Skip to main content

Advertisement

Log in

Cardiovascular responses produced by 5-hydroxytriptamine:a pharmacological update on the receptors/mechanisms involved and therapeutic implications

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The complexity of cardiovascular responses produced by 5-hydroxytryptamine (5-HT, serotonin), including bradycardia or tachycardia, hypotension or hypertension, and vasodilatation or vasoconstriction, has been explained by the capability of this monoamine to interact with different receptors in the central nervous system (CNS), on the autonomic ganglia and postganglionic nerve endings, on vascular smooth muscle and endothelium, and on the cardiac tissue. Depending, among other factors, on the species, the vascular bed under study, and the experimental conditions, these responses are mainly mediated by 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-ht5A/5B, and 5-HT7 receptors as well as by a tyramine-like action or unidentified mechanisms. It is noteworthy that 5-HT6 receptors do not seem to be involved in the cardiovascular responses to 5-HT. Regarding heart rate, intravenous (i.v.) administration of 5-HT usually lowers this variable by eliciting a von Bezold-Jarisch-like reflex via 5-HT3 receptors located on sensory vagal nerve endings in the heart. Other bradycardic mechanisms include cardiac sympatho-inhibition by prejunctional 5-HT1B/1D receptors and, in the case of the rat, an additional 5-ht5A/5B receptor component. Moreover, i.v. 5-HT can increase heart rate in different species (after vagotomy) by a variety of mechanisms/receptors including activation of: (1) myocardial 5-HT2A (rat), 5-HT3 (dog), 5-HT4 (pig, human), and 5-HT7 (cat) receptors; (2) adrenomedullary 5-HT2 (dog) and prejunctional sympatho-excitatory 5-HT3 (rabbit) receptors associated with a release of catecholamines; (3) a tyramine-like action mechanism (guinea pig); and (4) unidentified mechanisms (certain lamellibranch and gastropod species). Furthermore, central administration of 5-HT can cause, in general, bradycardia and/or tachycardia mediated by activation of, respectively, 5-HT1A and 5-HT2 receptors. On the other hand, the blood pressure response to i.v. administration of 5-HT is usually triphasic and consists of an initial short-lasting vasodepressor response due to a reflex bradycardia (mediated by 5-HT3 receptors located on vagal afferents, via the von Bezold-Jarisch-like reflex), a middle vasopressor phase, and a late, longer-lasting, vasodepressor response. The vasopressor response is a consequence of vasoconstriction mainly mediated by 5-HT2A receptors; however, vasoconstriction in the canine saphenous vein and external carotid bed as well as in the porcine cephalic arteries and arteriovenous anastomoses is due to activation of 5-HT1B receptors. The late vasodepressor response may involve three different mechanisms: (1) direct vasorelaxation by activation of 5-HT7 receptors located on vascular smooth muscle; (2) inhibition of the vasopressor sympathetic outflow by sympatho-inhibitory 5-HT1A/1B/1D receptors; and (3) release of endothelium-derived relaxing factor (nitric oxide) by 5-HT2B and/or 5-HT1B/1D receptors. Furthermore, central administration of 5-HT can cause both hypotension (mainly mediated by 5-HT1A receptors) and hypertension (mainly mediated by 5-HT2 receptors). The increasing availability of new compounds with high affinity and selectivity for the different 5-HT receptor subtypes makes it possible to develop drugs with potential therapeutic usefulness in the treatment of some cardiovascular illnesses including hypertension, migraine, some peripheral vascular diseases, and heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adham N, Kao HT, Schechter LE, Bard J, Olsen M, Urquhart D, Durkin M, Hartig PR, Weinshank RL, Branchek TA (1993) Cloning of another human serotonin receptor (5-HT1F): a fifth 5-HT1 receptor subtype coupled to the inhibition of adenylate cyclase. Proc Nat Acad Sci U S A 90:408–412

    CAS  Google Scholar 

  • Anderson IK, Martin GR, Ramage AG (1992) Central administration of 5-HT activates 5-HT1A receptors to cause sympathoexcitation and 5-HT2/5-HT1C receptors to release vasopression in anaesthetized rats. Br J Pharmacol 107:1020–1028

    PubMed  CAS  Google Scholar 

  • Anderson IK, Martin GR, Ramage AG (1995) Evidence that activation of 5-HT2 receptors in the brain of anaesthetized cats causes sympathoexcitation. Br J Pharmacol 116:1751–1756

    PubMed  CAS  Google Scholar 

  • Apperley E, Humphrey PP, Levy GP (1976) Receptors for 5-hydroxytryptamine and noradrenaline in rabbit isolated ear artery and aorta. Br J Pharmacol 58:211–221

    PubMed  CAS  Google Scholar 

  • Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38:1083–1152

    PubMed  CAS  Google Scholar 

  • Berthold H, Scholtysik G, Engel G (1989) Inhibition of the 5-HT-induced cardiogenic hypertensive chemoreflex by the selective 5-HT3 receptor antagonist ICS 205–930. Naunyn-Schmiedeberg’s Arch Pharmacol 339:259–262

    CAS  Google Scholar 

  • Bielenberg GW, Burkhardt M (1990) 5-hydroxytryptamine1A agonists. A new therapeutic principle for stroke treatment. Stroke 21:IV161–IV163

    PubMed  CAS  Google Scholar 

  • Birkeland JA, Sjaastad I, Brattelid T, Qvigstad E, Moberg ER, Krobert KA, Bjornerheim R, Skomedal T, Sejersted OM, Osnes JB, Levy FO (2007) Effects of treatment with a 5-HT4 receptor antagonist in heart failure. Br J Pharmacol 150:143–152

    PubMed  CAS  Google Scholar 

  • Blauw GJ, van Brummelen P, van Zwieten PA (1988) Serotonin induced vasodilatation in the human forearm is antagonized by the selective 5-HT3 receptor antagonist ICS 205–930. Life Sci 43:1441–1449

    PubMed  CAS  Google Scholar 

  • Bode-Greuel KM, Klisch J, Horvath E, Glaser T, Traber J (1990) Effects of 5-hydroxytryptamine1A-receptor agonists on hippocampal damage after transient forebrain ischemia in the Mongolian gerbil. Stroke 21:IV164–IV166

    PubMed  CAS  Google Scholar 

  • Bond RA, Craig DA, Charlton KG, Ornstein AG, Clarke DE (1989) Partial agonistic activity of GR43175 at the inhibitory prejunctional 5-HT1-like receptor in rat kidney. J Auton Pharmacol 9:201–210

    PubMed  CAS  Google Scholar 

  • Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PP, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986) Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25:563–576

    PubMed  CAS  Google Scholar 

  • Brandli P, Loffler BM, Breu V, Osterwalder R, Maire JP, Clozel M (1996) Role of endothelin in mediating neurogenic plasma extravasation in rat dura mater. Pain 64:315–322

    PubMed  CAS  Google Scholar 

  • Brattelid T, Qvigstad E, Lynham JA, Molenaar P, Aass H, Geiran O, Skomedal T, Osnes JB, Levy FO, Kaumann AJ (2004) Functional serotonin 5-HT4 receptors in porcine and human ventricular myocardium with increased 5-HT4 mRNA in heart failure. Naunyn-Schmiedeberg’s Arch Pharmacol 370:157–166

    CAS  Google Scholar 

  • Brodie TG (1900) The immediate action of an intravenous injection of blood-serum. J Physiol (London) 26:48–71

    CAS  Google Scholar 

  • Centurión D, Glusa E, Sánchez-López A, Valdivia LF, Saxena PR, Villalón CM (2004) 5-HT7, but not 5-HT2B, receptors mediate hypotension in vagosympathectomized rats. Eur J Pharmacol 502:239–242

    PubMed  Google Scholar 

  • Centurión D, Ortiz MI, Sánchez-López A, De Vries P, Saxena PR, Villalón CM (2001a) Evidence for 5-HT1B/1D and 5 HT2A receptors mediating constriction of the canine internal carotid circulation. Br J Pharmacol 132:983–990

    PubMed  Google Scholar 

  • Centurión D, Ortiz MI, Saxena PR, Villalón CM (2002) The atypical 5-HT2 receptor mediating tachycardia in pithed rats: pharmacological correlation with the 5-HT2A receptor subtype. Br J Pharmacol 135:1531–1539

    PubMed  Google Scholar 

  • Centurión D, Sánchez-López A, De Vries P, Saxena PR, Villalón CM (2001b) The GR127935-sensitive 5-HT1 receptors mediating canine internal carotid vasoconstriction: resemblance to the 5-HT1B, but not to the 5-HT1D or 5-ht1F receptor subtype. Br J Pharmacol 132:991–998

    PubMed  Google Scholar 

  • Centurión D, Sánchez-López A, Ortiz MI, De Vries P, Saxena PR, Villalón CM (2000) Mediation of 5-HT-induced internal carotid vasodilatation in GR127935-and ritanserin-pretreated dogs by 5-HT7 receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 362:169–176

    Google Scholar 

  • Chaouche-Teyara K, Fournier B, Safar M, Dabiré H (1993) Vascular and cardiac effects of alpha-methyl-5-HT and DOI are mediated by different 5-HT receptors in the pithed rat. Eur J Pharmacol 250:67–75

    PubMed  CAS  Google Scholar 

  • Chaouche-Teyara K, Fournier B, Safar M, Dabiré H (1994) Systemic and regional haemodynamic effects of 1-(2,5-dimethoxy-4-iodo-phenyl)-2-aminopropane (DOI) and alpha-methyl-5-HT, in the anaesthetised rat. Clin Exp Hypertens 16:779–798

    PubMed  CAS  Google Scholar 

  • Cocks TM, Arnold PJ (1992) 5-Hydroxytryptamine (5-HT) mediates potent relaxation in the sheep isolated pulmonary vein via activation of 5-HT4 receptors. Br J Pharmacol 107:591–596

    PubMed  CAS  Google Scholar 

  • Coffman JD (1991) Raynaud’s phenomenon. An update. Hypertension 17:593–602

    PubMed  CAS  Google Scholar 

  • Cohen ML, Schenck K (2000) Contractile responses to sumatriptan and ergotamine in the rabbit saphenous vein: effect of selective 5-HT(1F) receptor agonists and PGF(2alpha). Br J Pharmacol 131:562–568

    PubMed  CAS  Google Scholar 

  • Cohen RA (1985) Serotonergic prejunctional inhibition of canine coronary adrenergic nerves. J Pharmacol Exp Ther 235:76–80

    PubMed  CAS  Google Scholar 

  • Cohen RA, Shepherd JT, Vanhoutte PM (1983) Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science 221:273–274

    PubMed  CAS  Google Scholar 

  • Creite A (1869) Versuche über die Wirkung des Serumeiweisses nach Injection in das Blut. Zeitschrift für Rationelle Medicin 36:90–108

    Google Scholar 

  • Dabiré H, Chaouche-Teyara K, Cherqui C, Fournier B, Laubie M, Schmitt H (1989a) Characterization of DOI, a putative 5-HT2 receptor agonist in the rat. Eur J Pharmacol 168:369–374

    PubMed  Google Scholar 

  • Dabiré H, Chaouche-Teyara K, Cherqui C, Fournier B, Schmitt H (1989b) DOI is a mixed agonist-antagonist at postjunctional 5-HT2 receptors in the pithed rat. Eur J Pharmacol 170:109–111

    PubMed  Google Scholar 

  • Damaso EL, Bonagamba LG, Kellett DO, Jordan D, Ramage AG, Machado BH (2007) Involvement of central 5-HT7 receptors in modulation of cardiovascular reflexes in awake rats. Brain Res 1144:82–90

    PubMed  CAS  Google Scholar 

  • De Vries P, De Visser PA, Heiligers JPC, Villalón CM, Saxena PR (1999) Changes in systemic and regional haemodynamics during 5-HT7 receptor-mediated depressor responses in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 359:331–338

    Google Scholar 

  • De Vries P, Sánchez-López A, Centurión D, Heiligers JP, Saxena PR, Villalón CM (1998a) The canine external carotid vasoconstrictor 5-HT1 receptor: blockade by 5-HT1B (SB224289), but not by 5-HT1D (BRL15572) receptor antagonists. Eur J Pharmacol 362:69–72

    PubMed  Google Scholar 

  • De Vries P, Villalón CM, Heiligers JP, Saxena PR (1997) Nature of 5-HT1-like receptors mediating depressor responses in vagosympathectomized rats; close resemblance to the cloned 5-ht7 receptor. Naunyn-Schmiedeberg’s Arch Pharmacol 356:90–99

    Google Scholar 

  • De Vries P, Villalón CM, Heiligers JP, Saxena PR (1998b) Characterization of 5-HT receptors mediating constriction of porcine carotid arteriovenous anastomoses; involvement of 5-HT1B/1D and novel receptors. Br J Pharmacol 123:1561–1570

    PubMed  Google Scholar 

  • Dhasmana KM, De Boer HJ, Banerjee AK, Saxena PR (1988) Analysis of the tachycardiac response to 5-hydroxytryptamine in the spinal guinea-pig. Eur J Pharmacol 145:67–73

    PubMed  CAS  Google Scholar 

  • Docherty JR (1988) Investigations of cardiovascular 5-hydroxytryptamine receptor subtypes in the rat. Naunyn-Schmiedeberg’s Arch Pharmacol 337:1–8

    CAS  Google Scholar 

  • Eglen RM, Whiting RL (1989) Comparison of the positive chronotropic response to 5-hydroxytryptamine with beta-adrenoceptor agonists on the guinea pig atria in vitro. J Cardiovasc Pharmacol 13:45–51

    PubMed  CAS  Google Scholar 

  • Ellis E, Byrne C, Murphy OE, Tilford NS, Baxter GS (1995) Mediation by 5-hydroxytryptamine2B receptors of endothelium-dependent relaxation in rat jugular vein. Br J Pharmacol 114:400–404

    PubMed  CAS  Google Scholar 

  • El Rawadi C, Davy M, Midol-Monnet M, Cohen Y (1994) Biochemical characterization of the mechanisms involved in the 5-hydroxytryptamine-induced increase in rat atrial rate. Biochem Pharmacol 48:683–688

    PubMed  Google Scholar 

  • Erspamer V (1940a) Pharmakologische studien über Enteramine. I. Miteilung: Über die Wirkung von Acetonextrakten der Kaninchenmagenschleimhaut auf den Blutdruck und auf isolierte überlebende Organe. Arch Exper Path U Pharmakol 196:343

    CAS  Google Scholar 

  • Erspamer V (1940b) Pharmakologische studien über Enteramine. II. Mitteilung: Über eigenschaften des Enteramins, sovie über die Abgrenzung des Enteramins von der anderen Kreislaufwirksamen Gewebsprodukten. Arch Exper Path U Pharmakol 196:366

    CAS  Google Scholar 

  • Erspamer V (1940c) Pharmakologische studien über Enteramine. III. Mitteilung: Über das vorhandensein eines enteraminähnlichen Stoffes in Milzextrakten. Arch Exper Path U Pharmakol 196:391

    CAS  Google Scholar 

  • Erspamer V, Asero B (1952) Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature 169:800–801

    PubMed  CAS  Google Scholar 

  • Ferrari MD (1991) 5-HT3 receptor antagonists and migraine therapy. J Neurol 238(Suppl 1):S53–S56

    PubMed  Google Scholar 

  • Ferrari MD, Wilkinson M, Hirt D, Lataste X, Notter M (1991) Efficacy of ICS 205–930, a novel 5-hydroxytryptamine3 (5-HT3) receptor antagonist, in the prevention of migraine attacks. A complex answer to a simple question. ICS 205-930 Migraine Study Group. Pain 45:283–291

    PubMed  CAS  Google Scholar 

  • Fishman AP (1998) Etiology and pathogenesis of primary pulmonary hypertension: a perspective. Chest 114(Suppl 3):242S–247S

    PubMed  CAS  Google Scholar 

  • Fishman AP (1999) Aminorex to fen/phen: an epidemic foretold. Circulation 99:156–161

    PubMed  CAS  Google Scholar 

  • Fitzgerald LW, Burn TC, Brown BS, Patterson JP, Corjay MH, Valentine PA, Sun JH, Link JR, Abbaszade I, Hollis JM, Largent BL, Hartig PR, Hollis GF, Meunier PC, Robichaud AJ, Robertson DW (2000) Possible role of valvular serotonin 5-HT2B receptors in the cardiopathy associated with fenfluramine. Mol Pharmacol 57:75–81

    PubMed  CAS  Google Scholar 

  • Fozard JR (1984) Neuronal 5-HT receptors in the periphery. Neuropharmacology 23:1473–1486

    PubMed  CAS  Google Scholar 

  • Fozard JR (1995) The 5-hydroxytryptamine-nitric oxide connection: the key link in the initiation of migraine. Arch Int Pharmacodyn Ther 329:111–119

    PubMed  CAS  Google Scholar 

  • Fozard JR, Kalkman HO (1994) 5-Hydroxytryptamine (5-HT) and the initiation of migraine: new perspectives. Naunyn-Schmiedeberg’s Arch Pharmacol 350:225–229

    CAS  Google Scholar 

  • Gaddum JH, Picarelli ZP (1957) Two kinds of tryptamine receptors. Br J Pharmacol 12:323–328

    CAS  Google Scholar 

  • Glusa E, Pertz HH (2000) Further evidence that 5-HT-induced relaxation of pig pulmonary artery is mediated by endothelial 5-HT2B receptors. Br J Pharmacol 130:692–698

    PubMed  CAS  Google Scholar 

  • Glusa E, Richter M (1993) Endothelium-dependent relaxation of porcine pulmonary arteries via 5- HT1C-like receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 347:471–477

    CAS  Google Scholar 

  • Goldstein J, Dählof CG, Diener HC, Olesen J, Schellens R, Senard JM, Simard D, Steiner TJ (1996) Alniditan in the acute treatment of migraine attacks: a subcutaneous dose-finding study. Subcutaneous Alniditan Study Group. Cephalalgia 16:497–502

    PubMed  CAS  Google Scholar 

  • Goldstein DJ, Roon KI, Offen WW, Ramadan NM, Phebus LA, Johnson KW, Schaus JM, Ferrari MD (2001) Selective serotonin1F (5-HT1F) receptor agonist LY334370 for acute migraine: a randomised controlled trial. Lancet 358:1230–1234

    PubMed  CAS  Google Scholar 

  • Gómez-Mancilla B, Cutler NR, Leibowitz MT, Spierings EL, Klapper JA, Diamond S, Goldstein J, Smith T, Couch JR, Fleishaker J, Azie N, Blunt DE (2001) Safety and efficacy of PNU-142633, a selective 5-HT1D agonist, in patients with acute migraine. Cephalalgia 21:727–732

    PubMed  Google Scholar 

  • Göthert M, Schlicker E, Kollecker P (1986) Receptor-mediated effects of serotonin and 5-methoxytryptamine on noradrenaline release in the rat vena cava and in the heart of the pithed rat. Naunyn-Schmiedeberg’s Arch Pharmacol 332:124–130

    Google Scholar 

  • Gupta P, Brown D, Butler P, Ellis P, Grayson KL, Land GC, Macor JE, Robson SF, Wythes MJ, Shepperson NB (1995) The in vivo pharmacological profile of a 5-HT1 receptor agonist, CP-122,288, a selective inhibitor of neurogenic inflammation. Br J Pharmacol 116:2385–2390

    PubMed  CAS  Google Scholar 

  • Hagan JJ, Slade PD, Gaster L, Jeffrey P, Hatcher JP, Middlemiss DN (1997) Stimulation of 5-HT1B receptors causes hypothermia in the guinea pig. Eur J Pharmacol 331:169–174

    PubMed  CAS  Google Scholar 

  • Hervé P, Launay JM, Scrobohaci ML, Brenot F, Simonneau G, Petitpretz P, Poubeau P, Cerrina J, Duroux P, Drouet L (1995) Increased plasma serotonin in primary pulmonary hypertension. Am J Med 99:249–254

    PubMed  Google Scholar 

  • Hamlin KE, Fischer FE (1951) The synthesis of 5-hydroxytryptamine. J Am Chem Soc 73:5007–5008

    CAS  Google Scholar 

  • Hirose K (1918) Relation between the platelet count of human blood and its vasoconstrictor action after clotting. Arch Int Med 21:604–612

    CAS  Google Scholar 

  • Houston DS, Vanhoutte PM (1988) Comparison of serotonergic receptor subtypes on the smooth muscle and endothelium of the canine coronary artery. J Pharmacol Exp Ther 244:1–10

    PubMed  CAS  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev 46:157–203

    PubMed  CAS  Google Scholar 

  • Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71:533–554

    PubMed  CAS  Google Scholar 

  • Hoyer D, Martin G (1997) 5-HT receptor classification and nomenclature: towards a harmonization with the human genome. Neuropharmacology 36:419–428

    PubMed  CAS  Google Scholar 

  • Humphrey PP, Feniuk W (1991) Mode of action of the anti-migraine drug sumatriptan. Trends Pharmacol Sci 12:444–446

    PubMed  CAS  Google Scholar 

  • Humphrey PP, Feniuk W, Perren MJ, Connor HE, Oxford AW, Coates LH, Butina D (1988) GR43175, a selective agonist for the 5-HT1-like receptor in dog isolated saphenous vein. Br J Pharmacol 94:1123–1132

    PubMed  CAS  Google Scholar 

  • Ireland SJ, Jordan CC (1987) Pharmacological characterization of 5-hydroxytryptamine-induced hyperpolarization of the rat cervical ganglion. Br J Pharmacol 92:417–427

    PubMed  CAS  Google Scholar 

  • Jahnel U, Rupp J, Ertl R, Nawrath H (1992) Positive inotropic response to 5-HT in human atrial but not in ventricular heart muscle. Naunyn- Schmiedeberg’s Arch Pharmacol 346:482–485

    CAS  Google Scholar 

  • Janeway TC, Richardson HB, Park EA (1918) Experiments on the vasoconstrictor action of blood serum. Arch Int Med 21:565–603

    CAS  Google Scholar 

  • Johnson KW, Schaus JM, Durkin MM, Audia JE, Kaldor SW, Flaugh ME, Adham N, Zgombick JM, Cohen ML, Branchek TA, Phebus LA (1997) 5-HT1F receptor agonists inhibit neurogenic dural inflammation in guinea pigs. Neuroreport 8:2237–2240

    Article  PubMed  CAS  Google Scholar 

  • Jones JF, Martin GR, Ramage AG (1995) Evidence that 5-HT1D receptors mediate inhibition of sympathetic ganglionic transmission in anaesthetized cats. Br J Pharmacol 116:1715–1717

    PubMed  CAS  Google Scholar 

  • Kalkman HO (1994) Is migraine prophylactic activity caused by 5-HT2B or 5-HT2C receptor blockade. Life Sci 54:641–644

    PubMed  CAS  Google Scholar 

  • Kaumann AJ (1993) Blockade of human atrial 5-HT4 receptors by GR 113808. Br J Pharmacol 110:1172–1174

    PubMed  CAS  Google Scholar 

  • Kaumann AJ, Levy FO (2006) 5-Hydroxytryptamine receptors in the human cardiovascular system. Pharmacol Ther 111:674–706

    PubMed  CAS  Google Scholar 

  • Kaumann AJ, Murray KJ, Brown AM, Sanders L, Brown MJ (1989) A receptor for 5-HT in human atrium. Br J Pharmacol 98:664

    Google Scholar 

  • Kaumann AJ, Sanders L, Brown AM, Murray KJ, Brown MJ (1990) A 5-hydroxytryptamine receptor in human atrium. Br J Pharmacol 100:879–885

    PubMed  CAS  Google Scholar 

  • Kellett DO, Ramage AG, Jordan D (2005) Central 5-HT7 receptors are critical for reflex activation of cardiac vagal drive in anaesthetized rats. J Physiol 563:319–331

    PubMed  CAS  Google Scholar 

  • Kimura T, Satoh S (1983) Presynaptic inhibition by serotonin of cardiac sympathetic transmission in dogs. Clin Exp Pharmacol Physiol 10:535–542

    PubMed  CAS  Google Scholar 

  • Knowles ID, Ramage AG (2000) Evidence that activation of central 5-HT2B receptors causes renal sympathoexcitation in anaesthetised rats. Br J Pharmacol 129:177–183

    PubMed  CAS  Google Scholar 

  • Krstic MK, Katusic ZS (1982) Divergent effects of cyproheptadine and R 50 656, a 5-HT2 antagonist, on the cardiovascular response to 5-hydroxytryptamine in rats. Eur J Pharmacol 85:225–227

    PubMed  CAS  Google Scholar 

  • Kuwasawa K, Hill R (1997) Evidence for cholinergic inhibitory and serotonergic excitatory neuromuscular transmission in the heart of the bivalve Mercenaria mercenaria. J Exp Biol 200:2123–2135

    PubMed  CAS  Google Scholar 

  • Lamping KG, Marcus ML, Dole WP (1985) Removal of the endothelium potentiates canine large coronary artery constrictor responses to 5-hydroxytryptamine in vivo. Circ Res 57:46–54

    PubMed  CAS  Google Scholar 

  • Launay JM, Herve P, Peoc’h K, Tournois C, Callebert J, Nebigil CG, Etienne N, Drouet L, Humbert M, Simonneau G, Maroteaux L (2002) Function of the serotonin 5-HT2B receptor in pulmonary hypertension. Nat Med 8:1129–1135

    PubMed  CAS  Google Scholar 

  • Lebrec D (1990) Portal hypertension: serotonin and pathogenesis. Cardiovasc Drugs Ther 4(Suppl 1):33–35

    PubMed  Google Scholar 

  • Leysen JE, Gommeren W, Heylen L, Luyten WH, van de Weyer I, Vanhoenacker P, Haegeman G, Schotte A, van Gompel P, Wouters R, Lesage AS (1996) Alniditan, a new 5-hydroxytryptamine1D agonist and migraine-abortive agent: ligand-binding properties of human 5-hydroxytryptamine1D alpha, human 5-hydroxytryptamine1D beta, and calf 5-hydroxytryptamine1D receptors investigated with [3H]5-hydroxytryptamine and [3H]alniditan. Mol Pharmacol 50:1567–1580

    PubMed  CAS  Google Scholar 

  • Maassen Van Den Brink A, Reekers M, Bax WA, Ferrari MD, Saxena PR (1997) Current and future anti-migraine drugs in the human isolated coronary artery. Cephalalgia 17:244–391

    Google Scholar 

  • MacLean MR (1999) Pulmonary hypertension, anorexigens and 5-HT: pharmacological synergism in action. Trends Pharmacol Sci 20:490–495

    PubMed  CAS  Google Scholar 

  • Marinesco S, Kolkman KE, Carew TJ (2004a) Serotonergic modulation in aplysia. I. Distributed serotonergic network persistently activated by sensitizing stimuli. J Neurophysiol 92:2468–2486

    PubMed  CAS  Google Scholar 

  • Marinesco S, Wickremasinghe N, Kolkman KE, Carew TJ (2004b) Serotonergic modulation in aplysia. II. Cellular and behavioral consequences of increased serotonergic tone. J Neurophysiol 92:2487–2496

    PubMed  CAS  Google Scholar 

  • Martin GR (1994) Vascular receptors for 5-hydroxytryptamine: distribution, function and classification. Pharmacol Ther 62:283–324

    PubMed  CAS  Google Scholar 

  • Martin GR, Leff P, Cambridge D, Barrett VJ (1987) Comparative analysis of two types of 5-hydroxytryptamine receptor mediating vasorelaxation: differential classification using tryptamines. Naunyn-Schmiedeberg’s Arch Pharmacol 336:365–373

    CAS  Google Scholar 

  • May A, Gijsman HJ, Wallnofer A, Jones R, Diener HC, Ferrari MD (1996) Endothelin antagonist bosentan blocks neurogenic inflammation, but is not effective in aborting migraine attacks. Pain 67:375–378

    PubMed  CAS  Google Scholar 

  • McCall RB, Clement ME (1994) Role of serotonin1A and serotonin2 receptors in the central regulation of the cardiovascular system. Pharmacol Rev 46:231–243

    PubMed  CAS  Google Scholar 

  • McCall RB, Huff R, Chio CL, Tenbrink R, Bergh CL, Ennis MD, Ghazal NB, Hoffman RL, Mimeisheri K, Higdon NR, Hall E (2002) Preclinical studies characterizing the anti migraine and cardiovascular effects of the selective 5 HT1D receptor agonist PNU-142633. Cephalalgia 22:799–806

    PubMed  CAS  Google Scholar 

  • McQueen DS (1990) Cardiovascular reflexes and 5-hydroxytryptamine. In: Saxena PR, Wallis DI, Wouters W, Bevan P (eds) Cardiovascular pharmacology of 5-hydroxytryptamine, prospective therapeutic applications. Kluwer, Dordrecht, pp 233–245

  • Molderings GJ, Fink K, Schlicker E, Göthert M (1987) Inhibition of noradrenaline release via presynaptic 5-HT1B receptors of the rat vena cava. Naunyn-Schmiedeberg’s Arch Pharmacol 336:245–250

    CAS  Google Scholar 

  • Molderings GJ, Göthert M, Fink K, Roth E, Schlicker E (1989) Inhibition of noradrenaline release in the pig coronary artery via a novel serotonin receptor. Eur J Pharmacol 164:213–222

    PubMed  CAS  Google Scholar 

  • Molderings GJ, Werner K, Likungu J, Göthert M (1990) Inhibition of noradrenaline release from the sympathetic nerves of the human saphenous vein via presynaptic 5-HT receptors similar to the 5-HT 1D subtype. Naunyn-Schmiedeberg’s Arch Pharmacol 342:371–377

    CAS  Google Scholar 

  • Montani D, Jais X, Ioos V, Sitbon O, Simonneau G, Humbert M (2004) Treatments for pulmonary arterial hypertension. Rev Med Interne 25:720–731

    Article  PubMed  CAS  Google Scholar 

  • Morán A, Velasco C, Martín ML, San Román L (1994) Pharmacological characterization of 5-HT receptors in parasympathetic innervation of rat heart. Eur J Pharmacol 252:161–166

    PubMed  Google Scholar 

  • Morecroft I, Heeley RP, Prentice HM, Kirk A, MacLean MR (1999) 5-hydroxytryptamine receptors mediating contraction in human small muscular pulmonary arteries: importance of the 5-HT1B receptor. Br J Pharmacol 128:730–734

    PubMed  CAS  Google Scholar 

  • Muñoz-Islas E, Gupta S, Jiménez-Mena LR, Lozano-Cuenca J, Sánchez-López A, Centurión D, Mehrotra S, Maassen Van Den Brink A, Villalón CM (2006) Donitriptan, but not sumatriptan, inhibits capsaicin-induced canine external carotid vasodilatation via 5-HT1B rather than 5-HT1D receptors. Br J Pharmacol 149:82–91

    PubMed  Google Scholar 

  • Nevens F, Pizcueta MP, Fernandez M, Bosch J, Rodes J (1991) Effects of ritanserin, a selective and specific S2-serotonergic antagonist, on portal pressure and splanchnic hemodynamics in portal hypertensive rats. Hepatology 14:1174–1178

    PubMed  CAS  Google Scholar 

  • Nishio H, Fujii A, Nakata Y (1996) Re-examination for pharmacological properties of serotonin-induced tachycardia in isolated guinea-pig atrium. Behav Brain Res 73:301–304

    PubMed  CAS  Google Scholar 

  • Nishio H, Morimoto Y, Hisaoka K, Nakata Y, Watanabe T (2002) 5-HT-induced, 5-HT3 receptor-mediated, and ruthenium red- and capsaicin-sensitive positive chronotropic effects in the isolated guinea pig atrium. Jpn J Pharmacol 89:242–248

    PubMed  CAS  Google Scholar 

  • Obi T, Kabeyama A, Nishio A (1994) Equine coronary artery responds to 5-hydroxytryptamine with relaxation in vitro. J Vet Pharmacol Ther 17:218–225

    PubMed  CAS  Google Scholar 

  • Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U, Pollentier S, Lesko LM (2004) Calcitonin gene-related peptide receptor antagonist BIBN4096 BS for the acute treatment of migraine. N Engl J Med 350:1104–1110

    PubMed  CAS  Google Scholar 

  • Page IH (1958) Serotonin (5-hydroxytryptamine); the last four years. Physiol Rev 38:227–335

    Google Scholar 

  • Page IH, McCubbin JW (1953) Modification of vascular response to serotonin by drugs. Am J Physiol 174:436–444

    PubMed  CAS  Google Scholar 

  • Peroutka SJ (2005) Neurogenic inflammation and migraine: implications for the therapeutics. Mol Interv 5:304–311

    PubMed  CAS  Google Scholar 

  • Peroutka SJ, Snyder SH (1979) Multiple serotonin receptors: differential binding of . [. 3H]-5-hydroxytryptamine, [3H]-lysergic acid diethylamide and [3H]-spiroperidol. Mol Pharmacol 16:687–699

    PubMed  CAS  Google Scholar 

  • Qvigstad E, Brattelid T, Sjaastad I, Andressen KW, Krobert KA, Birkeland JA, Sejersted OM, Kaumann AJ, Skomedal T, Osnes JB, Levy FO (2005a) Appearance of a ventricular 5-HT4 receptor-mediated inotropic response to serotonin in heart failure. Cardiovasc Res 65:869–878

    PubMed  CAS  Google Scholar 

  • Qvigstad E, Sjaastad I, Brattelid T, Nunn C, Swift F, Birkeland JA, Krobert KA, Andersen GO, Sejersted OM, Osnes JB, Levy FO, Skomedal T (2005b) Dual serotonergic regulation of ventricular contractile force through 5-HT2A and 5-HT4 receptors induced in the acute failing heart. Circ Res 97:268–276

    PubMed  CAS  Google Scholar 

  • Ramage AG (2001) Central cardiovascular regulation and 5-hydroxytryptamine receptors. Brain Res Bull 56:425–439

    PubMed  CAS  Google Scholar 

  • Rapport MM (1949) Serum vasoconstrictor (serotonin). V. The presence of creatinine in the complex: a proposed study of the vasoconstrictor principle. J Biol Chem 180:961–969

    CAS  PubMed  Google Scholar 

  • Rapport MM, Green AA, Page IH (1948a) Partial purification of the vasoconstrictor in beef serum. J Biol Chem 174:735–741

    CAS  PubMed  Google Scholar 

  • Rapport MM, Green AA, Page IH (1948b) Serum vasoconstrictor (serotonin). IV. Isolation and characterization. J Biol Chem 176:1243–1251

    CAS  PubMed  Google Scholar 

  • Razzaque Z, Heald MA, Pickard JD, Maskell L, Beer MS, Hill RG, Longmore J (1999) Vasoconstriction in human isolated middle meningeal arteries: determining the contribution of 5-HT1B- and 5-HT1F-receptor activation. Br J Clin Pharmacol 47:75–82

    PubMed  CAS  Google Scholar 

  • Reneman RS, van der Starre PJ (1990) Serotonin and acute cardiovascular disorders. Cardiovasc Drugs Ther 4(Suppl 1):19–25

    PubMed  Google Scholar 

  • Robertson JI (1990) Carcinoid syndrome and serotonin: therapeutic effects of ketanserin. Cardiovasc Drugs Ther 4(Suppl 1):53–58

    PubMed  Google Scholar 

  • Robertson JI (1991) Serotonergic type-2 (5-HT2) antagonists: a novel class of cardiovascular drugs. J Cardiovasc Pharmacol 17(Suppl 5):S48–S53

    PubMed  CAS  Google Scholar 

  • Rummo G, Bordoni L (1889) Toxicité du sérum du sang de l’homme et des animaux à l’état normal et dans les maladies par infection. Archiv De Biologie Italienne XII:XLVI–XLVII

    Google Scholar 

  • Sánchez-López A, Centurión D, Vázquez E, Arulmani U, Saxena PR, Villalón CM (2003) Pharmacological profile of the 5-HT-induced inhibition of cardioaccelerator sympathetic outflow in pithed rats: correlation with 5-HT1 and putative 5-ht5A/5B receptors. Br J Pharmacol 140:725–735

    PubMed  Google Scholar 

  • Sánchez-López A, Centurión D, Vázquez E, Arulmani U, Saxena PR, Villalón CM (2004) Further characterization of the 5-HT1 receptors mediating cardiac sympatho-inhibition in pithed rats: pharmacological correlation with the 5-HT1B and 5-HT1D subtypes. Naunyn-Schmiedeberg’s Arch Pharmacol 369:220–227

    Google Scholar 

  • Saxena PR (1972) The effects of antimigraine drugs on the vascular responses by 5-hydroxytryptamine and related biogenic substances on the external carotid bed of dogs: Possible pharmacological implications to their antimigraine action. Headache 12:44–54

    PubMed  CAS  Google Scholar 

  • Saxena PR (1995) Serotonin receptors: subtypes, functional responses and therapeutic relevance. Pharmacol Ther 66:339–368

    PubMed  CAS  Google Scholar 

  • Saxena PR, De Vries P, Villalón CM (1998) 5-HT1-like receptors: a time to bid goodbye. Trends Pharmacol Sci 19:311–316

    PubMed  CAS  Google Scholar 

  • Saxena PR, Ferrari MD (1996) Pharmacology of antimigraine 5-HT1D receptor agonists. Expert Opin Invest Drugs 5:581–593

    Article  CAS  Google Scholar 

  • Saxena PR, Lawang A (1985) A comparison of cardiovascular and smooth muscle effects of 5-hydroxytryptamine and 5-carboxamidotryptamine, a selective agonist of 5-HT1 receptors. Arch Int Pharmacodyn Ther 277:235–252

    PubMed  CAS  Google Scholar 

  • Saxena PR, Villalón CM (1990) Cardiovascular effects of serotonin agonists and antagonists. J Cardiovasc Pharmacol 15(Suppl 7):S17–S34

    PubMed  CAS  Google Scholar 

  • Schoeffter P, Hoyer D (1990) 5-Hydroxytryptamine (5-HT)-induced endothelium-dependent relaxation of pig coronary arteries is mediated by 5-HT receptors similar to the 5- HT1D receptor subtype. J Pharmacol Exp Ther 252:387–395

    PubMed  CAS  Google Scholar 

  • Schoemaker RG, Du XY, Bax WA, Bos E, Saxena PR (1993) 5-Hydroxytryptamine stimulates human isolated atrium but not ventricle. Eur J Pharmacol 230:103–105

    PubMed  CAS  Google Scholar 

  • Scrogin KE (2003) 5-HT1A receptor agonist 8-OH-DPAT acts in the hindbrain to reverse the sympatholytic response to severe hemorrhage. Am J Physiol Regul Integr Comp Physiol 284:R782–R791

    PubMed  CAS  Google Scholar 

  • Scrogin KE, Johnson AK, Brooks VL (2000) Methysergide delays the decompensatory responses to severe hemorrhage by activating 5-HT1A) receptors. Am J Physiol Regul Integr Comp Physiol 279:R1776–R1786

    PubMed  CAS  Google Scholar 

  • Shepheard SL, Jordan D, Ramage AG (1994) Comparison of the effects of IVth ventricular administration of some tryptamine analogues with those of 8-OH-DPAT on autonomic outflow in the anaesthetized cat. Br J Pharmacol 111:616–624

    PubMed  CAS  Google Scholar 

  • Shepheard SL, Williamson DJ, Williams J, Hill RG, Hargreaves RJ (1995) Comparison of the effects of sumatriptan and the NK1 antagonist CP-99,994 on plasma extravasation in Dura mater and c-fos mRNA expression in trigeminal nucleus caudalis of rats. Neuropharmacology 34:255–261

    PubMed  CAS  Google Scholar 

  • Silver B, Weber J, Fisher M (1996) Medical therapy for ischemic stroke. Clin Neuropharmacol 19:101–128

    PubMed  CAS  Google Scholar 

  • Skingle M, Beattie DT, Scopes DI, Starkey SJ, Connor HE, Feniuk W, Tyers MB (1996) GR127935: a potent and selective 5-HT1D receptor antagonist. Behav Brain Res 73:157–161

    PubMed  CAS  Google Scholar 

  • Sumner MJ (1991) Characterization of the 5-HT receptor mediating endothelium-dependent relaxation in porcine vena cava. Br J Pharmacol 102:938–942

    PubMed  CAS  Google Scholar 

  • Thomas DR (2006) 5-ht5A receptors as a therapeutic target. Pharmacol Ther 111:707–714

    PubMed  CAS  Google Scholar 

  • Thor KB, Nickolaus S, Helke CJ (1993) Autoradiographic localization of 5-hydroxytryptamine1A, 5-hydroxytryptamine1B and 5-hydroxytryptamine1C/2 binding sites in the rat spinal cord. Neuroscience 55:235–252

    PubMed  CAS  Google Scholar 

  • Tramontana M, Giuliani S, Del BE, Lecci A, Maggi CA, Evangelista S, Geppetti P (1993) Effects of capsaicin and 5-HT3 antagonists on 5-hydroxytryptamine-evoked release of calcitonin gene-related peptide in the guinea-pig heart. Br J Pharmacol 108:431–435

    PubMed  CAS  Google Scholar 

  • Valdivia LF, Centurión D, Arulmani U, Saxena PR, Villalón CM (2004) 5-HT1B receptors, α2A/2C- and, to a lesser extent, α1-adrenoceptors mediate the external carotid vasoconstriction to ergotamine in vagosympathectomized dogs. Naunyn-Schmiedeberg’s Arch Pharmacol 370:46–53

    CAS  Google Scholar 

  • Van Gelderen EM, Saxena PR (1992) Effect of N(G)-nitro-L-arginine methyl ester on the hypotensive and hypertensive responses to 5-hydroxytryptamine in pithed rats. Eur J Pharmacol 222:185–191

    PubMed  Google Scholar 

  • Van Nueten JM (1983) 5-hydroxytryptamine and precapillary vessels. Fed Proc 42:223–227

    PubMed  Google Scholar 

  • Van Nueten JM, Janssen PA, Van Beek J, Xhonneux R, Verbeuren TJ, Vanhoutte PM (1981) Vascular effects of ketanserin (R 41 468), a novel antagonist of 5-HT2 serotonergic receptors. J Pharmacol Exp Ther 218:217–230

    PubMed  Google Scholar 

  • Vialli M, Erspamer V (1933) Cellule enterocromaffine e cellule basigranulose acidofile nei vertebrati. Ztschr Zellforsch 19:743–773

    Google Scholar 

  • Villalón CM, Centurión D, Bravo G, De Vries P, Saxena PR, Ortiz MI (2000) Further pharmacological analysis of the orphan 5-HT receptors mediating feline vasodepressor responses: close resemblance to the 5-HT7 receptor. Naunyn-Schmiedeberg’s Arch Pharmacol 361:665–671

    Google Scholar 

  • Villalón CM, Centurión D, Fernández MM, Morán A, Sánchez-López A (1999a) 5-Hydroxytryptamine inhibits the tachycardia induced by selective preganglionic sympathetic stimulation in pithed rats. Life Sci 64:1839–1847

    PubMed  Google Scholar 

  • Villalón CM, Centurión D, Luján-Estrada M, Terrón JA, Sánchez-López A (1997a) Mediation of 5-HT-induced external carotid vasodilatation in GR 127935- pretreated vagosympathectomized dogs by the putative 5-HT7 receptor. Br J Pharmacol 120:1319–1327

    PubMed  Google Scholar 

  • Villalón CM, Centurión D, Rabelo G, De Vries P, Saxena PR, Sánchez-López A (1998) The 5-HT1-like receptors mediating inhibition of sympathetic vasopressor outflow in the pithed rat: operational correlation with the 5-HT1A, 5-HT1B and 5-HT1D subtypes. Br J Pharmacol 124:1001–1011

    PubMed  Google Scholar 

  • Villalón CM, Centurión D, Valdivia LF, De Vries P, Saxena PR (2002) An introduction to migraine: from ancient treatment to functional pharmacology and antimigraine therapy. Proc West Pharmacol Soc 45:199–210

    PubMed  Google Scholar 

  • Villalón CM, Centurión D, Willems EW, Arulmani U, Saxena PR, Valdivia LF (2004) 5-HT1B receptors and α2A/2C. -adrenoceptors mediate external carotid vasoconstriction to dihydroergotamine. Eur J Pharmacol 484:287–290

    PubMed  Google Scholar 

  • Villalón CM, Contreras J, Ramírez-San Juan E, Castillo C, Perusquía M, López-Muñoz FJ, Terrón JA (1995a) 5-Hydroxytryptamine inhibits pressor responses to preganglionic sympathetic nerve stimulation in pithed rats. Life Sci 57:803–812

    PubMed  Google Scholar 

  • Villalón CM, Contreras J, Ramírez-San Juan E, Castillo C, Perusquía M, Terrón JA (1995b) Characterization of prejunctional 5-HT receptors mediating inhibition of sympathetic vasopressor responses in the pithed rat. Br J Pharmacol 116:3330–3336

    PubMed  Google Scholar 

  • Villalón CM, De Vries P, Rabelo G, Centurión D, Sánchez-López A, Saxena PR (1999b) Canine external carotid vasoconstriction to methysergide, ergotamine and dihydroergotamine: role of 5-HT1B/1D receptors and α2-adrenoceptors. Br J Pharmacol 126:585–594

    PubMed  Google Scholar 

  • Villalón CM, De Vries P, Saxena PR (1997b) Serotonin receptors as cardiovascular targets. Drug Discov Today 2:294–300

    Google Scholar 

  • Villalón CM, Den Boer MO, Heiligers JP, Saxena PR (1990) Mediation of 5-hydroxytryptamine-induced tachycardia in the pig by the putative 5-HT4 receptor. Br J Pharmacol 100:665–667

    PubMed  Google Scholar 

  • Villalón CM, Den Boer MO, Heiligers JP, Saxena PR (1991) Further characterization, by use of tryptamine and benzamide derivatives, of the putative 5-HT4 receptor mediating tachycardia in the pig. Br J Pharmacol 102:107–112

    PubMed  Google Scholar 

  • Villalón CM, Heiligers JP, Centurión D, De Vries P, Saxena PR (1997c) Characterization of putative 5-HT7 receptors mediating tachycardia in the cat. Br J Pharmacol 121:1187–1195

    PubMed  Google Scholar 

  • Villalón CM, Sánchez-López A, Centurión D (1996) Operational characteristics of the 5-HT1-like receptors mediating external carotid vasoconstriction in vagosympathectomized dogs: close resemblance to the 5-HT1D receptor subtype. Naunyn-Schmiedeberg’s Arch Pharmacol 354:550–556

    Google Scholar 

  • Villalón CM, Sánchez-López A, Centurión D, Saxena PR (2001) Unravelling the pharmacological profile of the canine external carotid vasodilator “5-HT1-like” receptors: coexistence of sympatho-inhibitory 5-HT1B and postjunctional 5-HT7 receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 363:73–80

    Google Scholar 

  • Villalón CM, Terrón JA, Hong E (1993) Role of 5-HT1-like receptors in the increase in external carotid blood flow induced by 5-hydroxytryptamine in the dog. Eur J Pharmacol 240:9–20

    PubMed  Google Scholar 

  • Watts SW, Fink GD (1999) 5-HT2B-receptor antagonist LY-272015 is antihypertensive in DOCA-salt-hypertensive rats. Am J Physiol 276:H944–H952

    PubMed  CAS  Google Scholar 

  • Weiss O (1896) Ueber die Wirkungen von Blutserum-Injectionen ins Blut. Archiv für die Gesamte Physiologie des Menschen und der Thiere LXV:215–230

    Google Scholar 

  • Wilson H, Coffman WJ, Cohen ML (1990) 5-Hydroxytryptamine3 receptors mediate tachycardia in conscious instrumented dogs. J Pharmacol Exp Ther 252:683–688

    PubMed  CAS  Google Scholar 

  • Yu XJ, Cutrer FM, Moskowitz MA, Waeber C (1997) The 5-HT1D receptor antagonist GR-127,935 prevents inhibitory effects of sumatriptan but not CP-122,288 and 5-CT on neurogenic plasma extravasation within guinea pig dura mater. Neuropharmacology 36:83–91

    PubMed  CAS  Google Scholar 

  • Yusof AP, Coote JH (1988) Excitatory and inhibitory actions of intrathecally administered 5-hydroxytryptamine on sympathetic nerve activity in the rat. J Auton Nerv Syst 22:229–236

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to all our colleagues who collaborated in the studies cited in this review. We are also indebted to CONACyT (Mexico) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. Villalón.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villalón, C.M., Centurión, D. Cardiovascular responses produced by 5-hydroxytriptamine:a pharmacological update on the receptors/mechanisms involved and therapeutic implications. Naunyn-Schmied Arch Pharmacol 376, 45–63 (2007). https://doi.org/10.1007/s00210-007-0179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-007-0179-1

Keywords

Navigation