci 8:3395–3404

    PubMed  CAS  Google Scholar 

  • Wonnacott S (1990) The paradox of nicotinic acetylcholine receptor upregulation by nicotine. Trends Pharmacol Sci 11:216–219

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Orr-Urtreger A, Nigro F, Gelber S, Sutcliffe CB, Armstrong D, Patrick JW, Role LW, Beaudet AL, De Biasi M (1999) Multiorgan autonomic dysfunction in mice lacking the β2 and the β4 subunits of neuronal nicotinic acetylcholine receptors. J Neurosci 19:9298–9305

    PubMed  CAS  Google Scholar 

  • Zoli M, Lena C, Picciotto MR, Changeux JP (1998) Identification of four classes of brain nicotinic receptors using β2 mutant mice. J Neurosci 18:4461–4472

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants DA-12661 and DA-03194 from the National Institute on Drug Abuse. A.C.C. is supported, in part, by Research Scientist Award DA-00197 from NIDA. S.E.M. was supported by NIDA grant DA-14152.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah E. McCallum.

Additional information

S.E.M. has moved to the Parkinson's Institute, Sunnyvale, CA 94089, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCallum, S.E., Collins, A.C., Paylor, R. et al. Deletion of the beta 2 nicotinic acetylcholine receptor subunit alters development of tolerance to nicotine and eliminates receptor upregulation. Psychopharmacology 184, 314–327 (2006). https://doi.org/10.1007/s00213-005-0076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-005-0076-6

Keywords

Navigation