Skip to main content
Log in

On the analysis of ligand-directed signaling at G protein-coupled receptors

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The phenomenon of “ligand-directed signaling” is often considered to be inconsistent with the traditional receptor theory. In this review, I show how the mathematics of the receptor theory can be used to measure the observed affinity and relative efficacy of protean ligands at G protein-coupled receptors. The basis of this analysis rests on the assumption that the fraction of agonist bound in the form of the active receptor–G protein–guanine nucleotide complex is the biochemical equivalent of the pharmacological stimulus. Consequently, this stimulus function is analogous to the current response of a ligand-gated ion channel. Because guanosine triphosphate (GTP) greatly inhibits the formation of the active quaternary complex, even the most efficacious agonists probably only elicit partial receptor activation, and it seems likely that the ceiling of 100% receptor activation is not reached in the intact cell with high intracellular concentrations of GTP. Under these conditions, the maximum of the stimulus function is proportional to the ratio of microscopic affinity constants of the agonist for ground and active states. Ligand-directed signaling depends on the existence of different active states of the receptor with different selectivities for different G proteins or other effectors. This phenomenon can be characterized using classic pharmacological methods. Although not widely appreciated, it is possible to estimate the product of observed affinity and intrinsic efficacy expressed relative to that of another agonist (intrinsic relative activity) through the analysis of the concentration–response curves. No other information is required. This approach should be useful in quantifying agonist activity and in converting the two disparate parameters of potency and maximal response into a single parameter dependent only on the agonist–receptor–effector complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Auerbach A, Akk G (1998) Desensitization of mouse nicotinic acetylcholine receptor channels. A two-gate mechanism. J Gen Physiol 112(2):181–197

    Article  PubMed  CAS  Google Scholar 

  • Berg KA, Maayani S, Goldfarb J, Scaramellini C, Leff P, Clarke WP (1998) Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol Pharmacol 54(1):94–104

    PubMed  CAS  Google Scholar 

  • Berrie CP, Birdsall NJ, Burgen AS, Hulme EC (1979) Guanine nucleotides modulate muscarinic receptor binding in the heart. Biochem Biophys Res Comm 87(4):1000–1005

    Article  PubMed  CAS  Google Scholar 

  • Birdsall NJ, Burgen AS, Hulme EC, Stockton JM, Zigmond MJ (1983) The effect of McN-A-343 on muscarinic receptors in the cerebral cortex and heart. Br J Pharmacol 78(2):257–259

    PubMed  CAS  Google Scholar 

  • Black JW, Leff P (1983) Operational models of pharmacological agonism. Proc R Soc Lond B 220(1219):141–162

    Article  CAS  PubMed  Google Scholar 

  • Black JW, Leff P, Shankley NP, Wood J (1985) An operational model of pharmacological agonism: the effect of E/[A] curve shape on agonist dissociation constant estimation. Br J Pharmacol 84(2):561–571

    PubMed  CAS  Google Scholar 

  • Bockaert J, Roussignol G, Becamel C, Gavarini S, Joubert L, Dumuis A, Fagni L, Marin P (2004) GPCR-interacting proteins (GIPs): nature and functions. Biochem Soc Trans 32(Pt 5):851–855

    PubMed  CAS  Google Scholar 

  • Burgen AS (1981) Conformational changes and drug action. Fed Proc 40(13):2723–2728

    PubMed  CAS  Google Scholar 

  • Childers SR, Snyder SH (1978) Guanine nucleotides differentiate agonist and antagonist interactions with opiate receptors. Life Sci 23:759–762

    Article  PubMed  CAS  Google Scholar 

  • Christopoulos A, Mitchelson F (1998) Use of a spreadsheet to quantitate the equilibrium binding of an allosteric modulator. Eur J Pharmacol 355(1):103–111

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun D (1973) The relation between classical and cooperative models for drug action. In: Rang HP (ed) Drug receptors. University Park, Baltimore, pp 149–182

    Google Scholar 

  • Colquhoun D (1987) Affinity, efficacy and receptor classification, is the classical theory still useful? In: Black J, Jenkinson D, Gerskowitch V (eds) Perspectives on receptor classification. Liss, New York, p 103

    Google Scholar 

  • Colquhoun D (1998) Binding, gating, affinity and efficacy: the interpretation of structure-activity relationships for agonists and of the effects of mutating receptors. Br J Pharmacol 125(5):924–947

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun D, Sakmann B (1981) Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels. Nature 294(5840):464–466

    Article  PubMed  CAS  Google Scholar 

  • Colquhoun D, Sakmann B (1985) Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. J Physiol 369:501–557

    PubMed  CAS  Google Scholar 

  • Coward P, Chan SD, Wada HG, Humphries GM, Conklin BR (1999) Chimeric G proteins allow a high-throughput signaling assay of Gi-coupled receptors. Anal Biochem 270(2):242–248

    Article  PubMed  CAS  Google Scholar 

  • Creese I, Prosser T, Snyder SH (1978) Dopamine receptor binding: specificity, localization and regulation by ions and guanyl nucleotides. Life Sci 23:495–500

    Article  PubMed  CAS  Google Scholar 

  • De Deurwaerdere P, Navailles S, Berg KA, Clarke WP, Spampinato U (2004) Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J Neurosci 24(13):3235–3241

    Article  PubMed  CAS  Google Scholar 

  • De Lean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 255(15):7108–7117

    PubMed  Google Scholar 

  • del Castillo J, Katz B (1957) Interaction at end-plate receptors between different choline derivatives. Proc R Soc Lond B Biol Sci 146:369

    PubMed  CAS  Google Scholar 

  • Dixon M, Webb EC (1979) Enzymes. Academic, New York

    Google Scholar 

  • Eason MG, Jacinto MT, Liggett SB (1994) Contribution of ligand structure to activation of alpha 2-adrenergic receptor subtype coupling to Gs. Mol Pharmacol 45(4):696–702

    PubMed  CAS  Google Scholar 

  • Ehlert FJ (1985) The relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium. Mol Pharmacol 28(5):410–421

    PubMed  CAS  Google Scholar 

  • Ehlert FJ (1987) Coupling of muscarinic receptors to adenylate cyclase in the rabbit myocardium: effects of receptor inactivation. J Pharmacol Exp Ther 240(1):23–30

    PubMed  CAS  Google Scholar 

  • Ehlert FJ (1988) Correlation between the binding parameters of muscarinic agonists and their inhibition of adenylate cyclase activity. Adv Exp Med Biol 236(7086):265–276

    PubMed  CAS  Google Scholar 

  • Ehlert FJ (2000) Ternary complex model. In: Christopoulos A (ed) Biomedical applications of computer modeling. CRC, Boca Raton, pp 21–85

    Google Scholar 

  • Ehlert FJ (2005) Analysis of allosterism in functional assays. J Pharmacol Exp Ther 315(2):740–754

    Article  PubMed  CAS  Google Scholar 

  • Ehlert FJ, Rathbun BE (1990) Signaling through the muscarinic receptor–adenylate cyclase system of the heart is buffered against GTP over a range of concentrations. Mol Pharmacol 38(1):148–158

    PubMed  CAS  Google Scholar 

  • Ehlert FJ, Griffin MT, Sawyer GW, Bailon R (1999) A simple method for estimation of agonist activity at receptor subtypes: comparison of native and cloned M3 muscarinic receptors in guinea pig ileum and transfected cells. J Pharmacol Exp Ther 289(2):981–992

    PubMed  CAS  Google Scholar 

  • Fraser NJ, Wise A, Brown J, McLatchie LM, Main MJ, Foord SM (1999) The amino terminus of receptor activity modifying proteins is a critical determinant of glycosylation state and ligand binding of calcitonin receptor-like receptor. Mol Pharmacol 55(6):1054–1059

    PubMed  CAS  Google Scholar 

  • Freedman SB, Harley EA, Patel S, Newberry NR, Gilbert MJ, McKnight AT, Tang JK, Maguire JJ, Mudunkotuwa NT, Baker R (1990) A novel series of non-quaternary oxadiazoles acting as full agonists at muscarinic receptors. Br J Pharmacol 101(3):575–580

    PubMed  CAS  Google Scholar 

  • Fung BK, Nash CR (1983) Characterization of transducin from bovine retinal rod outer segments. II. Evidence for distinct binding sites and conformational changes revealed by limited proteolysis with trypsin. J Biol Chem 258(17):10503–10510

    PubMed  CAS  Google Scholar 

  • Fung BK, Hurley JB, Stryer L (1981) Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc Natl Acad Sci USA 78(1):152–156

    Article  PubMed  CAS  Google Scholar 

  • Furchgott RF (1966) The use of b-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. Adv Drug Res 3:21–55

    Google Scholar 

  • Furchgott RF, Bursztyn P (1967) Comparison of dissociation constants and of relative efficacies of selected agonists acting on parasympathetic receptors. Ann NY Acad Sci 144:882–899

    Article  CAS  Google Scholar 

  • Gao BN, Gilman AG (1991) Cloning and expression of a widely distributed (type IV) adenylyl cyclase. Proc Natl Acad Sci USA 88(22):10178–10182

    Article  PubMed  CAS  Google Scholar 

  • Garcia PD, Onrust R, Bell SM, Sakmar TP, Bourne HR (1995) Transducin-alpha C-terminal mutations prevent activation by rhodopsin: a new assay using recombinant proteins expressed in cultured cells. Embo J 14(18):4460–4469

    PubMed  CAS  Google Scholar 

  • Gay EA, Urban JD, Nichols DE, Oxford GS, Mailman RB (2004) Functional selectivity of D2 receptor ligands in a Chinese hamster ovary hD2L cell line: evidence for induction of ligand-specific receptor states. Mol Pharmacol 66(1):97–105

    Article  PubMed  CAS  Google Scholar 

  • Graul RC, Sadee W (2001) Evolutionary relationships among G protein-coupled receptors using a clustered database approach. AAPS PharmSci 3(2):E12

    Article  PubMed  CAS  Google Scholar 

  • Griffin MT, Figueroa KW, Liller S, Ehlert FJ (2007) Estimation of agonist activity at G protein-coupled receptors: analysis of M2 muscarinic receptor signaling through Gi/o,Gs, and G15. J Pharmacol Exp Ther 321(3):1193–1207

    Article  PubMed  CAS  Google Scholar 

  • Haga K, Haga T, Ichiyama A (1986) Reconstitution of the muscarinic acetylcholine receptor. Guanine nucleotide-sensitive high affinity binding of agonists to purified muscarinic receptors reconstituted with GTP-binding proteins (Gi and Go). J Biol Chem 261(22):10133–10140

    PubMed  CAS  Google Scholar 

  • Hein P, Rochais F, Hoffmann C, Dorsch S, Nikolaev VO, Engelhardt S, Berlot CH, Lohse MJ, Bunemann M (2006) Gs activation is time-limiting in initiating receptor-mediated signaling. J Biol Chem 281(44):33345–33351

    Article  PubMed  CAS  Google Scholar 

  • Hilf G, Jakobs KH (1992) Agonist-independent inhibition of G protein activation by muscarinic acetylcholine receptor antagonists in cardiac membranes. Eur J Pharmacol 225(3):245–252

    Article  PubMed  CAS  Google Scholar 

  • Jacobs S, Cuatrecasas P (1976) The mobile receptor hypothesis and “cooperativity” of hormone binding. Application to insulin. Biochim Biophys Acta 433(3):482–495

    Article  PubMed  CAS  Google Scholar 

  • Keith DE, Anton B, Murray SR, Zaki PA, Chu PC, Lissin DV, Monteillet-Agius G, Stewart PL, Evans CJ, von Zastrow M (1998) mu-Opioid receptor internalization: opiate drugs have differential effects on a conserved endocytic mechanism in vitro and in the mammalian brain. Mol Pharmacol 53(3):377–384

    PubMed  CAS  Google Scholar 

  • Kenakin TP (1997) Pharmacologic analysis of drug–receptor interaction. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Kenakin T (2007) Collateral efficacy in drug discovery: taking advantage of the good (allosteric) nature of 7TM receptors. Trends Pharmacol Sci 28(8):407–415

    Article  PubMed  CAS  Google Scholar 

  • Kent RS, De Lean A, Lefkowitz RJ (1980) A quantitative analysis of beta-adrenergic receptor interactions: resolution of high and low affinity states of the receptor by computer modeling of ligand binding data. Mol Pharmacol 17(1):14–23

    PubMed  CAS  Google Scholar 

  • Kilts JD, Connery HS, Arrington EG, Lewis MM, Lawler CP, Oxford GS, O’Malley KL, Todd RD, Blake BL, Nichols DE, Mailman RB (2002) Functional selectivity of dopamine receptor agonists. II. Actions of dihydrexidine in D2L receptor-transfected MN9D cells and pituitary lactotrophs. J Pharmacol Exp Ther 301(3):1179–1189

    Article  PubMed  CAS  Google Scholar 

  • Kostenis E (2002) Potentiation of GPCR-signaling via membrane targeting of G protein alpha subunits. J Recept Signal Transduct Res 22(1–4):267–281

    PubMed  CAS  Google Scholar 

  • Kurrasch-Orbaugh DM, Parrish JC, Watts VJ, Nichols DE (2003) A complex signaling cascade links the serotonin2A receptor to phospholipase A2 activation: the involvement of MAP kinases. J Neurochem 86(4):980–991

    Article  PubMed  CAS  Google Scholar 

  • Leff P, Scaramellini C, Law C, McKechnie K (1997) A three-state receptor model of agonist action. Trends Pharmacol Sci 18(10):355–362

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Caron MG, Michel T, Stadel JM (1982) Mechanisms of hormone receptor-effector coupling: the beta-adrenergic receptor and adenylate cyclase. Fed Proc 41(10):2664–2670

    PubMed  CAS  Google Scholar 

  • Lembeck F (1999) Epibatidine: high potency and broad spectrum activity on neuronal and neuromuscular nicotinic acetylcholine receptors. Naunyn Schmiedebergs Arch Pharmacol 359(5):378–385

    Article  PubMed  CAS  Google Scholar 

  • Lustig KD, Conklin BR, Herzmark P, Taussig R, Bourne HR (1993) Type II adenylylcyclase integrates coincident signals from Gs, Gi, and Gq. J Biol Chem 268(19):13900–13905

    PubMed  CAS  Google Scholar 

  • Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F, Kawakatsu H, Owada K, Luttrell DK, Caron MG, Lefkowitz RJ (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor–Src protein kinase complexes. Science 283(5402):655–661

    Article  PubMed  CAS  Google Scholar 

  • Maguire ME, Van Arsdale PM, Gilman AG (1976) An agonist-specific effect of guanine nucleotides on binding to the beta adrenergic receptor. Mol Pharmacol 12(2):335–339

    PubMed  CAS  Google Scholar 

  • May LT, Avlani VA, Langmead CJ, Herdon HJ, Wood MD, Sexton PM, Christopoulos A (2007) Structure-function studies of allosteric agonism at M2 muscarinic acetylcholine receptors. Mol Pharmacol 72(2):463–476

    Article  PubMed  CAS  Google Scholar 

  • McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393(6683):333–339

    Article  PubMed  CAS  Google Scholar 

  • Mei L, Lai J, Yamamura HI, Roeske WR (1989) The relationship between agonist states of the M1 muscarinic receptor and the hydrolysis of inositol lipids in transfected murine fibroblast cells (B82) expressing different receptor densities. J Pharmacol Exp Ther 251(1):90–97

    PubMed  CAS  Google Scholar 

  • Michal P, Lysikova M, Tucek S (2001) Dual effects of muscarinic M(2) acetylcholine receptors on the synthesis of cyclic AMP in CHO cells: dependence on time, receptor density and receptor agonists. Br J Pharmacol 132(6):1217–1228

    Article  PubMed  CAS  Google Scholar 

  • Michal P, El Fakahany EE, Dolezal V (2007) Muscarinic M2 receptors directly activate Gq/11 and Gs G-proteins. J Pharmacol Exp Ther 320:607–614

    Article  PubMed  CAS  Google Scholar 

  • Murad F, Chi YM, Rall TW, Sutherland EW (1962) Adenyl cyclase. III. The effect of catecholamines and choline esters on the formation of adenosine 3′,5′-phosphate by preparations from cardiac muscle and liver. J Biol Chem 237:1233–1238

    PubMed  CAS  Google Scholar 

  • Neubig RR (2002) Regulators of G protein signaling (RGS proteins): novel central nervous system drug targets. J Pept Res 60(6):312–316

    Article  PubMed  CAS  Google Scholar 

  • Olianas MC, Onali P (1993) Synergistic interaction of muscarinic and opioid receptors with GS-linked neurotransmitter receptors to stimulate adenylyl cyclase activity of rat olfactory bulb. J Neurochem 61(6):2183–2190

    Article  PubMed  CAS  Google Scholar 

  • Olianas MC, Onali P (1996a) Characterization of the G protein involved in the muscarinic stimulation of adenylyl cyclase of rat olfactory bulb. Mol Pharmacol 49(1):22–29

    PubMed  CAS  Google Scholar 

  • Olianas MC, Onali P (1996b) Stimulation of guanosine 5′-O-(3-[35S] thiotriphosphate) binding by cholinergic muscarinic receptors in membranes of rat olfactory bulb. J Neurochem 67(6):2549–2556

    PubMed  CAS  Google Scholar 

  • Olianas MC, Adem A, Karlsson E, Onali P (1998a) Identification of rat brain muscarinic M4 receptors coupled to cyclic AMP using the selective antagonist muscarinic toxin 3. Eur J Pharmacol 357(2–3):235–242

    Article  PubMed  CAS  Google Scholar 

  • Olianas MC, Ingianni A, Onali P (1998b) Role of G protein betagamma subunits in muscarinic receptor-induced stimulation and inhibition of adenylyl cyclase activity in rat olfactory bulb. J Neurochem 70(6):2620–2627

    Article  PubMed  CAS  Google Scholar 

  • Onali P, Olianas MC (1990) Positive coupling of cholinergic muscarinic receptors to adenylate cyclase activity in membranes of rat olfactory bulb. Naunyn Schmiedebergs Arch Pharmacol 342(1):107–109

    Article  PubMed  CAS  Google Scholar 

  • Onrust R, Herzmark P, Chi P, Garcia PD, Lichtarge O, Kingsley C, Bourne HR (1997) Receptor and betagamma binding sites in the alpha subunit of the retinal G protein transducin. Science 275(5298):381–384

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Post SR, Insel PA (2000a) Stoichiometry and compartmentation in G protein-coupled receptor signaling: implications for therapeutic interventions involving G(s). J Pharmacol Exp Ther 294(2):407–412

    PubMed  CAS  Google Scholar 

  • Ostrom RS, Violin JD, Coleman S, Insel PA (2000b) Selective enhancement of beta-adrenergic receptor signaling by overexpression of adenylyl cyclase type 6: colocalization of receptor and adenylyl cyclase in caveolae of cardiac myocytes. Mol Pharmacol 57(5):1075–1079

    PubMed  CAS  Google Scholar 

  • Paton WD, Waud DR (1967) The margin of safety of neuromuscular transmission. J Physiol 191(1):59–90

    PubMed  CAS  Google Scholar 

  • Peralta EG, Ashkenazi A, Winslow JW, Ramachandran J, Capon DJ (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334(6181):434–437

    Article  PubMed  CAS  Google Scholar 

  • Raftery MA, Hunkapiller MW, Strader CD, Hood LE (1980) Acetylcholine receptor: complex of homologous subunits. Science 208(4451):1454–1456

    Article  PubMed  CAS  Google Scholar 

  • Roberts DJ, Waelbroeck M (2004) G protein activation by G protein coupled receptors: ternary complex formation or catalyzed reaction? Biochem Pharmacol 68(5):799–806

    Article  PubMed  CAS  Google Scholar 

  • Rodbell M, Krans HM, Pohl SL, Birnbaumer L (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. 3. Binding of glucagon: method of assay and specificity. J Biol Chem 246(6):1861–1871

    PubMed  CAS  Google Scholar 

  • Skrzydelski D, Lhiaubet AM, Lebeau A, Forgez P, Yamada M, Hermans E, Rostene W, Pelaprat D (2003) Differential involvement of intracellular domains of the rat NTS1 neurotensin receptor in coupling to G proteins: a molecular basis for agonist-directed trafficking of receptor stimulus. Mol Pharmacol 64(2):421–429

    Article  PubMed  CAS  Google Scholar 

  • Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, Journot L (1993) Differential signal transduction by five splice variants of the PACAP receptor. Nature 365(6442):170–175

    Article  PubMed  CAS  Google Scholar 

  • Stephenson RP (1956) A modification of receptor theory. Br J Pharmacol 11:379–393

    CAS  Google Scholar 

  • Sunahara RK, Dessauer CW, Gilman AG (1996) Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 36:461–480

    Article  PubMed  CAS  Google Scholar 

  • Tang WJ, Gilman AG (1991) Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits. Science 254(5037):1500–1503

    Article  PubMed  CAS  Google Scholar 

  • Trzeciakowski JP (1999) Stimulus amplification, efficacy, and the operational model. Part I. Binary complex occupancy mechanisms. J Theor Biol 198(3):329–346

    Article  PubMed  CAS  Google Scholar 

  • Urban JD, Clarke WP, von Zastrow M, Nichols DE, Kobilka B, Weinstein H, Javitch JA, Roth BL, Christopoulos A, Sexton PM, Miller KJ, Spedding M, Mailman RB (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320(1):1–13

    Article  PubMed  CAS  Google Scholar 

  • Varga EV, Stropova D, Rubenzik M, Wang M, Landsman RS, Roeske WR, Yamamura HI (1998) Identification of adenylyl cyclase isoenzymes in CHO and B82 cells. Eur J Pharmacol 348(2–3):R1–2

    Article  PubMed  CAS  Google Scholar 

  • Vogel WK, Mosser VA, Bulseco DA, Schimerlik MI (1995) Porcine m2 muscarinic acetylcholine receptor-effector coupling in Chinese hamster ovary cells. J Biol Chem 270(26):15485–15493

    Article  PubMed  CAS  Google Scholar 

  • Waelbroeck M (1999) Kinetics versus equilibrium: the importance of GTP in GPCR activation. Trends Pharmacol Sci 20(12):477–481

    Article  PubMed  CAS  Google Scholar 

  • Waelbroeck M, Boufrahi L, Swillens P (1997) Seven helix receptors are enzymes catalysing G protein activation [What is the Agonist Kact?]. J Theor Biol 187(1):15–37

    Article  PubMed  CAS  Google Scholar 

  • Weber G (1975) Energetics of ligand binding to proteins. Adv Prot Chem 29:1–83

    Article  CAS  Google Scholar 

  • Zahniser NR, Molinoff PB (1978) Effect of guanine nucleotides on striatal dopamine receptors. Nature 275(5679):453–455

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The writing of this review and some of the work described were supported by NIH grants GM69829 and HL079166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick J. Ehlert.

Appendix

Appendix

Ternary complex model with guanine nucleotide and two G proteins

The ternary complex model can be described at three hierarchical levels of analysis. The first level is described in terms of the observed dissociation constant of the agonist for a given receptor complex. This dissociation constant has units of molarity, and it represents the concentration of agonist required for half-maximal formation of the receptor complex or state. The second level of analysis defines the relative abundances of the different types of receptor complexes (e.g., ARG 1) in terms of the microscopic affinity constants of these complexes. The third level of analysis defines the relative abundances of the different states of the receptor for each receptor complex described at the second level. For the second and third levels of analysis, the microscopic affinity constants have units of inverse molarity.

In this section, the ternary complex model for two G proteins is derived at the level of receptor complexes (level 2 analysis), whereas the subsequent section describes the model at the level of receptor states (level 3 analysis). The model represents a composite of two models, each including a single G protein like that is shown in Fig. 5. In the composite model, the receptor (R) can potentially interact with two G proteins (G 1 and G 2), but only one G protein can bind to the receptor at a given time. Hence, the G proteins compete for the receptor. The equilibrium constants are denoted in the same manner as that described in Fig. 5 but with an additional subscript to indicate to which G protein the parameter is associated. The microscopic affinity constants describing the binding of agonist (A) to various receptor complexes (R, RG 1, RG 2, RG 1 X, and RG 2 X; X denotes guanine nucleotide) are:

$$K_1 = \frac{{\left[ {AR} \right]}}{{\left[ A \right]\left[ R \right]}}$$
(21)
$$\alpha _1 K_1 = \frac{{\left[ {ARG_1 } \right]}}{{\left[ A \right]\left[ {RG_1 } \right]}}$$
(22)
$$\alpha _2 K_1 = \frac{{\left[ {ARG_2 } \right]}}{{\left[ A \right]\left[ {RG_2 } \right]}}$$
(23)
$$\alpha _1 \gamma _1 K_1 = \frac{{\left[ {ARG_1 X} \right]}}{{\left[ A \right]\left[ {RG_1 X} \right]}}$$
(24)
$$\alpha _2 \gamma _2 K_1 = \frac{{\left[ {ARG_2 X} \right]}}{{\left[ A \right]\left[ {RG_2 X} \right]}}$$
(25)

The microscopic affinity constants of guanine nucleotide (X) for the various complexes of G protein are given by:

$$K_{31} = \frac{{\left[ {G_1 X} \right]}}{{\left[ X \right]\left[ {G_1 } \right]}}$$
(26)
$$K_{32} = \frac{{\left[ {G_2 X} \right]}}{{\left[ X \right]\left[ {G_2 } \right]}}$$
(27)
$$\beta _1 K_{31} = \frac{{\left[ {RG_1 X} \right]}}{{\left[ X \right]\left[ {RG_1 } \right]}}$$
(28)
$$\beta _2 K_{32} = \frac{{\left[ {RG_2 X} \right]}}{{\left[ X \right]\left[ {RG_2 } \right]}}$$
(29)
$$\beta _1 \gamma _1 K_{31} = \frac{{\left[ {ARG_1 X} \right]}}{{\left[ X \right]\left[ {ARG_1 } \right]}}$$
(30)
$$\beta _2 \gamma _2 K_{32} = \frac{{\left[ {ARG_2 X} \right]}}{{\left[ X \right]\left[ {ARG_2 } \right]}}$$
(31)

The interactions between the receptor and the two G proteins are described by the following equilibria. These have been normalized relative to the total receptor concentration ([R T]) because the concentrations of the receptor and G protein are fixed at their local membrane concentrations.

$$K_{21} = \frac{{\left[ {RG_1 } \right]\left[ {R_{\text{T}} } \right]}}{{\left[ R \right]\left[ {G_1 } \right]}}$$
(32)
$$K_{22} = \frac{{\left[ {RG_2 } \right]\left[ {R_{\text{T}} } \right]}}{{\left[ R \right]\left[ {G_2 } \right]}}$$
(33)
$$\alpha _1 K_{21} = \frac{{\left[ {ARG_1 } \right]\left[ {R_{\text{T}} } \right]}}{{\left[ {AR} \right]\left[ {G_1 } \right]}}$$
(34)
$$\alpha _2 K_{22} = \frac{{\left[ {ARG_2 } \right]\left[ {R_{\text{T}} } \right]}}{{\left[ {AR} \right]\left[ {G_2 } \right]}}$$
(35)
$$\beta _1 K_{21} = \frac{{\left[ {RG_1 X} \right]\left[ {R_{\text{T}} } \right]}}{{\left[ R \right]\left[ {G_1 X} \right]}}$$
(36)
$$\beta _2 K_{22} = \frac{{\left[ {RG_2 X} \right]\left[ {R_{\text{T}} } \right]}}{{\left[ R \right]\left[ {G_2 X} \right]}}$$
(37)
$$\alpha _1 \beta _1 \gamma _1 K_{21} = \frac{{\left[ {ARG_1 X} \right]\left[ {R_{\text{T}} } \right]}}{{\left[ {AR} \right]\left[ {G_1 X} \right]}}$$
(38)
$$\alpha _2 \beta _2 \gamma _2 K_{22} = \frac{{\left[ {ARG_2 X} \right]\left[ {R_{\text{T}} } \right]}}{{\left[ {AR} \right]\left[ {G_2 X} \right]}}$$
(39)

The following conservation of mass equations apply:

$$\begin{aligned}\left[ {R_{\text{T}} } \right] = \left[ R \right] + \left[ {AR} \right] + \left[ {RG_1 } \right] + \left[ {RG_2 } \right] + \left[ {ARG_1 } \right] + \left[ {ARG_2 } \right] \\+ \left[ {RG_1 X} \right] + \left[ {RG_2 X} \right] + \left[ {ARG_1 X} \right] + \left[ {ARG_2 X} \right] \\ \end{aligned} $$
(40)
$$\left[ {G_{1{\text{T}}} } \right] = \left[ {G_1 } \right] + \left[ {G_1 X} \right] + \left[ {RG_1 } \right] + \left[ {ARG_1 } \right] + \left[ {RG_1 X} \right] + \left[ {ARG_1 X} \right]$$
(41)
$$\left[ {G_{2T} } \right] = \left[ {G_2 } \right] + \left[ {G_2 X} \right] + \left[ {RG_2 } \right] + \left[ {ARG_2 } \right] + \left[ {RG_2 X} \right] + \left[ {ARG_2 X} \right]$$
(42)

In these equations, G 1T and G 2T denote the total concentrations of the two different G proteins. The constants described above completely define the model, and these parameters can be used to derive the equation for the binding of A to the receptor, which is:

$$\left[ {AR} \right] + \left[ {ARG_1 } \right] + \left[ {ARG_2 } \right] + \left[ {ARG_1 X} \right] + \left[ {ARG_2 X} \right] = \frac{{\left[ A \right]\left[ {R_{\text{T}} } \right]}}{{\left[ A \right] + K_{{\text{obs}}} }}$$
(43)

In this equation, K obs denotes the observed dissociation constant of the agonist. The K obs is defined in terms of the parameters of the ternary complex model as shown in the next equation. In solving for K obs, depletion of the free concentration of G protein in the membrane as it binds to the receptor can be taken into account. This calculation, however, is unnecessary when there is an excess of G protein or when the concentration of guanine nucleotide is high. These are the conditions explored in this manuscript, so the requisite mathematics for G protein depletion are not described. Regardless, these mathematics are simple when there is one G protein; one has only to derive the roots to a quadratic equation with simple coefficients (see Ehlert 1985). When there are two G proteins; the analogous calculation requires solving the roots of a quartic equation with very complex coefficients, which is feasible. The resulting solution requires several pages of equations to describe, however. Because the condition of excess guanine nucleotide and G protein is accurately modeled without consideration for G protein depletion, these complex mathematics are not shown here.

When there is excess guanine nucleotide and G protein, K obs is defined as:

$$K_{{\text{obs}}} = \frac{{1 + K_{21} \frac{{G_{1{\text{T}}} }}{{R_{\text{T}} }}\left( {1 + X\beta _1 K_{31} } \right) + K_{22} \frac{{G_{2{\text{T}}} }}{{R_{\text{T}} }}\left( {1 + \beta _2 K_{32} X} \right)}}{{K_1 \left( {1 + \alpha _1 K_{21} \frac{{G_{1{\text{T}}} }}{{R_{\text{T}} }}\left( {1 + X\beta _1 \gamma _1 K_{31} } \right)} \right) + \alpha _2 K_1 K_{22} \frac{{G_{2{\text{T}}} }}{{R_{\text{T}} }}\left( {1 + X\beta _2 \gamma _2 K_{32} } \right)}}$$
(44)

The equations describing the amount A bound in the form of quaternary complex (agonist–receptor–G protein–guanine nucleotide; ARGX) for the two different G proteins are:

$$\left[ {ARG_1 X} \right] = \frac{{\left[ A \right]R_{\text{T}} }}{{\left[ A \right] + K_{ARG_1 X} }}$$
(45)
$$\left[ {ARG_2 X} \right] = \frac{{\left[ A \right]R_{\text{T}} }}{{\left[ A \right] + K_{ARG_2 X} }}$$
(46)

In these equations, K ARG1X and K ARG2X denote the observed dissociation constants of the ARG 1 X and ARG 2 X complexes, respectively. For the reasons described above, these constants are defined without consideration for depletion of the free G protein concentrations in the membrane:

$$K_{ARG_1 X} = \frac{{1 + \left[ A \right]K_1 + K_{21} \frac{{G_{1{\text{T}}} }}{{R_{\text{T}} }}\left( {1 + \left[ A \right]\alpha _1 K_1 + X\beta _1 K_{31} } \right) + K_{22} \frac{{G_{2{\text{T}}} }}{{R_{\text{T}} }}\left( {1 + \left[ A \right]\alpha _2 K_1 + X\beta _2 K_{32} + \left[ A \right]X\alpha _2 \beta _2 \gamma _2 K_1 K_{32} } \right)}}{{\frac{{G_{1{\text{T}}} }}{{R_{\text{T}} }}\left( {X\alpha _1 \beta _1 \gamma _1 K_1 K_{21} K_{31} } \right)}}$$
(47)
$$K_{{ARG_{2} X}} = \frac{{1 + {\left[ A \right]}K_{1} + K_{{21}} \frac{{G_{{1{\text{T}}}} }}{{R_{{\text{T}}} }}{\left( {1 + {\left[ A \right]}\alpha _{1} K_{1} + X\beta _{1} K_{{31}} } \right)} + K_{{22}} \frac{{G_{{2{\text{T}}}} }}{{R_{{\text{T}}} }}{\left( {1 + {\left[ A \right]}\alpha _{2} K_{1} + X\beta _{2} K_{{32}} + {\left[ A \right]}X\alpha _{2} \beta _{2} \gamma _{2} K_{1} K_{{32}} } \right)}}}{{\frac{{G_{{1{\text{T}}}} }}{{R_{{\text{T}}} }}{\left( {X\alpha _{1} \beta _{1} \gamma _{1} K_{1} K_{{21}} K_{{31}} } \right)}}}$$
(48)

Conformational analysis

It is assumed that there are three states of the receptor—a ground state (R s) and two active states (\(R_{\text{s}}^* \) and \(R_{\text{s}}^{**} \)). In the model, \(R_{\text{s}}^* \) interacts preferentially with G 1, and \(R_{\text{s}}^{**} \) interacts preferentially with G 2. Each receptor complex (e.g., AR) described in the previous section can be divided into three components representing the ground (AR s) and two active states of the receptor (\(AR_{\text{s}}^* \) and \(AR_{\text{s}}^{**} \)). This section describes how to resolve each ARG 1 X and ARG 2 X complex into the two active states and how to define the various parameters of the level two analysis (α, β, γ, K 1, K 2, and K 3) in terms of the microscopic affinity constants of the various states of the receptor.

Each receptor state represents a unique structure with a unique affinity constant, independent of the nature other proteins in the complex. The various microscopic constants are defined as:

$$K_{\text{a}} = \frac{{\left[ {AR_{\text{s}} } \right]}}{{\left[ A \right]\left[ {R_{\text{s}} } \right]}} = \frac{{\left[ {AR_{\text{s}} G_1 } \right]}}{{\left[ A \right]\left[ {R_{\text{s}} G_1 } \right]}} = \frac{{\left[ {AR_{\text{s}} G_1 X} \right]}}{{\left[ A \right]\left[ {R_{\text{s}} G_1 X} \right]}} = \frac{{\left[ {AR_{\text{s}} G_2 } \right]}}{{\left[ A \right]\left[ {R_{\text{s}} G_2 } \right]}} = \frac{{\left[ {AR_{\text{s}} G_2 X} \right]}}{{\left[ A \right]\left[ {R_{\text{s}} G_2 X} \right]}}$$
(49)
$$K_{\text{b}} = \frac{{\left[ {AR_{\text{s}}^* } \right]}}{{\left[ A \right]\left[ {R_{\text{s}}^* } \right]}} = \frac{{\left[ {AR_{\text{s}}^* G_1 } \right]}}{{\left[ A \right]\left[ {R_{\text{s}}^* G_1 } \right]}} = \frac{{\left[ {AR_{\text{s}}^* G_1 X} \right]}}{{\left[ A \right]\left[ {R_{\text{s}}^* G_1 X} \right]}} = \frac{{\left[ {AR_{\text{s}}^* G_2 } \right]}}{{\left[ A \right]\left[ {R_{\text{s}}^* G_2 } \right]}} = \frac{{\left[ {AR_{\text{s}}^* G_2 X} \right]}}{{\left[ A \right]\left[ {R_{\text{s}}^* G_2 X} \right]}}$$
(50)
$$K_{\text{c}} = \frac{{\left[ {AR_{\text{s}}^{**} } \right]}}{{\left[ A \right]\left[ {R_{\text{s}}^{**} } \right]}} = \frac{{\left[ {AR_{\text{s}}^{**} G_1 } \right]}}{{\left[ A \right]\left[ {R_{\text{s}}^{**} G_1 } \right]}} = \frac{{\left[ {AR_{\text{s}}^{**} G_1 X} \right]}}{{\left[ A \right]\left[ {R_{\text{s}}^{**} G_1 X} \right]}} = \frac{{\left[ {AR_{\text{s}}^{**} G_2 } \right]}}{{\left[ A \right]\left[ {R_{\text{s}}^{**} G_2 } \right]}} = \frac{{\left[ {AR_{\text{s}}^{**} G_2 X} \right]}}{{\left[ A \right]\left[ {R_{\text{s}}^{**} G_2 X} \right]}}$$
(51)
$$K_{\text{e}} = \frac{{\left[ {R_{\text{s}} G_1 } \right]}}{{\left[ {R_{\text{s}} } \right]\left[ {G_1 } \right]}} = \frac{{\left[ {AR_{\text{s}} G_1 } \right]}}{{\left[ {AR_{\text{s}} } \right]\left[ {G_1 } \right]}} = \frac{{\left[ {AR_{\text{s}} G_1 X} \right]}}{{\left[ {AR_{\text{s}} } \right]\left[ {G_1 X} \right]}} = \frac{{\left[ {R_{\text{s}} G_1 X} \right]}}{{\left[ {R_{\text{s}} } \right]\left[ {G_1 X} \right]}}$$
(52)
$$K_{\text{f}} = \frac{{\left[ {R_{\text{s}} G_2 } \right]}}{{\left[ {R_{\text{s}} } \right]\left[ {G_2 } \right]}} = \frac{{\left[ {AR_{\text{s}} G_2 } \right]}}{{\left[ {AR_{\text{s}} } \right]\left[ {G_2 } \right]}} = \frac{{\left[ {AR_{\text{s}} G_2 X} \right]}}{{\left[ {AR_{\text{s}} } \right]\left[ {G_2 X} \right]}} = \frac{{\left[ {R_{\text{s}} G_2 X} \right]}}{{\left[ {R_{\text{s}} } \right]\left[ {G_2 X} \right]}}$$
(53)
$$K_{\text{g}} = \frac{{\left[ {R_{\text{s}}^* G_1 } \right]}}{{\left[ {R_{\text{s}}^* } \right]\left[ {G_1 } \right]}} = \frac{{\left[ {AR_{\text{s}}^* G_1 } \right]}}{{\left[ {AR_{\text{s}}^* } \right]\left[ {G_1 } \right]}} = \frac{{\left[ {AR_{\text{s}}^* G_1 X} \right]}}{{\left[ {AR_{\text{s}}^* } \right]\left[ {G_1 X} \right]}} = \frac{{\left[ {R_{\text{s}}^* G_1 X} \right]}}{{\left[ {R_{\text{s}}^* } \right]\left[ {G_1 X} \right]}}$$
(54)
$$K_{\text{h}} = \frac{{\left[ {R_{\text{s}}^* G_2 } \right]}}{{\left[ {R_{\text{s}}^* } \right]\left[ {G_2 } \right]}} = \frac{{\left[ {AR_{\text{s}}^* G_2 } \right]}}{{\left[ {A^* R_{\text{s}} } \right]\left[ {G_2 } \right]}} = \frac{{\left[ {AR_{\text{s}}^* G_2 X} \right]}}{{\left[ {A^* R_{\text{s}} } \right]\left[ {G_2 X} \right]}} = \frac{{\left[ {R_{\text{s}}^* G_2 X} \right]}}{{\left[ {R_{\text{s}}^* } \right]\left[ {G_2 X} \right]}}$$
(55)
$$K_{\text{i}} = \frac{{\left[ {R_{\text{s}}^{**} G_1 } \right]}}{{\left[ {R_{\text{s}}^{**} } \right]\left[ {G_1 } \right]}} = \frac{{\left[ {AR_{\text{s}}^{**} G_1 } \right]}}{{\left[ {AR_{\text{s}}^{**} } \right]\left[ {G_1 } \right]}} = \frac{{\left[ {AR_{\text{s}}^{**} G_1 X} \right]}}{{\left[ {AR_{\text{s}}^{**} } \right]\left[ {G_1 X} \right]}} = \frac{{\left[ {R_{\text{s}}^{**} G_1 X} \right]}}{{\left[ {R_{\text{s}}^{**} } \right]\left[ {G_1 X} \right]}}$$
(56)
$$K_{\text{j}} = \frac{{\left[ {R_{\text{s}}^{**} G_2 } \right]}}{{\left[ {R_{\text{s}}^{**} } \right]\left[ {G_2 } \right]}} = \frac{{\left[ {AR_{\text{s}}^{**} G_2 } \right]}}{{\left[ {AR_{\text{s}}^{**} } \right]\left[ {G_2 } \right]}} = \frac{{\left[ {AR_{\text{s}}^{**} G_2 X} \right]}}{{\left[ {AR_{\text{s}}^{**} } \right]\left[ {G_2 X} \right]}} = \frac{{\left[ {R_{\text{s}}^{**} G_2 X} \right]}}{{\left[ {R_{\text{s}}^{**} } \right]\left[ {G_2 X} \right]}}$$
(57)
$$K_{\text{k}} = \frac{{\left[ {G_1 X} \right]}}{{\left[ {G_1 } \right]\left[ X \right]}} = \frac{{\left[ {R_{\text{s}} G_1 X} \right]}}{{\left[ {R_{\text{s}} G_1 } \right]\left[ X \right]}} = \frac{{\left[ {AR_{\text{s}} G_1 X} \right]}}{{\left[ {AR_{\text{s}} G_1 } \right]\left[ X \right]}}$$
(58)
$$K_{\text{l}} = \frac{{\left[ {G_2 X} \right]}}{{\left[ {G_2 } \right]\left[ X \right]}} = \frac{{\left[ {R_{\text{s}} G_2 X} \right]}}{{\left[ {R_{\text{s}} G_2 } \right]\left[ X \right]}} = \frac{{\left[ {AR_{\text{s}} G_2 X} \right]}}{{\left[ {AR_{\text{s}} G_2 } \right]\left[ X \right]}}$$
(59)
$$K_{\text{m}} = \frac{{\left[ {R_{\text{s}}^* G_1 X} \right]}}{{\left[ {R_{\text{s}}^* G_1 } \right]\left[ X \right]}} = \frac{{\left[ {AR_{\text{s}}^* G_1 X} \right]}}{{\left[ {AR_{\text{s}}^* G_1 } \right]\left[ X \right]}}$$
(60)
$$K_{\text{n}} = \frac{{\left[ {R_{\text{s}}^* G_2 X} \right]}}{{\left[ {R_{\text{s}}^* G_2 } \right]\left[ X \right]}} = \frac{{\left[ {AR_{\text{s}}^* G_2 X} \right]}}{{\left[ {AR_{\text{s}}^* G_2 } \right]\left[ X \right]}}$$
(61)
$$K_{\text{o}} = \frac{{\left[ {R_{\text{s}}^{**} G_1 X} \right]}}{{\left[ {R_{\text{s}}^{**} G_1 } \right]\left[ X \right]}} = \frac{{\left[ {AR_{\text{s}}^{**} G_1 X} \right]}}{{\left[ {AR_{\text{s}}^{**} G_1 } \right]\left[ X \right]}}$$
(62)
$$K_{\text{p}} = \frac{{\left[ {R_{\text{s}}^{**} G_2 X} \right]}}{{\left[ {R_{\text{s}}^{**} G_2 } \right]\left[ X \right]}} = \frac{{\left[ {AR_{\text{s}}^{**} G_2 X} \right]}}{{\left[ {AR_{\text{s}}^{**} G_2 } \right]\left[ X \right]}}$$
(63)
$$K_{\text{q}} = \frac{{R_{\text{s}}^* }}{{R_{\text{s}} }}$$
(64)
$$K_{\text{r}} = \frac{{R_{\text{s}}^{**} }}{{R_{\text{s}} }}$$
(65)

It is possible to define the level 2 parameters of the ternary complex model for two G proteins in terms of the microscopic constants of the receptor states:

$$K_1 = \frac{{K_{\text{a}} + K_{\text{b}} K_{\text{q}} + K_{\text{c}} K_{\text{r}} }}{{1 + K_{\text{q}} + K_{\text{r}} }}$$
(66)
$$K_{21} = \frac{{K_{\text{e}} {\text{ + }}K_{\text{g}} K_{\text{q}} {\text{ + }}K_{\text{i}} K_{\text{r}} }}{{{\text{1 + }}K_{\text{q}} {\text{ + }}K_{\text{r}} }}$$
(67)
$$K_{22} = \frac{{K_{\text{f}} {\text{ + }}K_{\text{h}} K_{\text{q}} {\text{ + }}K_{\text{j}} K_{\text{r}} }}{{{\text{1 + }}K_{\text{q}} {\text{ + }}K_{\text{r}} }}$$
(68)
$$K_{31} = K_{\text{k}} $$
(69)
$$K_{32} = K_{\text{l}} $$
(70)
$$\alpha _1 = \frac{{\left( {K_{\text{a}} K_{\text{e}} + K_{\text{b}} K_{\text{g}} K_{\text{q}} + K_{\text{c}} K_{\text{i}} K_{\text{r}} } \right)\left( {1 + K_{\text{q}} + K_{\text{r}} } \right)}}{{\left( {K_{\text{e}} + K_{\text{g}} K_{\text{q}} + K_{\text{i}} K_{\text{r}} } \right)\left( {K_{\text{a}} + K_{\text{b}} K_{\text{q}} + K_{\text{c}} K_{\text{r}} } \right)}}$$
(71)
$$\alpha _2 = \frac{{\left( {K_{\text{a}} K_{\text{f}} + K_{\text{b}} K_{\text{h}} K_{\text{q}} + K_{\text{c}} K_{\text{j}} K_{\text{r}} } \right)\left( {1 + K_{\text{q}} + K_{\text{r}} } \right)}}{{\left( {K_{\text{f}} + K_{\text{h}} K_{\text{q}} + K_{\text{j}} K_{\text{r}} } \right)\left( {K_{\text{a}} + K_{\text{b}} K_{\text{q}} + K_{\text{c}} K_{\text{r}} } \right)}}$$
(72)
$$\beta _1 = \frac{{K_{\text{e}} K_{\text{k}} + K_{\text{g}} K_{\text{m}} K_{\text{q}} + K_{\text{i}} K_{\text{o}} K_{\text{r}} }}{{\left( {K_{\text{e}} + K_{\text{g}} K_{\text{q}} + K_{\text{i}} K_{\text{r}} } \right)K_{\text{k}} }}$$
(73)
$$\beta _2 = \frac{{K_{\text{f}} K_{\text{l}} + K_{\text{h}} K_{\text{n}} K_{\text{q}} + K_{\text{j}} K_{\text{p}} K_{\text{r}} }}{{\left( {K_{\text{f}} + K_{\text{h}} K_{\text{q}} + K_{\text{j}} K_{\text{r}} } \right)K_{\text{l}} }}$$
(74)
$$\gamma _1 = \frac{{\left( {K_{\text{a}} K_{\text{e}} K_{\text{k}} {\text{ + }}K_{\text{b}} K_{\text{g}} K_{\text{m}} K_{\text{q}} {\text{ + }}K_{\text{c}} K_{\text{i}} K_{\text{o}} K_{\text{r}} } \right)\left( {K_{\text{e}} {\text{ + }}K_{\text{g}} K_{\text{q}} {\text{ + }}K_{\text{i}} K_{\text{r}} } \right)}}{{\left( {K_{\text{e}} K_{\text{k}} {\text{ + }}K_{\text{g}} K_{\text{m}} K_{\text{q}} {\text{ + }}K_{\text{i}} K_{\text{o}} K_{\text{r}} } \right)\left( {K_{\text{a}} K_{\text{e}} {\text{ + }}K_{\text{b}} K_{\text{g}} K_{\text{q}} {\text{ + }}K_{\text{c}} K_{\text{i}} K_{\text{r}} } \right)}}$$
(75)
$$\gamma _2 = \frac{{\left( {K_{\text{a}} K_{\text{f}} K_{\text{l}} {\text{ + }}K_{\text{b}} K_{\text{h}} K_{\text{n}} K_{\text{q}} {\text{ + }}K_{\text{c}} K_{\text{j}} K_{\text{p}} K_{\text{r}} } \right)\left( {K_{\text{f}} {\text{ + }}K_{\text{h}} K_{\text{q}} {\text{ + }}K_{\text{j}} K_{\text{r}} } \right)}}{{\left( {K_{\text{f}} K_{\text{l}} {\text{ + }}K_{\text{h}} K_{\text{n}} K_{\text{q}} {\text{ + }}K_{\text{j}} K_{\text{p}} K_{\text{r}} } \right)\left( {K_{\text{a}} K_{\text{f}} {\text{ + }}K_{\text{b}} K_{\text{h}} K_{\text{q}} {\text{ + }}K_{\text{c}} K_{\text{j}} K_{\text{r}} } \right)}}$$
(76)

Using the microscopic affinity constants for the different receptor states, it is possible to define the equilibrium between the inactive from of the quaternary complex (AR s GX) and the two active forms (\(AR_{\text{s}}^* GX\) and \(AR_{\text{s}}^{**} GX\)):

$$\frac{{\left[ {AR_{\text{s}}^* G_1 X} \right]}}{{\left[ {AR_{\text{s}} G_1 X} \right]}} = \frac{{K_{\text{b}} K_{\text{g}} K_{\text{m}} K_{\text{q}} }}{{K_{\text{a}} K_{\text{e}} K_{\text{k}} }}$$
(77)
$$\frac{{\left[ {AR_{\text{s}}^{**} G_2 X} \right]}}{{\left[ {AR_{\text{s}} G_2 X} \right]}} = \frac{{K_{\text{c}} K_{\text{j}} K_{\text{p}} K_{\text{r}} }}{{K_{\text{a}} K_{\text{f}} K_{\text{l}} }}$$
(78)

Using these relationships, it is possible to estimate the proportion of bound drug in the form of the two active quaternary complexes as:

$$AR_{\text{s}}^* G_1 X = \frac{1}{{1 + \frac{{K_{\text{a}} K_{\text{e}} K_{\text{k}} }}{{K_{\text{b}} K_{\text{g}} K_{\text{m}} K_{\text{q}} }}}} \times \frac{{\left[ A \right]R_{\text{T}} }}{{\left[ A \right] + K_{ARG_1 X} }}$$
(79)
$$AR_{\text{s}}^{**} G_{21} X = \frac{1}{{1 + \frac{{K_{\text{a}} K_{\text{f}} K_{\text{l}} }}{{K_{\text{c}} K_{\text{j}} K_{\text{p}} K_{\text{r}} }}}} \times \frac{{\left[ A \right]R_{\text{T}} }}{{\left[ A \right] + K_{ARG_2 X} }}$$
(80)

in which K ARG1X and K ARG2X are defined above in Eq. 47 and 48.

Estimation of agonist RAi values

As described previously (Griffin et al. 2007), the estimation of RAi is simple when the E max values of the agonists are the same (i.e., RAi value equals the potency ratio) or when the Hill slopes of the agonist concentration–response curves are equal to 1 (see Eq. 17). When the E max values of the agonists are different and the Hill slopes of the agonist–concentration response curves differ from 1, global nonlinear regression analysis is required (Griffin et al. 2007). In this section, specific instructions are given for this analysis. If the concentration–response curves are consistent with a logistic equation, then the operational model can be used to estimate RAi; otherwise, a null method can be used (see below).

Use of the operational model to estimate RAi

The use of the operational model will be explained using the data in Fig. 11, which shows the activity of muscarinic agonists for eliciting contraction of the guinea pig ileum. The analysis requires the concentration–response curve of the standard agonist and one or more test agonists. The standard agonist is defined as the agonist with the largest E max value (carbachol). The RAi values of pilocarpine and McN-A-343 are estimated relative to carbachol. The first step in the analysis involves estimating the E max and EC50 values of the concentration–response curves using nonlinear regression analysis with a logistic equation. This step can be easily done with Prism (GraphPad Software, San Diego, CA) using the variable-slope dose–response curve equation. For the data shown in Fig. 11, the log EC50 and E max values are: carbachol, −7.01 and 100%, pilocarpine, −6.05 and 69%, and McN-A-343, −5.23 and 62%, respectively. The log EC50 and E max values are then used to calculate initial parameter estimates for global nonlinear regression analysis. The parameters for global nonlinear regression analysis are (1) the logarithm of the observed dissociation constant (LOGK1) of the standard agonist, (2) the logarithm of the τ B K B value of the standard agonist (LOGR), (3) the logarithm of the observed dissociation constant of the test agonist (LOGK2), (4) the logarithm of the RAi value of the test agonist (LOGRA), (5) the maximum response of the system (M), and (6) the transducer slope factor (N) in the operational model. The theoretical basis for these parameters is described below. The equations for calculating the initial parameter estimates are given next. In these equations, the E max and log EC50 values of the different agonists are denoted by subscripts. If the standard agonist is a full agonist, then its dissociation constant is set to an arbitrarily high value (e.g., 10−1; see comment at the end of this section for situations in which the standard agonist is not a full agonist). The initial parameter estimates (parameter′) for carbachol are:

$${\text{LOGK}}1' = - 1$$
(81)
$${\text{LOGR'}} = - \log \left( {{\text{EC}}_{50 - {\text{carb}}} } \right)$$
(82)

For the first test agonist, pilocarpine, the initial parameter estimates are:

$${\text{LOGK}}2' = \log {\text{EC}}_{50 - {\text{pilocarpine}}} $$
(83)
$${\text{LOGRA'}} = \log \left( {\frac{{E_{\max - {\text{pilo}}} }}{{E_{\max - {\text{carb}}} }}} \right) + \log \left( {{\text{EC}}_{50 - {\text{carb}}} } \right) - \log \left( {{\text{EC}}_{50 - {\text{pilo}}} } \right)$$
(84)

The parameter estimates for the second test agonist, McN-A-343, are estimated similarly:

$$LOGK2' = \log {\text{EC}}_{50 - {\text{McN}}} $$
(85)
$${\text{LOGRA'}} = \log \left( {\frac{{E_{\max - {\text{McN}}} }}{{E_{\max - {\text{carb}}} }}} \right) + \log \left( {{\text{EC}}_{50 - {\text{carb}}} } \right) - \log \left( {{\text{EC}}_{50 - {\text{McN}}} } \right)$$
(86)

The initial estimates of the shared system parameters of the operational model are estimated as:

$$M' = E_{\max - {\text{carb}}} $$
(87)
$$N' = 1$$
(88)
Fig. 11
figure 11

Concentration–response curves of selected agonists for eliciting contraction of the isolated guinea pig ileum. The data are from Ehlert et al. (1999). Mean values ± SEM are shown. The theoretical curves represents the least squares fit of Eqs. 89 and 90 to the data

The next step involves estimating the RAi values of the two test agonists (pilocarpine and McN-A-343) by global nonlinear regression analysis of the concentration–response curves. In this analysis, Eq. 89 is fitted to the data for the standard agonist carbachol, and Eq. 90 is fitted to the data for the test agonists.

$${\text{response}} = \frac{{MX^N }}{{X^N + \frac{{\left( {X + 10^{{\text{LOGK}}1} } \right)^N }}{{\left( {10^{\left( {{\text{LOGK}}1 + {\text{LOGR}}} \right)} } \right)^N }}}}$$
(89)
$${\text{response}} = \frac{{MX^N }}{{X^N + \frac{{\left( {X + 10^{{\text{LOGK2}}} } \right)^N }}{{\left( {10^{\left( {{\text{LOGK2 + LOGR + LOGRA}}} \right)} } \right)^N }}}}$$
(90)

in which X denotes the concentration of the agonist. The theoretical basis for Eqs. 89 and 90 is described in Griffin et al. (2007). Specifically, these equations can be derived from Eq. 11 in Griffin et al. (2007) with the following substitutions for the standard agonist:

$${\text{LOGK1}} = \log \left( {K_A } \right)$$
(91)
$${\text{LOGR}} = \log \left( {\frac{{\tau _A }}{{K_A }}} \right)$$
(92)

The following substitutions for the test agonists:

$${\text{LOGK}}2 = \log \left( {K_B } \right)$$
(93)
$${\text{LOGRA}} = \frac{{\tau _B K_A }}{{\tau _A K_B }}$$
(94)

and the following substitutions for the operational model:

$$N = m$$
(95)
$$M = M_{sys} $$
(96)

In situations where the agonist concentration–response curves are decreasing, such as in agonist-mediated inhibition of forskolin-stimulated cAMP accumulation, the following equations are used for the standard agonist and test agonists, respectively, instead of Eqs. 89 and 90:

$${\text{response}} = B - \left( {\frac{{MX^N }}{{X^N + \frac{{\left( {X + 10^{{\text{LOGK1}}} } \right)^N }}{{\left( {10^{\left( {{\text{LOGK1}} + {\text{LOGR}}} \right)} } \right)^N }}}}} \right)$$
(97)
$${\text{response}} = B - \left( {\frac{{MX^N }}{{X^N + \frac{{\left( {X + 10^{{\text{LOGK1}}} } \right)^N }}{{\left( {10^{\left( {{\text{LOGK1}} + {\text{LOGR}} + {\text{LOGRA}}} \right)} } \right)^N }}}}} \right)$$
(98)

in which B denotes the estimate of the response measured in the absence of agonist. In the case of agonist-mediated inhibition of forskolin-stimulated cAMP accumulation, B represents the estimate of cAMP accumulation in the presence of forskolin and absence of agonist. For the remainder of this discussion, the data in Fig. 11 will be analyzed, which requires the use of an increasing equation for the concentration–response curve (i.e., Eqs. 89 and 90). For the RAi analysis, Eqs. 89 and 90 are fitted simultaneously to the concentration–response curves in Fig. 11, sharing the estimate of M and N among the curves and obtaining a unique estimate of LOGR for the standard agonist and unique estimates of LOGK2 and LOGRA for each test agonist. To explain how this process works, I describe how one can use a spreadsheet to do the analysis (see Fig. 12a):

  1. 1.

    The data are entered into a spreadsheet, with the log agonist concentrations entered in column A (cells A11–A24). The response values for each agonist are entered in column B (carbachol, cells B11–B18), E (pilocarpine, cells E13–E21), and H (McN-A-343, cells H16–H24).

  2. 2.

    The value (−1) to which the parameter LOGK1 is constrained as a constant is entered into cell C4.

  3. 3.

    The initial estimates of the shared parameters M (100) and N (1) are entered into cells C2 and C3, respectively. The values of these initial estimates are designated in Eqs. 87 and 88, respectively.

  4. 4.

    The initial estimate of LOGR for the standard agonist carbachol is entered into cell C5. The estimate (7) is calculated from Eq. 82.

  5. 5.

    The initial estimates for parameters LOGK2 and LOGRA for pilocarpine are entered into cells F4 and F5, respectively. These estimates (−6.05 and −1.11) are calculated from Eqs. 83 and 84, respectively. The corresponding estimates for McN-A-343 (−5.23 and −1.98) are entered into cells I4 and I5, respectively.

  6. 6.

    A modification of Eq. 89 is entered into column C, cells C11–C18 to generate the predicted response values for the standard agonist carbachol. The equation is modified so that the logarithm of the agonist concentration is the independent variable instead of the agonist concentration. The entry in cell C11 is:

    $$ = \$ {\text{C}}\$ 2*{{\left( {\left( {10^ \wedge \$ {\text{A}}11} \right)^ \wedge \$ {\text{C}}\$ 3} \right)} \mathord{\left/ {\vphantom {{\left( {\left( {10^ \wedge \$ {\text{A}}11} \right)^ \wedge \$ {\text{C}}\$ 3} \right)} {\left( {\left( {\left( {10^ \wedge \$ {\text{A}}11} \right)^ \wedge \$ {\text{C}}\$ 3} \right) + {{\left( {\left( {10^ \wedge \$ {\text{A}}11 + \left( {10^ \wedge \$ {\text{C}}\$ 4} \right)} \right)^ \wedge \$ {\text{C}}\$ 3} \right)} \mathord{\left/ {\vphantom {{\left( {\left( {10^ \wedge \$ {\text{A}}11 + \left( {10^ \wedge \$ {\text{C}}\$ 4} \right)} \right)^ \wedge \$ {\text{C}}\$ 3} \right)} {\left( {\left( {10^ \wedge \left( {\$ {\text{C}}\$ 4 + \$ {\text{C}}\$ 5} \right)} \right)^ \wedge \$ {\text{C}}\$ 3} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\left( {10^ \wedge \left( {\$ {\text{C}}\$ 4 + \$ {\text{C}}\$ 5} \right)} \right)^ \wedge \$ {\text{C}}\$ 3} \right)}}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\left( {\left( {10^ \wedge \$ {\text{A}}11} \right)^ \wedge \$ {\text{C}}\$ 3} \right) + {{\left( {\left( {10^ \wedge \$ {\text{A}}11 + \left( {10^ \wedge \$ {\text{C}}\$ 4} \right)} \right)^ \wedge \$ {\text{C}}\$ 3} \right)} \mathord{\left/ {\vphantom {{\left( {\left( {10^ \wedge \$ {\text{A}}11 + \left( {10^ \wedge \$ {\text{C}}\$ 4} \right)} \right)^ \wedge \$ {\text{C}}\$ 3} \right)} {\left( {\left( {10^ \wedge \left( {\$ {\text{C}}\$ 4 + \$ {\text{C}}\$ 5} \right)} \right)^ \wedge \$ {\text{C}}\$ 3} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\left( {10^ \wedge \left( {\$ {\text{C}}\$ 4 + \$ {\text{C}}\$ 5} \right)} \right)^ \wedge \$ {\text{C}}\$ 3} \right)}}} \right)}}$$

    The symbol $ is used to restrict the address of a cell so that the function entered in C11 can be copied and pasted into cells C12–C18 without disturbing the addresses of the parameters.

  7. 7.

    A modification of Eq. 90 is entered into column F, cells F13–F21, to generate the predicted response values for the test agonist pilocarpine. The equation is modified so that the logarithm of the agonist concentration is the independent variable instead of the agonist concentration. The entry in cell F13 is:

    $${\text{ = \$ C\$ 2*}}{{\left( {\left( {{\text{10}}^ \wedge {\text{\$ A13}}} \right)^ \wedge {\text{\$ C\$ 3}}} \right)} \mathord{\left/ {\vphantom {{\left( {\left( {{\text{10}}^ \wedge {\text{\$ A13}}} \right)^ \wedge {\text{\$ C\$ 3}}} \right)} {\left( {\left( {\left( {{\text{10}}^ \wedge {\text{\$ A13}}} \right)^ \wedge {\text{\$ C\$ 3}}} \right){\text{ + }}{{\left( {\left( {{\text{10}}^ \wedge {\text{\$ A13 + }}\left( {{\text{10 $ \hat{} $ F\$ 4}}} \right)} \right)} \right)^ \wedge {\text{\$ C\$ 3)}}} \mathord{\left/ {\vphantom {{\left( {\left( {{\text{10}}^ \wedge {\text{\$ A13 + }}\left( {{\text{10 $ \hat{} $ F\$ 4}}} \right)} \right)} \right)^ \wedge {\text{\$ C\$ 3)}}} {\left( {\left( {{\text{10}}^ \wedge \left( {{\text{F\$ 4 + \$ C\$ 5 + F\$ 5}}} \right)} \right)^ \wedge {\text{\$ C\$ 3}}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\left( {{\text{10}}^ \wedge \left( {{\text{F\$ 4 + \$ C\$ 5 + F\$ 5}}} \right)} \right)^ \wedge {\text{\$ C\$ 3}}} \right)}}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\left( {\left( {{\text{10}}^ \wedge {\text{\$ A13}}} \right)^ \wedge {\text{\$ C\$ 3}}} \right){\text{ + }}{{\left( {\left( {{\text{10}}^ \wedge {\text{\$ A13 + }}\left( {{\text{10 $ \hat{} $ F\$ 4}}} \right)} \right)} \right)^ \wedge {\text{\$ C\$ 3)}}} \mathord{\left/ {\vphantom {{\left( {\left( {{\text{10}}^ \wedge {\text{\$ A13 + }}\left( {{\text{10 $ \hat{} $ F\$ 4}}} \right)} \right)} \right)^ \wedge {\text{\$ C\$ 3)}}} {\left( {\left( {{\text{10}}^ \wedge \left( {{\text{F\$ 4 + \$ C\$ 5 + F\$ 5}}} \right)} \right)^ \wedge {\text{\$ C\$ 3}}} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\left( {{\text{10}}^ \wedge \left( {{\text{F\$ 4 + \$ C\$ 5 + F\$ 5}}} \right)} \right)^ \wedge {\text{\$ C\$ 3}}} \right)}}} \right)}}$$

    This entry is also pasted into cells F14–F21. The entry in cell F13 can also be pasted into cells I16–I24 to calculate the predicted response values for McN-A-343.

  8. 8.

    The squared difference between the observed and predicted response of the standard agonist is calculated with the following entry in cell D11:

    $$ = \left( {{\text{B}}11 - {\text{C}}11} \right)^ \wedge 2$$
Fig. 12
figure 12

Spreadsheet for the estimation of agonist RAi values. a The spreadsheet has been set up to estimate the RAi values for the data shown in Fig. 11. b The spreadsheet as it appears after the Solver function has been used to minimize the entry in cell D28, the total sum of squared residuals. The estimates of the log RAi values for pilocarpine and McN-A-343 are shown in cells F5 and I5, respectively. Further details are described under the Appendix

This entry is copied and pasted into cells D12–D18 to estimate the squared differences between the observed and predicted responses at each concentration of the standard agonist. The entry is also copied and pasted into cells G13–G21 and cells J16–J24 to calculate the corresponding values for pilocarpine and McN-A-343, respectively.

  1. 9.

    The sum of the squared deviations between the observed and predicted response values for the standard agonist is calculated with the following entry in cell D26:

    $$ = {\text{SUM}}\left( {{\text{D11:D24}}} \right)$$

This entry is copied and pasted into cells G26 and J26 to calculate the corresponding values for pilocarpine and McN-A-343, respectively.

  1. 10.

    The total sum of squared deviation between the observed and predicted response values for the three agonists is calculated by taking the sum of the values in cells D26, G26, and J26. This sum is calculated in cell D28 with the following entry:

    $$ = {\text{D26 + G26 + J26}}$$

At this point in the process, the spreadsheet should look like that shown in Fig. 12a. To obtain the best fitting parameter estimates, nonlinear regression analysis is accomplished using the Solver function in Excel.

  1. 11.

    Cell D28 is selected, and the Solver function is selected from the Tools menu. A dialog box (Solve Parameters) should appear. More information about the use of the dialog box is given by Christopoulos and Mitchelson (1998). The following steps are completed in the Solve Parameters dialog box:

  2. a.

    Insure that cell D28 is entered in the Set Target Cell box.

  3. b.

    Click on the Min button to insure that a least squares fit is calculated.

  4. c.

    In the By Changing Cells box, enter the cells containing the parameter estimates with a comma between each cell. The entry should look like:

    $${\text{\$ C\$ 2,\$ C\$ 3,\$ C\$ 5,\$ F\$ 4,\$ F\$ 5,\$ I\$ 4,\$ I\$ 5}}$$
  5. d.

    Click on the Options button and a Solver Options dialog box should appear in which the following stringent conditions are set:

  6. i.

    Leave the Max Time on the default value of 100 s.

  7. ii.

    Set Iterations to 2,000.

  8. iii.

    Set Precision to 1e-7.

  9. iv.

    Set Tolerance to 1e-7.

  10. v.

    Set Convergence to 1e-7.

  11. vi.

    Select the Use Automatic Scaling button.

  12. vii.

    Click on the OK button to return to the Solver Options dialog box.

  13. e.

    Upon returning to the Solver Parameters dialog box, click the Solve button to complete the regression analysis and obtain the best fitting parameters. After a few seconds, the iteration process is complete, and a Solver Results dialog box appears. If it appears that solution has been found click OK; otherwise, click Cancel. After clicking OK, the spreadsheet for this example should look like Fig. 12b. The parameter estimates are given in their respective cells. These are: the maximum response of the system (M, cell C2): 97.71, the transducer slope factor of the operational model (N, cell C3): 1.75, the logarithm of the ratio of τ/K for the standard agonist (LOGR, cell C5): 7.01, the logarithm of dissociation constant of pilocarpine (LOGK2, cell F4): −5.81, the logarithm of the RAi value of pilocarpine (LOGRA, cell F5): −0.91, the logarithm of the dissociation constant of McN-A-343 (LOGK2, cell I4): −5.13, and the log RAi value of McN-A-343 (LOGRA, cell I5): −1.71.

It is also possible to estimate agonist RAi values using Prism (GraphPad Software). It is assumed that the reader is familiar with Prism, and specific instructions are only given for analyzing the data by global nonlinear regression analysis. The data are entered in a datasheet for the XY graph. The replicate experiments for the standard agonist are entered in subcolumns of column A, and the replicate experiments for the test agonists (e.g., pilocarpine and McN-A-343) are entered in subcolumns of columns B and C. Because the dissociation constant is fixed as a constant for the standard agonist and allowed to vary for each test agonist, it is necessary to define variables in the regression equation that change depending upon whether the data for the standard agonist or test agonist is being analyzed. This can be accomplished by entering the following five lines in as the equation for nonlinear regression analysis:

$$\begin{array}{*{20}l} { < A > P = LOGK1} \hfill \\ { < A > Q = LOGK1 + LOGR} \hfill \\ { < \sim A > P = LOGK2} \hfill \\ { < \sim A > Q = LOGK2 + LOGR1 + LOGRA} \hfill \\ {Y = {{\left\{ {\left[ {\left( {10^ \wedge X} \right)^ \wedge N} \right]*M} \right\}} \mathord{\left/ {\vphantom {{\left\{ {\left[ {\left( {10^ \wedge X} \right)^ \wedge N} \right]*M} \right\}} {\left\{ {{{\left[ {\left( {10^ \wedge X} \right)^ \wedge N} \right] + \left\{ {\left[ {\left( {10^ \wedge X} \right) + \left( {10^ \wedge P} \right)} \right]^ \wedge N} \right\}} \mathord{\left/ {\vphantom {{\left[ {\left( {10^ \wedge X} \right)^ \wedge N} \right] + \left\{ {\left[ {\left( {10^ \wedge X} \right) + \left( {10^ \wedge P} \right)} \right]^ \wedge N} \right\}} {\left[ {\left( {10^ \wedge Q} \right)^ \wedge N} \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {\left( {10^ \wedge Q} \right)^ \wedge N} \right]}}} \right\}}}} \right. \kern-\nulldelimiterspace} {\left\{ {{{\left[ {\left( {10^ \wedge X} \right)^ \wedge N} \right] + \left\{ {\left[ {\left( {10^ \wedge X} \right) + \left( {10^ \wedge P} \right)} \right]^ \wedge N} \right\}} \mathord{\left/ {\vphantom {{\left[ {\left( {10^ \wedge X} \right)^ \wedge N} \right] + \left\{ {\left[ {\left( {10^ \wedge X} \right) + \left( {10^ \wedge P} \right)} \right]^ \wedge N} \right\}} {\left[ {\left( {10^ \wedge Q} \right)^ \wedge N} \right]}}} \right. \kern-\nulldelimiterspace} {\left[ {\left( {10^ \wedge Q} \right)^ \wedge N} \right]}}} \right\}}}} \hfill \\ \end{array} $$

The first set of two lines define the variables P (LOGK1) and Q (LOGK1 + LOGR) in the regression equation for data set A (standard agonist), and the second set of two lines define the same variables (P = LOGK2, Q= LOGK2 + LOGR + LOGRA) for each test agonist. The regression equation is shown in the last line, which is more easily recognized in the following form:

$$Y = \frac{{\left( {10^X } \right)^N M}}{{\left( {10^X } \right)^N + \frac{{\left( {10^X + 10^P } \right)^N }}{{\left( {10^Q } \right)^N }}}}$$
(99)

The independent variable X represents the logarithm of the agonist concentration. Global nonlinear regression analysis is done setting LOGK1 to a constant (−1), sharing M and N among all data sets, and obtaining a unique estimate of LOGR for the standard agonist and unique estimates of LOGRA and LOGK2 for each test agonist. The initial parameter estimates are calculated as described above in Eqs. 81 to 88.

If the standard agonist (i.e., the agonist with the largest E max) is not a full agonist, it may be possible to obtain an estimate of its dissociation constant by doing the regression analysis without setting LOGK1 to a constant but by estimating a unique estimate for this parameter. In such instances (i.e., when the standard agonist is not a full agonist), we have found a very small improvement in the residual sum of squares and a very minor, insignificant change in the estimate of LOGRA for the test agonist. If the standard agonist is a full agonist, there is no improvement in residual error at all, and it may be impossible to obtain a fit unless LOK1 is fixed at an arbitrarily high value.

Use of a null method to estimate RAi

Concentrations of the standard agonist (A i) that elicit responses equivalent to those of the concentration–response of the test agonist (B i) are estimated as described previously (Griffin et al. 2007). These pairs of equiactive agonist concentrations are converted to logarithms (Y and X, respectively), and the following equation is fitted to the data by nonlinear regression analysis:

$$Y = \frac{{10^{X + {\text{LOGP + LOGRA + LOGK1}}} }}{{10^X \left( {1 - 10^{{\text{LOGP + LOGRA}}} } \right) + 10^{{\text{LOGP + LOGK1}}} }}$$
(100)

Regression analysis is done with the parameter LOGK1 set as a constant to an arbitrary value (−1), and estimates of LOGP and LOGRA are obtained. The regression analysis only involves fitting pairs of equiactive concentrations of the standard and a single test agonist at a time—no global regression analysis is needed. Equation 100 can be derived from Eq. 8 in Griffin et al. (2007) with the following substitution:

$${\text{LOGP}} = \log \left( {\frac{{K_B }}{{K_A }}} \right)$$
(101)

The other parameters are defined as described above (see Eqs. 91 and 94). The initial parameter estimates (parameter′) are either set as a constant (LOGK1′) or calculated (LOGP′ and LOGRA′) using the following equations with the subscripts A and B referring to the standard and test agonists, respectively:

$${\text{LOGK1'}} = - 1$$
(102)
$${\text{LOGP'}} = \log \left( {{\text{EC}}_{50 - B} } \right) - {\text{LOGK1'}}$$
(103)
$${\text{LOGRA'}} = \log \left( {\frac{{E_{\max - B} }}{{E_{\max - A} }}} \right) + \log \left( {{\text{EC}}_{50 - A} } \right) - \log \left( {{\text{EC}}_{50 - B} } \right)$$
(104)

The regression analysis can be done using a spreadsheet or Prism in a manner analogous to that described above for the operational model. The process is simpler because standard regression analysis is used, not global regression analysis. The estimate of the logarithm of the dissociation constant of the test agonist can be calculated from the constant LOGK1 and the estimate of LOGP:

$$\log \left( {K_B } \right) = {\text{LOGK1}} + {\text{LOGP}}$$
(105)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehlert, F.J. On the analysis of ligand-directed signaling at G protein-coupled receptors. Naunyn-Schmied Arch Pharmacol 377, 549–577 (2008). https://doi.org/10.1007/s00210-008-0260-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-008-0260-4

Keywords

Navigation