Skip to main content
Log in

Estradiol and testosterone modulate the anesthetic action of the GABA-A agonist THIP, but not of the neurosteroid 3α,5β-pregnanolone in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

As sex steroids modify the number and distribution of brain γ-aminobutyric acid (GABA)A receptor subunits, we investigated the potential modulation of anesthesia, induced by agents acting on the GABAA receptor, by estrogen and androgen.

Objectives

To assess possible effects of sex and hormonal condition (i.e., intact vs castrate; estradiol vs testosterone treatment) on the anesthetic effect of a GABAA agonist, THIP (4,5,6,7-tetrahydroisoxazolo[5,4,-c]pyridin-3-ol hydrochloride), and an allosteric modulator of the GABAA receptor: 3α-hydroxy-5β-pregnan-20-one (epipregnanolone).

Methods

The potencies of THIP and epipregnanolone for inducing loss of the righting response were compared between: (a) female and male rats; (b) intact and castrated animals of each sex; (c) untreated castrates and castrates given estradiol or testosterone.

Results

Sex and endocrine condition influenced sensitivity to i.v. THIP for the induction of anesthesia. ED50 values were: gonadectomized females, 80 mg/kg > intact males, 50 mg/kg > proestrous females, 35 mg/kg > gonadectomized males, 28 mg/kg. Estradiol benzoate (EB; 3 μg/day for 5 days) significantly increased THIP sensitivity in gonadectomized females: THIP + EB: ED50=26 mg/kg vs THIP + sesame oil: ED50=94 mg/kg, while testosterone propionate (TP; 10 mg injected 24 h before THIP) decreased THIP sensitivity in orchidectomized males when compared with vehicle-injected animals (ED50=72 mg/kg vs 22 mg/kg, respectively).

Conclusions

Results suggest that estrogen increases the density or availability of GABAA receptor subtypes on which THIP acts, while testosterone exerts the opposite effect. Neither sex nor gonadal condition influenced the anesthetic action of epipregnanolone as a similar potency was found in intact and in gonadectomized males and females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agmo A, Giordano M (1985) The locomotor-reducing effects of GABAergic drugs do not depend on the GABAA receptor. Psychopharmacology 87:51–54

    CAS  PubMed  Google Scholar 

  • Aikey JZ, Nyby JG, Anmuth DM, James PJ (2002) Testosterone rapidly reduces anxiety in male house mice (Mus musculus). Horm Behav 42:448–460

    Article  CAS  PubMed  Google Scholar 

  • Belleli D, Pistis M, Peters JA, Lambert J (1999) General anaesthetic action at transmitter-gated inhibitory amino acid receptors. Trends Pharmacol Sci 20:496–502

    CAS  PubMed  Google Scholar 

  • Bitran D, Kellog CK, Hilaers RJ (1993) Treatment with an anabolic–androgenic steroid affects anxiety-related behavior and alters the sensitivity of cortical GABA-A receptors in the rat. Horm Behav 27:568–583

    Article  CAS  PubMed  Google Scholar 

  • Bitran D, Hilmers R, Frye C, Erskine M (1996) Chronic anabolic steroid treatment affects brain GABA (A) receptor-gated chloride ion transport. Life Sci 62:573–583

    Article  Google Scholar 

  • Buisson B, Bertrand D (1999) Steroid modulation of the nicotinic acetylcholine receptor. In: Baulieu EE, Robel P, Schumacher M (eds) Neurosteroids: a new regulatory function in the nervous system. Humana Press, New Jersey, pp 207–223

  • Caba M, González-Mariscal G, Beyer C (1994) Perispinal progestins enhance the antinociceptive effects of muscimol in the rat. Pharmacol Biochem Behav 47:177–182

    Google Scholar 

  • Canonaco M, O’Connor LH, Pfaff DW, McEwen BS (1989) GABAA receptor level changes in female hamster forebrain following in vivo estrogen, progesterone and benzodiazepine treatment: a quantitative autoradiography analysis. Exp Brain Res 75:644–652

    CAS  PubMed  Google Scholar 

  • Cheng SC, Brunner EA (1981) Effects of anaesthetic agents on synaptosomal GABA disposal. Anesthesiology 55:34–40

    CAS  PubMed  Google Scholar 

  • Cheng SC, Brunner EA (1985) Inducing anesthesia with a GABA analog, THIP. Anesthesiology 63:147–151

    CAS  PubMed  Google Scholar 

  • Child KJ, Currie JP, Davis B, Dodds MG, Pearce DR, Twissell DJ (1971) The pharmacological properties in animals of CT1341—a new steroid anaesthetic agent. Br J Anaesth 43:2–13

    CAS  PubMed  Google Scholar 

  • Christensen AV, Krogsgaard-Larsen P (1984) GABA agonists: molecular and behavioral pharmacology. In: Fariello RG, Morselli PL, Lloyd KG, Engel J (eds) Neurotransmitters, seizures and epilepsy. Raven Press, New York, pp 109–126

  • Ebert B, Wafford KA, Whiting PJ, Krogsgaard-Larsen P, Kenip AJ (1994) Molecular pharmacology of γ-aminobutyric acid type A receptor agonists and partial agonists in oocytes injected with different α, β and γ receptor subunit combinations. Mol Pharmacol 46:957–963

    CAS  PubMed  Google Scholar 

  • Ebert B, Thompson SA, Saonatsou K, McKernan R, Krogsgaard-Larsen P, Wafford KA (1997) Differences in agonist/antagonist binding affinity and receptor transduction using recombinant human γ-aminobutyric acid type A receptors. Mol Pharmacol 52:1150–1156

    CAS  Google Scholar 

  • Fariello RG, Golden GT, Reyes PF, Alexander GW, Schwartzman RJ (1984) Metabolic correlates of GABAmimetic-induced EEG abnormalities. In: Fariello RG, Morselli PL, Lloyd KG, Engel J (eds) Neurotransmitters, seizures, and epilepsy. Raven Press, New York, pp 245–252

  • Fernández-Guasti A, Picazo O (1990) The actions of diazepam and serotonergic anxiolytics vary according to the gender and the estrous cycle phase. Pharmacol Biochem Behav 37:77–81

    Google Scholar 

  • Fink G, Sarkar DK, Dow RC, Dick H, Borthwicks N, Malnick S, Twine M (1982) Sex difference in response to alphaxalone anaesthesia may be oestrogen dependent. Nature 298:270–273

    CAS  PubMed  Google Scholar 

  • Freeman ME (1988) The ovarian cycle of the rat. In: Knobil E, Neill J (eds) The physiology of reproduction. Raven Press, New York

  • Frye CA, Van Keuren KR, Erskine MJ (1996) Behavioral effects of 3α-androstanediol. I. Modulation of sexual receptivity and promotion of GABA-stimulated chloride flux. Behav Brain Res 79:109–118

    CAS  PubMed  Google Scholar 

  • Gee KW, Bolger MB, Brinton RE, Coirini H, McEwen BS (1988) Steroid modulation of the chloride ionophore in rat brain: structure activity requirement, regional dependence and mechanism of action. J Pharmacol Exper Ther 246:803–812

    CAS  Google Scholar 

  • Gibbs RB, Burke AM, Johnson DA (1998) Estrogen replacement attenuates effects of scopolamine and lorazepam on memory acquisition and retention. Horm Behav 34:112–125

    Article  CAS  PubMed  Google Scholar 

  • Giusti S, Belfiore S, Martini C, Sucacctrini A (1992) Sex steroid hormones and GABAA receptor complex modulation in GABAergic synaptic transmission. Adv Biochem Psychopharmacol 47:133–142

    CAS  PubMed  Google Scholar 

  • Harrison NL, Simmonds MA (1984) Modulation of the GABAA receptor complex by a steroid anesthetic. Brain Res 322:284–293

    Google Scholar 

  • Harrison NL, Krasowski MD, Harris RA (2000) Alcohol and general anesthetic actions on the GABAA receptor. In: Martin DL, Olsen RW (eds) GABA in the nervous system: the view at fifty years. Lippincott Williams and Wilkins, New York, pp 167–189

  • Herbison AE (1997) Estrogen regulation of GABA transmission in rat preoptic area. Brain Res Bull 44:321–326

    Article  CAS  PubMed  Google Scholar 

  • Herbison AE, Fenelon VS (1995) Estrogen regulation of GABA-A receptor subunit mRNA expression in preoptic area and bed nucleus of the stria terminalis of female rat brain. J Neurosci 15:2328–2337

    CAS  PubMed  Google Scholar 

  • Hill RC, Maurer R, Buescher H-H, Roemer D (1981) Analgesic properties of the GABA-mimetic THIP. Eur J Pharmacol 69:221–224

    Article  CAS  PubMed  Google Scholar 

  • Holzbauer M (1971) In vivo production of steroids with central depressant actions by the ovary of the rat. Br J Pharmacol 43:560–569

    CAS  PubMed  Google Scholar 

  • Jorge JC, McIntyre KJ, Henderson JP (2002) The function and the expression of forebrain GABA-A receptor change with hormonal state in the adult mouse. J Neurobiol 50:137–149

    Article  CAS  PubMed  Google Scholar 

  • Jorge-Rivera JC, McIntyre KJ, Henderson JP (2000) Anabolic steroids induce region- and subunit-specific rapid modulation of GABA-A receptor mediated currents in the forebrain of the rat. J Neurophysiol 83:3299–3309

    CAS  PubMed  Google Scholar 

  • Krasowski MD, Harrison NL (1999) General anesthetic actions on ligand-gated ion channels. Cell Mol Life Sci 55:1278–1303

    CAS  PubMed  Google Scholar 

  • Kroboth PD, McAuley JW (2000) The influence of progesterone on the pharmacokinetics and pharmacodynamics of gamma-aminobutyric acid-active drugs. In: Morrison MF (ed) Hormones, gender and the aging brain. Cambridge University Press, Great Britain, pp 16

  • Kubli-Garfias C, Cervantes M, Beyer C (1976) Changes in multiunit activity and EEG induced by the administration of natural progestins to flaxedil immobilized cats. Brain Res 114:71–81

    Article  CAS  PubMed  Google Scholar 

  • Lambert JJ, Belelli D, Hill-Venning C, Peters JA (1995) Neurosteroids and GABAA receptor function. Trends Pharmacol Sci 16:295–303

    CAS  PubMed  Google Scholar 

  • Lambert JJ, Belelli D, Hill-Venning C, Callachan H, Peters JA (1996) Neurosteroid modulation of native and recombinant GABAA receptors. Cell Mol Neurobiol 16:155–174

    CAS  PubMed  Google Scholar 

  • Lambert JJ, Belelli D, Shepherd SE, Pistis M, Peters JA (1999) The selective interaction of neurosteroids with the GABAA receptor. In: Baulieu EE, Robel P, Schumacher M (eds) Neurosteroids: a new regulatory function in the nervous system. Humana Press, New Jersey, pp 125–142

  • Litchfield JTJ, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  Google Scholar 

  • Maggi A, Perez J (1984) Progesterone and estrogens in rat brain: modulation of GABA (γ-aminobutyric acid) receptor activity. Eur J Pharmacol 103:165–168

    Article  CAS  PubMed  Google Scholar 

  • Maggi A, Perez J (1986) Estrogen-induced up-regulation of GABA receptors in the CNS of rodents. J Neurochem 47:1793–1797

    CAS  PubMed  Google Scholar 

  • Majewska MD (1992) Neurosteroids: endogenous bimodal modulators of the GABAA receptor: mechanism of action and physiological significance. Prog Neurobiol 38:379–395

    CAS  PubMed  Google Scholar 

  • Majewska MD, Harrison NL, Scwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABAA receptor. Science 232:1004–1007

    CAS  PubMed  Google Scholar 

  • Maksay G, Thompson SA, Wafford KA (2000) Allosteric modulators affect the efficacy of partial agonists for recombinant GABAA receptors. Br J Pharmacol 129:1794–1800

    CAS  PubMed  Google Scholar 

  • Martin DJ, Olsen RW (2000) GABA in the nervous system: the view at fifty years. Williams and Wilkins, Philadelphia

    Google Scholar 

  • McCarthy MM, Caba M, Komisaruk BR, Beyer C (1990) Modulation by estrogen and progesterone of the effect of muscimol on nociception in the spinal cord. Pharmacol Biochem Behav 37:123–128

    Google Scholar 

  • McCarthy MM, Coirini H, Schumacher M, Pfaff DW, McEwen BS, Schwartz-Giblin S (1991) Ovarian steroid modulation of [3H] muscimol binding in the spinal cord of the rat. Brain Res 556:321–323

    Article  CAS  PubMed  Google Scholar 

  • McDonald RS, Skerrit JM, Werz MA (1986) Barbiturate and benzodiazepine actions on mouse neurons in cell culture. In: Roth SH, Miller KW (eds) Molecular and cellular mechanisms of anesthesia. Plenium Medical, New York, p 9

  • McEwen BS (1991) Non-genomic and genomic effects of steroids on neural activity. Trends Pharmacol Sci 12:141–147

    CAS  PubMed  Google Scholar 

  • McIntyre KJ, Porter DM, Henderson JP (2002) Anabolic androgenic steroids induce age-, sex-, and dose-dependent changes in GABA-A receptor subunit mRNAs in the mouse forebrain. Neuropharmacology 43:634–645

    Article  CAS  PubMed  Google Scholar 

  • Nelson JE, Gus TJ, Ju J, Saper CB, Franks NP, Mase M (2002) The sedative component of anesthesia is mediated by GABA-A receptors in endogenous sleep pathways. Nature 5:979–984

    Article  CAS  Google Scholar 

  • Nicholas GS, Barron DH (1932) The use of sodium amytal in the production of anesthesia in the rat. J Pharmacol Exp Ther 46:125–129

    CAS  Google Scholar 

  • Nomikos GG, Spyraki C (1988) Influence of oestrogen on spontaneous and diazepam-induced exploration of rats in an elevated plus maze. Neuropharmacology 27:691–696

    Article  CAS  PubMed  Google Scholar 

  • O’Connor LH, Nock B, McEwen BS (1988) Regional specificity of gamma-aminobutyric acid receptor regulation by estradiol. Neuroendocrinology 47:473–481

    CAS  PubMed  Google Scholar 

  • Paul SM, Purdy RH (1992) Neuroactive steroids. FASEB J 6:2311–2322

    CAS  PubMed  Google Scholar 

  • Perez J, Zucchi I, Maggi A (1986) Sexual dimorphism in the response of GABA-ergic system to estrogen administration. J Neurochem 47:1798–1805

    CAS  PubMed  Google Scholar 

  • Perez J, Zucchi I, Maggi A (1988) Estrogen modulation of the γ-aminobutyric acid receptor complex in the central nervous system of rat. J Pharmacol Exper Ther 244:1005–1010

    CAS  Google Scholar 

  • Pericic D, Manev H, Lakic N (1985) Sex differences in the response of rats to drugs affecting GABAergic transmission. Life Sci 36:541–547

    Article  CAS  PubMed  Google Scholar 

  • Pollock BG (2000) Gender differences in psychotropic drug metabolism. In: Morrison MF (ed) Hormones, gender and the aging brain: the endocrine basis of geriatric psychiatry. Cambridge University Press, New York, pp 321–333

  • Prince RJ, Simmonds MA (1993) Differential antagonism by epipregnanolone of alphaxalone and epipregnanolone potentiation of [3H] flunitrazepam binding suggests more than one class of binding sites for steroids at GABA-A receptors. Neuropharmacology 32:59–63

    Google Scholar 

  • Puia G, Vicini S, Seebring PH, Costa E (1992) Different sites of action of neurosteroids and benzodiazepines on natural and recombinant GABA-A receptors. In: Biggio G, Concas A, Costa E (eds) GABAergic synaptic actions. Raven Press, New York, p 8

  • Reyes JL, Melendez E, Alegria A, Jaramillo-Juárez F (1998) Influence of sex differences on the renal secretion of organic anions. Endocrinology 139:1581–1587

    CAS  PubMed  Google Scholar 

  • Roberts E (2000) Adventures with GABA: fifty years on. In: Martin DL, Olsen RW (eds) GABA in the nervous system: the view at fifty years. Lippincott Williams and Wilkins, New York, pp 1–24

  • Rosse RB, Mastropoolo J, Novitzki NR, Deutch SJ (1990) Depot testosterone attenuates the anticonvulsants effect of flurazepam in mice. Psychoneuroendocrinology 15:83–85

    Article  CAS  PubMed  Google Scholar 

  • Schulz DW, MacDonald RL (1981) Barbiturate enhancement of GABA-mediated inhibition and activation of chloride ion conductance: correlation with anticonvulsant and anesthetic actions. Brain Res 209:177–188

    Article  CAS  PubMed  Google Scholar 

  • Schultz B, Aes-Jorgensen T, Bogeso KP, Jorgensen A (1981) Preliminary studies on the absorption, distribution, metabolism, and excretion of THIP in animals and man using 14C-labelled compounds. Acta Pharmacol Toxicol 49:116–124

    CAS  Google Scholar 

  • Schumacher S, Coirini H, McEwen BS (1989) Regulation of high-affinity GABAA receptors in the dorsal hippocampus by estradiol and progesterone. Brain Res 487:178–183

    Article  CAS  PubMed  Google Scholar 

  • Seeman P (1972) The membrane actions of anesthetics and tranquilizers. Pharmacol Rev 24:583–655

    CAS  PubMed  Google Scholar 

  • Shephard RA, Nielsen EB, Broadhurst PL (1982) Sex and strain differences in benzodiazepine receptor binding in roman rat strain. Eur J Pharmacol 77:327–330

    Article  CAS  PubMed  Google Scholar 

  • Siegel S, Castellan NJ (1995) Estadistica no paramétrica: aplicada a las ciencias de la conducta. Trillas, Mexico

  • Skett P, Mode A, Rafter J, Sahlin L, Gustafsson JA (1980) The effects of gonadectomy and hypophysectomy on the metabolism of imipramine and lidocaine by the liver of male and female rats. Biochem Pharmacol 29:2759–2762

    Article  CAS  PubMed  Google Scholar 

  • Smith MS, Freeman ME, Neill JD (1975) The control of progesterone secretion during the estrous cycle and early pseudopregnancy in the rat: prolactin, gonadotropin and steroid levels associated with rescue of the corpus luteum of pseudopregnancy. Endocrinology 96:219–226

    CAS  PubMed  Google Scholar 

  • Smith SS, Waterhouse BD, Chapin JK, Woodwad DJ (1987a) Progesterone alters GABA and glutamate responsiveness: possible mechanism for its anxiolytic action. Brain Res 400:353–359

    Article  CAS  PubMed  Google Scholar 

  • Smith SS, Waterhouse BD, Woodward DJ (1987b) Locally applied progesterone metabolites alter neuronal responsiveness in the cerebellum. Brain Res Bull 18:739–747

    Article  CAS  PubMed  Google Scholar 

  • Tallarida RJ (1992) Statistical analysis of drug combinations for synergism. Pain 49:93–97

    CAS  PubMed  Google Scholar 

  • Tallarida RJ, Murray RB (1987) Manual of pharmacologic calculations with computer programs. Springer, Berlin Heidelberg New York

  • Tanelian DL, Kosek P, Mody I, Macluer B (1993) The role of the GABAA receptor/chloride channel complex in anesthesia. Anesthesiology 78:757–776

    CAS  PubMed  Google Scholar 

  • Turner DM, Ransom RW, Yang JS-J, Olsen RW (1989) Steroid anesthetics and naturally occurring analogs modulate the γ-aminobutyric acid receptor complex at a site distinct from barbiturates. J Pharmacol Exp Ther 248:960–966

    CAS  PubMed  Google Scholar 

  • Westenberg IS, Bolam JM (1982) Duration of response to pentobarbital of female vs male albino and pigmented rats. Pharmacol Biochem Behav 16:815–818

    Google Scholar 

  • Wisden W, Laurie DJ, Monyer H, Seebing PH (1992) The distribution of 13 GABA-A receptor subunit mRNA in the rat brain I. Telencephalon, diencephalon, mesencephalon. J Neurosci 12:1040–1062

    CAS  PubMed  Google Scholar 

  • Yokamura T, Bertaccini E, Trudell JR, Harris RA (2001) Anesthetic and ion channels: molecular models and sites of action. Ann Rev Pharmacol Toxicol 41:23–51

    Article  Google Scholar 

  • Zhang J, Chang YH, Fildman NA, Ma W, Jahsousi F, Barkes JZ, Hu J, Maric D, Li B, Li W, Rubinow DR (1999) The expression of GABA-A receptor α2 subunit is upregulated by testosterone in rat cerebral cortex. Neurosci Lett 265:25–28

    Article  CAS  PubMed  Google Scholar 

  • Zorn SH, Enna SJ (1987) The GABA agonist THIP, attenuates antinociception in the mouse by modifying central cholinergic transmission. Neuropharmacology 26:433–437

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar González-Flores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Flores, O., Sánchez, N., García-Juárez, M. et al. Estradiol and testosterone modulate the anesthetic action of the GABA-A agonist THIP, but not of the neurosteroid 3α,5β-pregnanolone in the rat. Psychopharmacology 172, 283–290 (2004). https://doi.org/10.1007/s00213-003-1649-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-003-1649-x

Keywords

Navigation