Skip to main content

Advertisement

Log in

Brain angiotensin receptors and binding proteins

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

This review addresses classical and novel aspects of the brain angiotensin system. The brain contains both the AT1 and AT2 angiotensin II (Ang II) receptor subtypes which are well-characterized guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs). Like other GPCRs, novel signal transduction pathways and protein interactions are being described for Ang II receptors. For brain AT1 receptors, there is a controversy regarding the identity of the active angiotensin peptide in the brain which is addressed in this review. This review also summarizes a recent discovery of a novel, membrane-bound, non-AT1, non-AT2 binding site for angiotensin peptides that appears to be brain-specific. This binding site is unmasked by a limited concentration range of the organometallic sulfhydryl-reactive agent p-chloromercuribenzoic acid (PCMB) suggesting that functional expression of this binding site may depend on the redox state of the milieu of the brain. While this binding site has similarities to a previously described soluble angiotensin-binding protein found in liver that is unmasked by PCMB, it has many different characteristics. The possible functional significance of this novel non-AT1, non-AT2 binding site for angiotensin peptides as a mediator of non-traditional actions of Ang II in the brain, e.g., stimulation of dopamine release from the striatum, as a peptidase, or as a clearance receptor, and the importance of the state of the internal environment of the brain to its function is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  • AbdAlla S, Lother H, Quitterer U (2000) AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407:94–98

    Article  PubMed  CAS  Google Scholar 

  • AbdAlla S, Lother H, Langer A, el Faramawy Y, Quitterer U (2004) Factor XIIIA transglutaminase crosslinks AT1 receptor dimers of monocytes at the onset of atherosclerosis. Cell 119:343–354

    Article  PubMed  CAS  Google Scholar 

  • Armstrong DL, Garcia EA, Ma T, Quinones B, Wayner MJ (1996) Angiotensin II blockade of long-term potentiation at the perforant path-granule cell synapse in vitro. Peptides 17:689–693

    Article  PubMed  CAS  Google Scholar 

  • Barnes JM, Barnes NM, Costall B, Horovitz ZP, Naylor RJ (1989) Angiotensin II inhibits the release of [3H]acetylcholine from rat entorhinal cortex in vitro. Brain Res 491:136–143

    Article  PubMed  CAS  Google Scholar 

  • Beer SM, Taylor ER, Brown SE, Dahm CC, Costa NJ, Runswick MJ, Murphy MP (2004) Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant defense. J Biol Chem 279:47939–47951

    Article  PubMed  CAS  Google Scholar 

  • Bennett Jr JP, Snyder SH (1976) Angiotensin II binding to mammalian brain membranes. J Biol Chem 251:7423–7430

    CAS  Google Scholar 

  • Bickerton RK, Buckley JP (1961) Evidence for a central mechanism in angiotensin induced hypertension. Proc Soc Exp Biol Med 106:834–836

    CAS  Google Scholar 

  • Biswas S, Chida AS, Rahman I (2006) Redox modifications of protein-thiols: emerging roles in cell signaling. Biochem Pharmacol 71:551–564

    Article  PubMed  CAS  Google Scholar 

  • Booth DA (1968) Mechanism of action of norepinephrine in eliciting an eating response on injection into the rat hypothalamus. J Pharmacol Exp Ther 160:336–348

    PubMed  CAS  Google Scholar 

  • Campanile CP, Crane JK, Peach MJ, Garrison JC (1982) The hepatic angiotensin II receptor 1. Characterization of the membrane-binding site and correlation with physiological response in hepatocytes. J Biol Chem 257:4951–4958

    PubMed  CAS  Google Scholar 

  • Catt KJ, Mendelsohn FA, Millan MA, Aguilera G (1984) The role of angiotensin II receptors in vascular regulation. J Cardiovasc Pharmacol 6(Suppl 4):S575–S586

    Article  PubMed  Google Scholar 

  • Chiu AT, McCall DE, Nguyen TT, Carini DJ, Duncia JV, Herblin WF, Uyeda RT, Wong PC, Wexler RR, Johnson AL, Timmermans PBMWM (1989) Discrimination of angiotensin II receptor subtypes by dithiothreitol. Eur J Pharmacol 170:117–118

    Article  PubMed  CAS  Google Scholar 

  • Dahms P, Mentlein R (1992) Purification of the main somatostatin-degrading proteases from rat and pig brains, their action on other neuropeptides, and their identification as endopeptidases 24.15 and 24.16. Eur J Biochem 208:145–154

    Article  PubMed  CAS  Google Scholar 

  • Daviet L, Lehtonen JY, Tamura K, Griese DP, Horiuchi M, Dzau VJ (1999) Cloning and characterization of ATRAP, a novel protein that interacts with the angiotensin II type 1 receptor. J Biol Chem 274:17058–17062

    Article  PubMed  CAS  Google Scholar 

  • Falcon BL, Stewart JM, Bourassa E, Katovich MJ, Walter G, Speth RC, Sumners C, Raizada MK (2004) Angiotensin II type 2 receptor gene transfer elicits cardioprotective effects in an angiotensin II infusion rat model of hypertension. Physiol Genomics 19:255–261

    Article  PubMed  CAS  Google Scholar 

  • Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24

    PubMed  CAS  Google Scholar 

  • Foltermann KF, Shanley MS, Wild JR (1984) Assembly of the aspartate transcarbamoylase holoenzyme from transcriptionally independent catalytic and regulatory cistrons. J Bacteriol 157:891–898

    PubMed  CAS  Google Scholar 

  • Fournie-Zaluski MC, Fassot C, Valentin B, Djordjijevic D, Reaux-Le Goazigo A, Corvol P, Roques BP, Llorens-Cortes C (2004) Brain renin–angiotensin system blockade by systemically active aminopeptidase A inhibitors: a potential treatment of salt-dependent hypertension. Proc Natl Acad Sci U S A 101:7775–7780

    Article  PubMed  CAS  Google Scholar 

  • Fujii T, Onohara N, Maruyama Y, Tanabe S, Kobayashi H, Fukutomi M, Nagamatsu Y, Nishihara N, Inoue R, Sumimoto H, Shibasaki F, Nagao T, Nishida M, Kurose H (2005) Galpha12/13-mediated production of reactive oxygen species is critical for angiotensin receptor-induced NFAT activation in cardiac fibroblasts. J Biol Chem 280:23041–23047

    Article  PubMed  CAS  Google Scholar 

  • Fujioka H, Okabe T, Yamaguchi H (1995) Purification and characterization of angiotensin II degradation factor from porcine endothelial cells. Tohoku J Exp Med 177:183–192

    Article  PubMed  CAS  Google Scholar 

  • Ganten D, Minnich JL, Granger P, Hayduk K, Brecht HM, Barbeau A, Boucher R, Genest J (1971) Angiotensin-forming enzyme in brain tissue. Science 173:64–65

    Article  PubMed  CAS  Google Scholar 

  • Gehlert DR, Gackenheimer SL, Schober DA (1991) Angiotensin II receptor subtypes in rat brain: dithiothreitol inhibits ligand binding to AII-1 and enhances binding to AII-2. Brain Res 546:161–165

    Article  PubMed  CAS  Google Scholar 

  • Ghezzi P (2005) Regulation of protein function by glutathionylation. Free Radic Res 39:573–580

    Article  PubMed  CAS  Google Scholar 

  • Glass MJ, Huang J, Speth RC, Iadecola C, Pickel VM (2005) Angiotensin II AT-1A receptor immunolabeling in rat medial nucleus tractus solitarius neurons: subcellular targeting and relationships with catecholamines. Neuroscience 130:713–723

    Article  PubMed  CAS  Google Scholar 

  • Glossmann H, Baukal AJ, Catt KJ (1974) Properties of angiotensin II receptors in the bovine and rat adrenal cortex. J Biol Chem 249:825–834

    PubMed  CAS  Google Scholar 

  • Grady EF, Sechi LA, Griffin CA, Schambelan M, Kalinyak JE (1991) Expression of the type 2 angiotensin receptor in the developing rat fetus. FASEB J 5:A869

    Google Scholar 

  • Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    PubMed  CAS  Google Scholar 

  • Guo S, Lopez-Ilasaca M, Dzau VJ (2005) Identification of calcium-modulating cyclophilin ligand (CAML) as transducer of angiotensin II-mediated nuclear factor of activated T cells (NFAT) activation. J Biol Chem 280:12536–12541

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara H, Sugiura N, Wakita K, Hirose S (1989) Purification and characterization of angiotensin-binding protein from porcine liver cytosolic fraction. Eur J Biochem 185:405–410

    Article  PubMed  CAS  Google Scholar 

  • Harding JW, Felix D (1987) Angiotensin-sensitive neurons in the rat paraventricular nucleus: relative potencies of angiotensin II and angiotensin III. Brain Res 410:130–134

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi M, Lehtonen JY, Daviet L (1999) Signaling Mechanism of the AT2 Angiotensin II Receptor: crosstalk between AT1 and AT2 receptors in cell growth. Trends Endocrinol Metab 10:391–396

    Article  PubMed  CAS  Google Scholar 

  • Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T, Inagami T (1993) Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268:24543–24546

    PubMed  CAS  Google Scholar 

  • Kang J, Richards EM, Posner P, Sumners C (1995) Modulation of the delayed rectifier K+ current in neurons by an angiotensin II type 2 receptor fragment. Am J Physiol 268:C278–C282

    PubMed  CAS  Google Scholar 

  • Karamyan VT, Gadepalli R, Rimoldi J, Speth RC (2007) Preservation of 125-I-Angiotensin II in brain AT-1 receptor binding assays. Exerimental Biology Meeting Program number 571.3

  • Karamyan VT, Speth RC (2007a) Enzymatic pathways of the brain renin–angiotensin system: unsolved problems and continuing challenges. Regul Pept 143:15–27

    Article  PubMed  CAS  Google Scholar 

  • Karamyan VT, Speth RC (2007b) Identification of a novel non-AT1, non-AT2 angiotensin binding site in the rat brain. Brain Res 1143:83–91

    Article  PubMed  CAS  Google Scholar 

  • Karlin A, Bartels E (1966) Effects of blocking sulfhydryl groups and of reducing disulfide bonds on the acetylcholine-activated permeability system of the electroplax. Biochim Biophys Acta 126:525–535

    Article  PubMed  CAS  Google Scholar 

  • Karniski LP (1989) Activation of Cl-/OH- exchange by parachloromercuribenzoic acid in rabbit renal brush-border membranes. J Membr Biol 112:59–66

    Article  PubMed  CAS  Google Scholar 

  • Kato A, Sugiura N, Hagiwara H, Hirose S (1994) Cloning, amino acid sequence and tissue distribution of porcine thimet oligopeptidase. A comparison with soluble angiotensin-binding protein. Eur J Biochem 221:159–165

    Article  PubMed  CAS  Google Scholar 

  • Kiron MA, Soffer RL (1989) Purification and properties of a soluble angiotensin II- binding protein from rabbit liver. J Biol Chem 264:4138–4142

    PubMed  CAS  Google Scholar 

  • Kohara K, Tabuchi Y, Senanayake P, Brosnihan KB, Ferrario CM (1991) Reassessment of plasma angiotensins measurement: effects of protease inhibitors and sample handling procedures. Peptides 12:1135–1141

    Article  PubMed  CAS  Google Scholar 

  • Kokje RJ, Wilson WL, Brown TE, Karamyan VT, Wright JW, Speth RC (2007) Pressor actions of aminopeptidase-resistant analogs of angiotensin II in the rat brain: challenging the angiotensin III hypothesis. Hypertension 49:1328–1335

    Article  PubMed  CAS  Google Scholar 

  • Kuriyama R, Miki-Noumura T (1975) Light-microscopic observations of individual microtubules reconstituted from brain tubulin. J Cell Sci 19:607–620

    PubMed  CAS  Google Scholar 

  • Lassegue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285:R277–R297

    PubMed  CAS  Google Scholar 

  • Lazard D, Villageois P, Briend-Sutren MM, Cavaille F, Bottari S, Strosberg AD, Nahmias C (1994) Characterization of a membrane glycoprotein having pharmacological and biochemical properties of an AT2 angiotensin II receptor from human myometrium. Eur J Biochem 220:919–926

    Article  PubMed  CAS  Google Scholar 

  • Leichert LI, Jakob U (2006) Global methods to monitor the thiol-disulfide state of proteins in vivo. Antioxid Redox Signal 8:763–772

    Article  PubMed  CAS  Google Scholar 

  • Lopachin RM, Barber DS (2006) Synaptic cysteine sulfhydryl groups as targets of electrophilic neurotoxicants. Toxicol Sci 94:240–255

    Article  PubMed  CAS  Google Scholar 

  • Maher P (2006) Redox control of neural function: background, mechanisms, and significance. Antioxid Redox Signal 8:1941–1970

    Article  PubMed  CAS  Google Scholar 

  • Majumdar S, Bhattacharjee H, Bhattacharyya D, Bhaduri A (1998) UDP-galactose 4-epimerase from Kluyveromyces fragilis: reconstitution of holoenzyme structure after dissociation with parachloromercuribenzoate. Eur J Biochem 257:427–433

    Article  PubMed  CAS  Google Scholar 

  • McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ, Lefkowitz RJ (2000) Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290:1574–1577

    Article  PubMed  CAS  Google Scholar 

  • McKie N, Dando PM, Rawlings ND, Barrett AJ (1993) Thimet oligopeptidase: similarity to ‘soluble angiotensin II- binding protein’ and some corrections to the published amino acid sequence of the rat testis enzyme. Biochem J 295:57–60

    PubMed  CAS  Google Scholar 

  • Mehta PK, Griendling KK (2007) Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292:C82–C97

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn FAO, Quirion R, Saavedra JM, Aguilera G, Catt KJ (1984) Autoradiographic localization of angiotensin II receptors in rat brain. Proc Natl Acad Sci USA 81:1575–1579

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn FA, Jenkins TA, Berkovic SF (1993) Effects of angiotensin II on dopamine and serotonin turnover in the striatum of conscious rats. Brain Res 613:221–229

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DA, Vasudevan A, Linder ME, Deschenes RJ (2006) Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res 47:1118–1127

    Article  PubMed  CAS  Google Scholar 

  • Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ (1993) Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem 268:24539–24542

    PubMed  CAS  Google Scholar 

  • Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE (1991) Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 351:233–236

    Article  PubMed  CAS  Google Scholar 

  • Olami Y, Rimon A, Gerchman Y, Rothman A, Padan E (1997) Histidine 225, a residue of the NhaA-Na+/H+ antiporter of Escherichia coli is exposed and faces the cell exterior. J Biol Chem 272:1761–1768

    Article  PubMed  CAS  Google Scholar 

  • Olivares-Reyes JA, Smith RD, Hunyady L, Shah BH, Catt KJ (2001) Agonist-induced signaling, desensitization, and internalization of a phosphorylation-deficient AT1A angiotensin receptor. J Biol Chem 276:37761–37768

    Article  PubMed  CAS  Google Scholar 

  • Oppermann M, Freedman NJ, Alexander RW, Lefkowitz RJ (1996) Phosphorylation of the type 1A angiotensin II receptor by G protein-coupled receptor kinases and protein kinase C. J Biol Chem 271:13266–13272

    Article  PubMed  CAS  Google Scholar 

  • Qian H, Pipolo L, Thomas WG (2001) Association of beta-Arrestin 1 with the type 1A angiotensin II receptor involves phosphorylation of the receptor carboxyl terminus and correlates with receptor internalization. Mol Endocrinol 15:1706–1719

    Article  PubMed  CAS  Google Scholar 

  • Reaux A, Fournie-Zaluski MC, David C, Zini S, Roques BP, Corvol P, Llorens-Cortes C (1999) Aminopeptidase A inhibitors as potential central antihypertensive agents. Proc Natl Acad Sci U S A 96:13415–13420

    Article  PubMed  CAS  Google Scholar 

  • Reaux A, Fournie-Zaluski MC, Llorens-Cortes C (2001) Angiotensin III: a central regulator of vasopressin release and blood pressure. Trends Endocrinol Metab 12:157–162

    Article  PubMed  CAS  Google Scholar 

  • Rodbell M, Birnbaumer L, Pohl SL, Krans MJ (1971a) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. J Biol Chem 246:1877–1882

    PubMed  CAS  Google Scholar 

  • Rodbell M, Krans MJ, Pohl SL, Birnbaumer L (1971b) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. J Biol Chem 246:1872–1876

    PubMed  CAS  Google Scholar 

  • Rowe BP, Grove KL, Saylor DL, Speth RC (1990) Angiotensin II receptor subtypes in the rat brain. Eur J Pharmacol 186:339–342

    Article  PubMed  CAS  Google Scholar 

  • Rowe BP, Saylor DL, Speth RC (1992) Analysis of angiotensin II receptor subtypes in individual rat brain nuclei. Neuroendocrinology 55:563–573

    Article  PubMed  CAS  Google Scholar 

  • Saavedra JM (2005) Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities. Cell Mol Neurobiol 25:485–512

    Article  PubMed  CAS  Google Scholar 

  • Sabri A, Govindarajan G, Griffin TM, Byron KL, Samarel AM, Lucchesi PA (1998) Calcium- and protein kinase C-dependent activation of the tyrosine kinase PYK2 by angiotensin II in vascular smooth muscle. Circ Res 83:841–851

    PubMed  CAS  Google Scholar 

  • Satoh T, Lipton SA (2007) Redox regulation of neuronal survival mediated by electrophilic compounds. Trends Neurosci 30:37–45

    Article  PubMed  CAS  Google Scholar 

  • Severs WB, Daniels-Severs AE (1973) Effects of angiotensin on the central nervous system. Pharmacol Rev 25:415–449

    PubMed  CAS  Google Scholar 

  • Shirai H, Takahashi K, Katada T, Inagami T (1995) Mapping of G protein coupling sites of the angiotensin II type 1 receptor. Hypertension 25:726–730

    PubMed  CAS  Google Scholar 

  • Shivakumar BR, Wang Z, Hammond TG, Harris RC (2005) EP24.15 interacts with the angiotensin II type I receptor and bradykinin B2 receptor. Cell Biochem Funct 23:195–204

    Article  PubMed  CAS  Google Scholar 

  • Shrimpton CN, Wolfson AJ, Smith AI, Lew RA (2003) Regulators of the neuropeptide-degrading enzyme, EC 3.4.24.15 (thimet oligopeptidase), in cerebrospinal fluid. J Neurosci Res 74:474–478

    Article  PubMed  CAS  Google Scholar 

  • Sirett NE, McLean AS, Bray JJ, Hubbard JI (1977) Distribution of angiotensin II receptors in rat brain. Brain Res 122:299–312

    Article  PubMed  CAS  Google Scholar 

  • Song LJ, Wilk S, Healy DP (1997) Aminopeptidase A antiserum inhibits intracerebroventricular angiotensin II-induced dipsogenic and pressor responses. Brain Res 744:1–6

    Article  PubMed  CAS  Google Scholar 

  • Speth RC, Rowe BP, Grove KL, Carter MR, Saylor DL (1991) Sulfhydryl reducing agents distinguish two subtypes of angiotensin II receptors in the rat brain. Brain Res 548:1–8

    Article  PubMed  CAS  Google Scholar 

  • Sullivan MJ, Harding JW, Wright JW (1988) Differential effects of aminopeptidase inhibitors on angiotensin- induced pressor responses. Brain Res 456:249–253

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Tanaka Y, Tsurumi Y, Azuma K, Shigenaga A, Wakui H, Masuda S, Matsuda M (2007) The role of angiotensin AT1 receptor-associated protein in renin–angiotensin system regulation and function. Curr Hypertens Rep 9:121–127

    Article  PubMed  CAS  Google Scholar 

  • Timmermans PB, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JA, Smith RD (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45:205–251

    PubMed  CAS  Google Scholar 

  • Tohgo A, Pierce KL, Choy EW, Lefkowitz RJ, Luttrell LM (2002) beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J Biol Chem 277:9429–9436

    Article  PubMed  CAS  Google Scholar 

  • Torrecilla I, Tobin AB (2006) Co-ordinated covalent modification of G-protein coupled receptors. Curr Pharm Des 12:1797–1808

    Article  PubMed  CAS  Google Scholar 

  • Ushio-Fukai M, Griendling KK, Akers M, Lyons PR, Alexander RW (1998) Temporal dispersion of activation of phospholipase C-beta1 and -gamma isoforms by angiotensin II in vascular smooth muscle cells. Role of alphaq/11, alpha12, and beta gamma G protein subunits. J Biol Chem 273:19772–19777

    Article  PubMed  CAS  Google Scholar 

  • Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K, Griendling KK (1999) Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 274:22699–22704

    Article  PubMed  CAS  Google Scholar 

  • Veerasingham SJ, Raizada MK (2003) Brain renin–angiotensin system dysfunction in hypertension: recent advances and perspectives. Br J Pharmacol 139:191–202

    Article  PubMed  CAS  Google Scholar 

  • Velu CS, Niture SK, Doneanu CE, Pattabiraman N, Srivenugopal KS (2007) Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry 46:7765–7780

    Article  PubMed  CAS  Google Scholar 

  • Venema RC, Ju H, Venema VJ, Schieffer B, Harp JB, Ling BN, Eaton DC, Marrero MB (1998) Angiotensin II-induced association of phospholipase Cgamma1 with the G- protein-coupled AT1 receptor. J Biol Chem 273:7703–7708

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Jayadev S, Escobedo JA (1995) Identification of a domain in the angiotensin II type 1 receptor determining Gq coupling by the use of receptor chimeras. J Biol Chem 270:16677–16682

    Article  PubMed  CAS  Google Scholar 

  • Wang G, Anrather J, Huang J, Speth RC, Pickel VM, Iadecola C (2004) NADPH oxidase contributes to angiotensin II signaling in the nucleus tractus solitarius. J Neurosci 24:5516–5524

    Article  PubMed  CAS  Google Scholar 

  • Whitebread S, Mele M, Kamber B, de Gasparo M (1989) Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun 163:284–291

    Article  PubMed  CAS  Google Scholar 

  • Wright JW, Tamura-Myers E, Wilson WL, Roques BP, Llorens-Cortes C, Speth RC, Harding JW (2003) Conversion of brain angiotensin II to angiotensin III is critical for pressor response in rats. Am J Physiol Regul Integr Comp Physiol 284:R725–R733

    PubMed  CAS  Google Scholar 

  • Yamano Y, Ohyama K, Chaki S, Guo D-F, Inagami T (1992) Identification of amino acid residues of rat angiotensin II receptor for ligand binding by site directed mutagenesis. Biochem Biophys Res Commun 187:1426–1431

    Article  PubMed  CAS  Google Scholar 

  • Yatani A, Kamp TJ (2000) Tails of the L-type Ca(2+) channel: to sense oxygen or not. Circ Res 87:535–536

    PubMed  CAS  Google Scholar 

  • Zeng C, Luo Y, Asico LD, Hopfer U, Eisner GM, Felder RA, Jose PA (2003) Perturbation of D1 dopamine and AT1 receptor interaction in spontaneously hypertensive rats. Hypertension 42:787–792

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman MC, Davisson RL (2004) Redox signaling in central neural regulation of cardiovascular function. Prog Biophys Mol Biol 84:125–149

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman MC, Lazartigues E, Lang JA, Sinnayah P, Ahmad IM, Spitz DR, Davisson RL (2002) Superoxide mediates the actions of angiotensin II in the central nervous system. Circ Res 91:1038–1045

    Article  PubMed  CAS  Google Scholar 

  • Zini S, Fournie-Zaluski MC, Chauvel E, Roques BP, Corvol P, Llorens-Cortes C (1996) Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: Predominant role of angiotensin III in the control of vasopressin release. Proc Natl Acad Sci USA 93:11968–11973

    Article  PubMed  CAS  Google Scholar 

  • Zuo L, Ushio-Fukai M, Ikeda S, Hilenski L, Patrushev N, Alexander RW (2005) Caveolin-1 is essential for activation of Rac1 and NAD(P)H oxidase after angiotensin II type 1 receptor stimulation in vascular smooth muscle cells: role in redox signaling and vascular hypertrophy. Arterioscler Thromb Vasc Biol 25:1824–1830

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work reported in this review is supported by the Peptide Radioiodination Service Center of the University of Mississippi. Vardan Karamyan is supported by the Peptide Radioiodination Service Center and National Institutes of Health Division of Research Resources Centers of Biomedical Research Excellence grant (RR-0212929). Losartan is a generous gift from Dr. Ron Smith of Dupont Merck, Whitehouse, NJ, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Speth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speth, R.C., Karamyan, V.T. Brain angiotensin receptors and binding proteins. Naunyn-Schmied Arch Pharmacol 377, 283–293 (2008). https://doi.org/10.1007/s00210-007-0238-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0238-7

Keywords

Navigation