Skip to main content
Log in

The detection of the non-M2 muscarinic receptor subtype in the rat heart atria and ventricles

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Mammal heart tissue has long been assumed to be the exclusive domain of the M2 subtype of muscarinic receptor, but data supporting the presence of other subtypes also exist. We have tested the hypothesis that muscarinic receptors other than the M2 subtype are present in the heart as minor populations. We used several approaches: a set of competition binding experiments with pirenzepine, AFDX-116, 4-DAMP, PD 102807, p-F-HHSiD, AQ-RA 741, DAU 5884, methoctramine and tripinamide, blockage of M1 muscarinic receptors using MT7 toxin, subtype-specific immunoprecipitation experiments and determination of phospholipase C activity. We also attempted to block M1–M4 receptors using co-treatment with MT7 and AQ-RA 741. Our results show that only the M2 subtype is present in the atria. In the ventricles, however, we were able to determine that 20% (on average) of the muscarinic receptors were subtypes other than M2, with the majority of these belonging to the M1 subtype. We were also able to detect a marginal fraction (6 ± 2%) of receptors that, based on other findings, belong mainly to the M5 muscarinic receptors. Co-treatment with MT7 and AQ-RA 741 was not a suitable tool for blocking of M1–M4 receptors and can not therefore be used as a method for M5 muscarinic receptor detection in substitution to crude venom. These results provide further evidence of the expression of the M1 muscarinic receptor subtype in the rat heart and also show that the heart contains at least one other, albeit minor, muscarinic receptor population, which most likely belongs to the M5 muscarinic receptors but not to that of the M3 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adem A, Asblom A, Johnasson G, Mbuga PM, Karlsson E (1988) Toxins from the venom of the green mamba dendroaspis angusticeps that inhibit the binding of quinuclinidil benzilate to muscarinic acetylcholine receptors. Biochim Biophys Acta 968:340–345

    Article  PubMed  CAS  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Birk E, Riemer RK (1992) Myocardial cholinergic signaling changes with age. Pediatr Res 31:601–605

    PubMed  CAS  Google Scholar 

  • Bolognesi ML, Minarini A, Budriesi R, Cacciaguerra S, Chiarini A, Spampinato S, Tumiatti V, Melchiorre C (1998) Universal template approach to drug design: polyamines as selective muscarinic receptor Antagonists. J Med Chem 41:4150–4160

    Article  PubMed  CAS  Google Scholar 

  • Borda ES, Perez Leiros C, Camusso JJ, Bacman S, Sterin-Borda L (1997) Differential cholinoceptor subtype-dependent activation of signal transduction pathways in neonatal versus adult rat atria. Biochem Pharmacol 53:959–967

    Article  PubMed  CAS  Google Scholar 

  • Brodde O-E, Bruck H, Leineweber K, Seyfarth T (2001) Presence, distribution and physiological function of adrenergic and muscarinic receptor subtypes in the human heart. Basic Res Cardiol 96:528–538

    Article  PubMed  CAS  Google Scholar 

  • Brown SL, Brown JH (1983) Muscarinic stimulation of phosphatidylinositol metabolism in atria. Mol Pharmacol 24:351–356

    PubMed  CAS  Google Scholar 

  • Buckley NJ, Hulme EC, Birdsall NJ (1990) Use of clonal cell lines in the analysis of neurotransmitter receptor mechanisms and function. Biochim Biophys Acta 1055:43–53

    Article  PubMed  CAS  Google Scholar 

  • Camusso JJ, Sterin-Borda L, Rodriguez M, Bacman S, Borda E (1995) Pharmacological evidence for the existence of different subtypes of muscarinic acetylcholine receptors for phosphoinositide hydrolysis in neonatal versus adult rat atria. J Lipid Mediat Cell Signal 12:1–10

    Article  PubMed  CAS  Google Scholar 

  • Carsi J, Potter LT (2000) M1-toxin isotoxins from the green mamba (Dendroaspis Angusticeps) that selectively block M1 muscarinic receptors. Toxicon 38:187–198

    Article  PubMed  CAS  Google Scholar 

  • Caulfield MP, Birdsal NJM (1998) International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    PubMed  CAS  Google Scholar 

  • Choppin A, Stepan GJ, Loury DN, Watson N, Eglen RM (1999) Characterization of the muscarinic receptor in isolated uterus of sham operated and ovariectomized rats. Br J Pharmacol 127:1551–1558

    Article  PubMed  CAS  Google Scholar 

  • Colecraft HM, Egamino JP, Sharma VK, Sheu S-S (1998) Signaling mechanisms underlying muscarinic receptor-mediated increase in contraction rate in cultured heart cells. J Biol Chem 73:32158–32166

    Article  Google Scholar 

  • Dhein S, van Koppen CJ, Brodde OE (2001) Muscarinic receptors in the mammalian heart. Pharmacol Res 44:161–182

    Article  PubMed  CAS  Google Scholar 

  • Dobrev D, Knuschke D, Richter F, Wettwer E, Christ T, Knaut M, Ravens U (2002) Functional identification of m1 and m3 muscarinic acetylcholine receptors in human atrial myocytes: influence of chronic atrial fibrillation. Circulation 106(Suppl):11–154

    Google Scholar 

  • Doods HN, Willim KD, Boddeke HW, Entzeroth M (1993) Characterization of muscarinic receptors in guinea-pig uterus. Eur J Pharmacol 250:223–230

    Article  PubMed  CAS  Google Scholar 

  • Doods HN, Entzeroth M, Ziegler H, Mayer N, Holzer P (1994) Pharmacological profile of selective muscarinic receptor antagonists on guinea-pig ileal smooth muscle. Eur J Pharmacol 253:275–281

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi Y, Pandey GN (1999) Repeated administration of dexamethasone increases phosphoinositide-specific phospholipase C activity and mRNA and protein expression of the phospholipase C beta 1 isozyme in rat brain. J Neurochem 73:780–790

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM, Nahorski SR (2000) The muscarinic M(5) receptor: a silent or emerging subtype? Br J Pharmacol 130:13–21

    Article  PubMed  CAS  Google Scholar 

  • Fisher JT, Vincent SG, Gomeza J, Yamada M, Wess J (2004) Loss of vagally mediated bradycardia and bronchoconstriction in mice lacking M2 or M3 muscarinic acetylcholine receptors. FASEB J 18:711–713

    PubMed  CAS  Google Scholar 

  • Ford APDW, Eglen RM, Whiting RL (1992) Analysis of muscarinic cholinoceptors mediating phosphoinositide hydrolysis in Guinea pig cardiac muscle. Eur J Pharmacol Mol Pharmacol Section 225:105–112

    Article  CAS  Google Scholar 

  • Gallo MP, Alloatti G, Carola E, Oberto A, Cesare Levi R (1993) —1 muscarinic receptors increase calcium current and phosphoinositide turnover in Guinea-pig ventricular cardiocytes. J Physiol (London) 471:41–60

    CAS  Google Scholar 

  • Gomeza J, Shannon H, Konstenis E, Felder C, Zhang L, Brodkin J, Grinberg A, Sheng H, Wess J (1999) Pronounced pharmacologic deficits in M2 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:1692–1697

    Article  PubMed  CAS  Google Scholar 

  • Hardouin SN, Richmond KN, Zimmerman A, Hamilton SE, Feigl EO, Nathanson NM (2002) Altered cardiovascular responses in mice lacking the M1 muscarinic acetylcholine receptor. J Pharmacol Exp Ther 301:129–137

    Article  PubMed  CAS  Google Scholar 

  • Hassal CJS, Stanford SC, Burnstok G, Buckley NJ (1993) Co-expression of four muscarinic receptor genes by the intrinsic neurons of the rat and Guinea-pig heart. Neuroscience 56:1041–1048

    Article  Google Scholar 

  • Hellgren I, Mustafa A, Riazi M, Sulliman I, Sylvén C, Adem A (2000) Muscarinic M3 receptor subtype gene expression in the human heart. Cell Mol Life Sci 57:175–180

    Article  PubMed  CAS  Google Scholar 

  • Hoower DB, Baisden RH, Ximoy SX (1994) Localization of muscarinic receptor MRNAs in rat heart and intrinsic cardiac ganglia by in situ hybridization. Circ Res 75:813–820

    Google Scholar 

  • Krejčí A, Tuček S (2002) Quantitation of MRNAs for M1 to M5 subtypes of muscarinic receptors in rat heart and brain cortex. Mol Pharmacol 61:1267–1272

    Article  PubMed  Google Scholar 

  • Lazareno S, Gharagozloo P, Kuonen D, Popham A, Birdsall NJ (1998) Subtype-selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: radioligand binding studies. Mol Pharmacol 53:573–589

    PubMed  CAS  Google Scholar 

  • Levey AI, Stormann TM, Brann MR (1990) Bacterial expression of human muscarinic receptor fusion proteins and generation of subtype-specific antisera. FEBS Lett 275:65–69

    Article  PubMed  CAS  Google Scholar 

  • Levey AI, Kitt CA, Simonds WF, Price DL, Brann MR (1991) Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci 11:3218–3226

    PubMed  CAS  Google Scholar 

  • Li M, Yasuda RP, Wall SJ, Wellstein A, Wolfe BB (1991) Distribution of M2 muscarinic receptors in rat brain using antisera selective for M3 receptors. Mol Pharmacol 40:28–35

    PubMed  CAS  Google Scholar 

  • Luthin GR, Harkness J, Artymyshyn RP, Wolfe BR (1988) Antibodies to a synthetic peptide can be used to distinguish between muscarinic acetylcholine receptor binding sites in brain and heart. Mol Pharmacol 34:327–333

    PubMed  CAS  Google Scholar 

  • Max SI, Liang JS, Potter LT (1993) Stable allosteric binding of m1-toxin to m1 muscarinic receptors. Mol Pharmacol 44:1171–1175

    PubMed  CAS  Google Scholar 

  • Mayanil CSK, Richardson RM, Hosey MM (1991) Subtype-specific antibodies for muscarinic receptors. I. Characterization using transfected cells and avian and mammalian cardiac membranes. Mol Pharmacol 40:900–907

    PubMed  CAS  Google Scholar 

  • Meyer T, Wellner-Kienitz MC, Biewald A, Bender K, Eickel A, Pott L (2001) Depletion of phosphatidylinositol 4,5-bisphosphate by activation of phospholipase C-coupled receptors causes slow inhibition but not desensitization of G protein-gated inward rectifier K+ current in atrial myocytes. J Biol Chem 276:5650–5658

    Article  PubMed  CAS  Google Scholar 

  • Moscona-Amir E, Henis YI, Sokolovsky M (1989) Aging of rat heart myocytes disrupts muscarinic receptor coupling that leads to inhibition of CAMP accumulation and alters the pathway of muscarinic-stimulated phosphoinositide hydrolysis. Biochemistry 28:7130–7137

    Article  PubMed  CAS  Google Scholar 

  • Mysliveček J, Říčný J, Kolář F, Tuček S (2003) The effects of hydrocortisone treatment on the rat heart muscarinic and adrenergic a1, b1 and b2 receptors, propranolol-resistant binding sites and on some consequent steps in intracellular signaling. NS Arch Pharmacol 368:366–376

    Article  Google Scholar 

  • Mysliveček J, Říčný J, Palkovits M, Kvetňanský R (2004) The effects of short-term immobilization stress on muscarinic receptors, beta-adrenoceptors and adenylyl cyclase In different heart regions. Ann NY Acad Sci 1018:315–322

    Article  PubMed  Google Scholar 

  • Myslivecek J, Novakova M, Palkovits M, Krizanova O, Kvetnansky R (2006) Distribution of mRNA and binding sites of adrenoceptors and muscarinic receptors in the rat heart. Life Sci 79:112–120

    Article  PubMed  CAS  Google Scholar 

  • Nadler E, Barnea O, Vidne B, Isakov A, Shavit G (1993) Positive inotropic effect in the heart produced by acetylcholine. J Basic Clin Physiol Pharmacol 4:229–248

    PubMed  CAS  Google Scholar 

  • Oberhauser V, Schwertfeger E, Rutz T, Beyersdorf F, Rump LC (2001) Acetylcholine release in human heart atrium. Influence of muscarinic acetylcholine autoreceptors, diabetes, and age. Circulation 103:1638–1643

    PubMed  CAS  Google Scholar 

  • Olinas MC, Maullu C, Adem A, Mulugeta E, Karlsson E, Onali P (2000) Inhibition of acetylcholine muscarinic M1 receptor function by the M1-selective ligand muscarinic toxin 7 (MT-7). Br J Pharmacol 131:447–452

    Article  Google Scholar 

  • Perez CC, Tobar ID, Jimenez E, Castaneda D, Rivero MB, Concepcion JL, Chiurillo MA, Bonfante-Cabarcas R (2006) Kinetic and molecular evidences that human cardiac muscle express non-M2 muscarinic receptor subtypes that are able to interact themselves. Pharmacol Res 54:345–355

    Article  PubMed  CAS  Google Scholar 

  • Ponicke K, Heinroth-Hoffmann I, Brodde OE (2003) Demonstration of functional M3-muscarinic receptors in ventricular cardiomyocytes of adult rats. Br J Pharmacol 138:156–160

    Article  PubMed  CAS  Google Scholar 

  • Reever CM, Ferrari-DiLeo G, Flynn DD (1997) The M5 (m5) receptor subtype: fact or fiction? Life Sci 60:1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Sharma VK, Colecraft HM, Wang DX, Levey AI, Grigorenko EV, Yeh HH, Sheu SS (1996) Molecular and functional identification of M1 muscarinic acetylcholine receptors in rat ventricular myocytes. Circ Res 79:86–93

    PubMed  CAS  Google Scholar 

  • Shi H, Wang H, Wang Z (1999) Identification and characterization of multiple subtypes of muscarinic acetylcholine receptors and their physiological functions in canine hearts. Mol Pharmacol 55:497–507

    PubMed  CAS  Google Scholar 

  • Sterin-Borda L, Echague AV, Leiros CP, Genaro A, Borda E (1995) Endogenous nitric oxide signalling system and the cardiac muscarinic acetylcholine receptor-inotropic response. Br J Pharmacol 115:1525–1531

    PubMed  CAS  Google Scholar 

  • Sun LS, Huber F, Robinson RB, Bilezikian JP, Steinberg SF, Vulliemoz Y (1996) Muscarinic receptor heterogeneity in neonatal rat ventricular myocytes in culture. J Cardiovasc Pharmacol 27:455–461

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg AU, Gomeza J, Klebroff W, Zhou H, Wess J (2003) Heterogeneity of presynaptic muscarinic receptors mediating inhibition of sympathetic transmitter release: a study with M2- and M4-receptor-deficient mice. Br J Pharmacol 138:469–480

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg AU, Meyer A, Wess J, Starke K (2005) Distinct mixtures of muscarinic receptor subtypes mediate inhibition of noradrenaline release in different mouse peripheral tissues, as studied with receptor knockout mice. Br J Pharmacol 145:1153–1159

    Article  PubMed  CAS  Google Scholar 

  • Wall SJ, Yasuda RP, Hory F, Flagg S, Martin BM, Ginnis EI, Wolfe BB (1991a) Production of antisera selective for M1 muscarinic receptors using fusion proteins: distribution of M1 receptors in rat brain. Mol Pharmacol 39:643–649

    PubMed  CAS  Google Scholar 

  • Wall SJ, Yasuda RP, Li M, Wolfe BB (1991b) Development of an antiserum against M3 muscarinic receptors: distribution of M3 receptors in rat tissues and clonal cell lines. Mol Pharmacol 40:783–789

    PubMed  CAS  Google Scholar 

  • Wang HZ, Han H, Zhang LM, Si H, Schram G, Nattel S, Wang ZG (2001) Expression of multiple subtypes of muscarinic receptors and cellular distribution in the human geart. Mol Pharmacol 59:1029–1036

    PubMed  CAS  Google Scholar 

  • Wang Z, Shi H, Wang H (2004) Functional M3 muscarinic acetylcholine receptors in mammalian hearts. Br J Pharmacol 142:395–408

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Lu Y, Wan Z (2007) Function of cardiac M3 receptors. Autonom Autacoid Pharmacol 27:1–11

    Article  Google Scholar 

  • Willmy-Matthes P, Leineweber K, Wangemann T, Silber RE, Brodde OE (2003) Existence of functional M3-muscarinic receptors in the human heart. Naunyn Schmiedebergs Arch Pharmacol 368:316–319

    Article  PubMed  CAS  Google Scholar 

  • Yang CM, Chen F-F, Sung T-C, Hsu H-F, Wu D (1993) Pharmacological characterization of muscarinic receptors in neonatal rat cardiomyocytes. Am J Physiol 265:C666–C673

    PubMed  CAS  Google Scholar 

  • Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, Spagnola BV, Wolfe BB (1992) Development of antisera selective for M4 and M5 muscarinic cholinergic receptors: distribution of M4 and M5 receptors in rat brain. Mol Pharmacol 43:149–157

    Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Lincoln Potter from University of Miami for his advice concerning MT7 and M5 muscarinic receptor detection, Dr. Maria-Laura Bolognesi from the University of Bologna for her advice with tripinamide properties, Prof. C. Melchiorre from the same University for his generous gift of this compound and Prof. K. Ladinsky from the Istituto De Angeli, S.p.A for his generous gift of compound AFDX-116. We appreciate the gift of AQ-RA 741 from Boehringer Ingelheim, Biberach, Germany (Dr. Doods and Dr. Mueller). The gift of PD 102807 from Parke-Davis is greatly appreciated. The work was supported mainly by grant GAUK 519/07 from Grant Agency of Charles University and in part by grant GAUK 289/07 from the same Grant Agency. Another support was obtained from grants MSMT CR LC554, MSM0021620849, GACR 304/08/0256 and by the Research project AV0Z 50110509. We gratefully acknowledge the technical assistance by Mrs. Dana Ungerová, Romana Ondřejová, Olga Martínková and Eva Šimáková.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaromir Myslivecek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myslivecek, J., Klein, M., Novakova, M. et al. The detection of the non-M2 muscarinic receptor subtype in the rat heart atria and ventricles. Naunyn-Schmied Arch Pharmacol 378, 103–116 (2008). https://doi.org/10.1007/s00210-008-0285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0285-8

Keywords

Navigation