Skip to main content

Advertisement

Log in

Treatment of the overactive bladder syndrome with muscarinic receptor antagonists - a matter of metabolites?

  • Editorial
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Antagonists of muscarinic acetylcholine receptors, such as darifenacin, oxybutynin, propiverine, solifenacin, tolterodine, and trospium, are the mainstay of the treatment of the overactive bladder syndrome. Fesoterodine is a newer drug awaiting regulatory approval. We briefly review the pharmacological activity of their metabolites and discuss how active metabolites may contribute to their efficacy and tolerability in vivo. Except for trospium, and perhaps solifenacin, all of the above drugs form active metabolites, and their presence and activity need to be taken into consideration when elucidating relationships between pharmacokinetics and pharmacodynamics of these drugs. Moreover, the ratios between parent compounds and metabolites may differ depending on genotype of the metabolizing enzymes, concomitant medication, and/or drug formulation. Differential generation of active metabolites of darifenacin or tolterodine are unlikely to influence the overall clinical profile of these drugs in a major way because the active metabolites exhibit a similar pharmacological profile as the parent compound. In contrast, metabolites of oxybutynin and propiverine may behave quantitatively or even qualitatively differently from their parent compounds and this may have an impact on the overall clinical profile of these drugs. We conclude that more comprehensive studies of drug metabolites are required for an improved understanding of their clinical effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abrams P, Cardozo L, Fall M, Griffiths D, Rosier P, Ulmsten U, van Kerrebroeck P, Victor A, Wein A (2002) The standardisation of terminology of lower urinary tract function: report from the standardisation sub-committee of the International Continence Society. Neurourol Urodyn 21:167–178

    Article  PubMed  Google Scholar 

  • Beaumont KC, Cussans NJ, Nichols DJ, Smith DA (1998) Pharmacokinetics and metabolism of darifenacin in the mouse, rat, dog and man. Xenobiotica 28:63–75

    Article  PubMed  CAS  Google Scholar 

  • Borchert VE, Czyborra P, Fetscher C, Goepel M, Michel MC (2004) Extracts from Rhois aromatica and Solidaginis vigaurea inhibit rat and human bladder contraction. Naunyn-Schmiedeberg’s Arch Pharmacol 369:281–286

    Article  CAS  Google Scholar 

  • Brynne N, Stahl MM, Hallen B, Edlund PO, Palmer L, Hoglund P, Gabrielsson J (1997) Pharmacokinetics and pharmacodynamics of tolterodine in man: a new drug for the treatment of urinary bladder overactivity. Int J Clin Pharmacol Ther 35:287–295

    PubMed  CAS  Google Scholar 

  • Brynne N, Dalen P, Alvan G, Bertilsson L, Gabrielsson J (1998) Influence of CYP2D6 polymorphism on the pharmacokinetics and pharmacodynamics of tolterodine. Clin Pharmacol Ther 63:529–539

    Article  PubMed  CAS  Google Scholar 

  • Burk O, Wojnowski L (2004) Cytochrome P450 3A4 and their regulation. Naunyn-Schmiedeberg’s Arch Pharmacol 369:105–124

    Article  CAS  Google Scholar 

  • Buyse G, Waldeck K, Verpoorten C, Björk H, Casaer P, Andersson K-E (1998) Intravesical oxybutynin for neurogenic bladder dysfunction: less systemic side effects due to reduced first pass metabolism. J Urol 160:892–896

    Article  PubMed  CAS  Google Scholar 

  • Chapple C, Khullar V, Gabriel Z, Dooley JA (2005) The effects of antimuscarinic treatments in overactive bladder: a systematic review and meta-analysis. Eur Urol 48:5–26

    Article  PubMed  CAS  Google Scholar 

  • Cole P (2004) Fesoterodine, an advanced antimuscarinic for the treatment of overactive bladder: a safety update. Drugs Fut 29:715–720

    Article  CAS  Google Scholar 

  • Davila GW, Daugherty CA, Sanders SW (2001) A short-term, multicenter, randomized double-blind dose titration study of the efficacy and anticholingeric side effects of transdermal compared to immediate release oral oxybutynin treatment of patients with urge urinary incontinence. J Urol 166:140–145

    Article  PubMed  CAS  Google Scholar 

  • Dmochowski R, Chen A, Sathyan G, MacDiarmid S, Gidwani S, Gupta S (2005a) Effect of the proton pump inhibitor omeprazole on the pharmacokinetics of extended-release formulations of oxybutynin and tolterodine. J Clin Pharmacol 45:961–968

    Article  PubMed  CAS  Google Scholar 

  • Dmochowski RR, Nitti V, Staskin D, Luber K, Appell R, Davila GW (2005b) Transdermal oxybutynin in the treatment of adults with overactive bladder: combined results of two randomized clinical trials. World J Urol 23:263–270

    Article  PubMed  CAS  Google Scholar 

  • Doroshyenko O, Jetter A, Odenthal KP, Fuhr U (2005) Clinical pharmacokinetics of trospium chloride. Clin Pharmacokin 44:701–720

    Article  CAS  Google Scholar 

  • Douchamps J, Derenne F, Stockis A, Gangji D, Juvent M, Herchhuelz A (1988) The pharmacokinetics of oxybutynin in man. Eur J Clin Pharmacol 35:515–520

    Article  PubMed  CAS  Google Scholar 

  • Gerloff T (2004) Impact of genetic polymorphisms in transmembrane carrier-systems on drug and xenobiotic distribution. Naunyn-Schmiedeberg’s Arch Pharmacol 369:69–77

    Article  CAS  Google Scholar 

  • Guay DRP (2003) Clinical pharmacokinetics of drugs used to treat urge incontinence. Clin Pharmacokin 42:1243–1285

    Article  CAS  Google Scholar 

  • Gupta SK, Sathyan G (1999) Pharmacokinetics of an oral once-a-day controlled-release oxybutynin formulation compared with immediate-release oxybutynin. J Clin Pharmacol 39:289–296

    PubMed  CAS  Google Scholar 

  • Haustein KO, Huller G (1988) On the pharmacokinetics and metabolism of propiverine in man. Eur J Drug Metab Pharmacokinet 13:81–90

    Article  PubMed  CAS  Google Scholar 

  • Hegde SS (2006) Muscarinic receptors in the bladder: from basic research to therapeutics. Br J Pharmacol 147:S80–S87

    Article  PubMed  CAS  Google Scholar 

  • Hughes KM, Lang JCT, Lazare R, Gordon D, Stanton SL, Malone-Lee J, Geraint M (1992) Measurement of oxybutynin and its N-desethyl metabolite in plasma, and its application to pharmacokinetic studies in young, elderly and frail elderly volunteers. Xenobiotica 22:859–869

    Article  PubMed  CAS  Google Scholar 

  • Kerbusch T, Milligan PA, Karlsson MO (2003) Assessment of the relative in vivo potency of the hydroxylated metabolite of darifenacin in its ability to decrease salivary flow using pooled population pharmacokinetic-pharmacodynamic data. Br J Clin Pharmacol 57:170–180

    Article  CAS  Google Scholar 

  • Krauwinkel WJ, Smulders RA, Mulder H, Swart PJ, Taekema-Roelvink ME (2005) Effect of age on the pharmacokinetics of solifenacin in men and women. Int J Clin Pharmacol Ther 43:227–238

    PubMed  CAS  Google Scholar 

  • Lukkari E, Juhakoski A, Aranko K, Neuvonen PJ (1997) Itraconazole moderately increases serum concentrations of oxybutynin but does not affect those of the active metabolite. Eur J Clin Pharmacol 52:403–406

    Article  PubMed  CAS  Google Scholar 

  • Lukkari E, Taavitsainen P, Juhakoski A, Pelkonen O (1998) Cytochrome P450 specificity of metabolism and interactions of oxybutynin in human liver microsomes. Pharmacol Toxicol 82:161–166

    Article  PubMed  CAS  Google Scholar 

  • Madersbacher H, Mürtz G (2001) Efficacy, tolerability and safety profile of propiverine in the treatment of the overactive bladder (non-neurogenic and neurogenic). World J Urol 19:324–335

    Article  PubMed  CAS  Google Scholar 

  • Michel MC (2002) A benefit-risk assessment of extended-release oxybutynin. Drug Safety 25:867–876

    Article  PubMed  CAS  Google Scholar 

  • Michel MC, Yanagihara T, Minematsu T, Swart PJ, Smulders RA (2005) Disposition and metabolism of solifenacin in humans. Br J Clin Pharmacol 59:647

    Article  Google Scholar 

  • Milsom I, Abrams P, Cardozo L, Roberts RG, Thüroff JW, Wein AJ (2001) How widespread are the symptoms of an overactive bladder and how are they managed? A population-based prevalence study. BJU Int 87:760–766

    Article  PubMed  CAS  Google Scholar 

  • Müller C, Siegmund W, Huupponen R, Kaila T, Franke G, Iisalo E, Zschiesche M (1993) Kinetics of propiverine as assessed by radioreceptor assay in poor and extensive metabolizers of debrisoquine. Eur J Drug Metab Pharmacokinet 18:265–272

    Article  PubMed  Google Scholar 

  • Nilvebrant L (2002) Tolterodine and its active 5-hydroxymethyl metabolite: pure muscarinic receptor antagonists. Pharmacol Toxicol 90:260–267

    Article  PubMed  CAS  Google Scholar 

  • Nilvebrant L, Hallen B, Larsson G (1997) Tolterodine - a new bladder selective muscarinic receptor antagonist: preclinical pharmacological and clinical data. Life Sci 60:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Oki T, Kimura R, Saito M, Miyagawa I, Yamada S (2004) Demonstration of bladder selective muscarinic receptor binding by intravesical oxybutynin to treat overactive bladder. J Urol 172:2059–2064

    Article  PubMed  CAS  Google Scholar 

  • Oki T, Kawashima A, Uchida M, Yamada S (2005a) In vivo demonstration of muscarinic receptor binding activity of N-desethyl-oxybutynin, active metabolite of oxybutynin. Life Sci 76:2445–2456

    Article  PubMed  CAS  Google Scholar 

  • Oki T, Sato S, Miyata K, Yamada S (2005b) Muscarinic receptor binding, plasma concentration and inhibition of salivation after oral administration of a novel antimuscarinic agent, solifenacin succinate in mice. Br J Pharmacol 145:219–227

    Article  PubMed  CAS  Google Scholar 

  • Oki T, Maruyama S, Takagi Y, Yamamura HI, Yamada S (2006a) Characterization of muscarinic receptor binding and inhibition of salivation after oral administration of tolterodine in mice. Eur J Pharmacol 529:157–163

    Article  PubMed  CAS  Google Scholar 

  • Oki T, Toma-Okura A, Yamada S (2006b) Advantages for transdermal over oral oxybutynin to treat overactive bladder: muscarinic receptor binding, plasma drug concentration, and salivary secretion. J Pharmacol Exp Ther 316:1137–1145

    Article  PubMed  CAS  Google Scholar 

  • Olsson B, Szamosi J (2001) Multiple dose pharmacokinetics of a new once daily extended release tolterodine formulation versus immediate release formulation. Clin Pharmacokin 40:227–235

    Article  CAS  Google Scholar 

  • Postlind H, Dnielson A, Lindgren A, Andersson SHG (1998) Tolterodine, a new muscarinic receptor antagonist, is metabolized by cytochromes P450 2D6 and 3A in human liver microsomes. Drug Metab Dispos 26:289–293

    PubMed  CAS  Google Scholar 

  • Sathyan G, Chancellor MB, Gupta SK (2001a) Effects of OROS controlled-release delivery on the pharmacokinetics and pharmacodynamics of oxybutynin chloride. Br J Clin Pharmacol 52:409–418

    Article  PubMed  CAS  Google Scholar 

  • Sathyan G, Hu W, Gupta SK (2001b) Lack of effect of food on the pharmacokinetics of an extended-release oxybutynin formulation. J Clin Pharmacol 41:187–192

    Article  PubMed  CAS  Google Scholar 

  • Schneider T, Hein P, Michel-Reher M, Michel MC (2005) Effects of ageing on muscarinic receptor subtypes and function in rat urinary bladder. Naunyn-Schmiedeberg’s Arch Pharmacol 372:71–78

    Article  CAS  Google Scholar 

  • Shibukawa A, Yoshikawa Y, Kimura T, Kuroda Y, Nakagawa T, Wainer IW (2002) Binding study of desethyloxybutynin using high-performance frontal analysis method. J Chromatography 768:189–197

    Article  CAS  Google Scholar 

  • Siepmann M, Nokhodian A, Thümmler D, Kirch W (1998) Pharmacokinetics and safety of propiverine in patients with fatty liver disease. Eur J Clin Pharmacol 54:767–771

    Article  PubMed  CAS  Google Scholar 

  • Skerjanec A (2006) The clinical pharmacokinetics of darifenacin. Clin Pharmacokin 45:325–350

    Article  CAS  Google Scholar 

  • Uchida M, Koganei M, Murata N, Yamaji T (2004) Effects of 4-ethylamino-2-butynyl(2-cyclohexyl-2-phenyl)glycolate hydrochloride, a metabolite of oxybutynin, on bladder specimens and rhythmic contraction in rats in comparison with oxybutynin. J Pharmacol Sci 94:122–128

    Article  PubMed  CAS  Google Scholar 

  • van Kerrebroeck P, Kreder K, Jonas U, Zinner N, Wein A (2001) Tolterodine once-daily: superior efficacy and tolerability in the treatment of overactive bladder. Urology 57:414–421

    Article  PubMed  Google Scholar 

  • Waldeck K, Larsson B, Andersson K-E (1997) Comparison of oxybutynin and its active metabolite, N-desethyl-oxybutynin, in the human detrusor and parotid gland. J Urol 157:1093–1097

    Article  PubMed  CAS  Google Scholar 

  • Wuest M, Braeter M, Schoeberl C, Ravens U (2005a) Juvenile pig detrusor: effects of propiverine and three of its metabolites. Eur J Pharmacol 524:145–148

    Article  PubMed  CAS  Google Scholar 

  • Wuest M, Hecht J, Christ T, Braeter M, Schoeberl C, Hakenberg OW, Wirth MP, Ravens U (2005b) Pharmacodynamics of propiverine and three of its metabolites on detrusor contraction. Br J Pharmacol 145:608–619

    Article  PubMed  CAS  Google Scholar 

  • Wuest M, Morgenstern K, Graf E-M, Braeter M, Hakenberg OW, Wirth MP, Ravens U (2005c) Cholinergic and purinergic responses in isolated human detrusor in relation to age. J Urol 173:2182–2189

    Article  PubMed  CAS  Google Scholar 

  • Wuest M, Weiss A, Waelbrock M, Braeter M, Kelly L-U, Hakenberg OW, Ravens U (2006) Propiverine and metabolites: differences in binding to muscarinic receptors and in functional models of detrusor contraction. Naunyn-Schmiedeberg’s Arch Pharmacol (in press). DOI 10.1007/s00210-006-103-0

  • Yaich M, Popon M, Medard Y, Aigrain EJ (1998) In-vitro cytochrome P450 dependent metabolism of oxybutynin to N-deethyloxybutynin in humans. Pharmacogenetics 8:449–451

    Article  PubMed  CAS  Google Scholar 

  • Yono M, Yoshida M, Wada Y, Kikukawa H, Takahashi W, Inadome A, Seshita H, Ueda S (1999) Pharmacological effects of tolterodine on human isolated urinary bladder. Eur J Pharmacol 368:223–230

    Article  PubMed  CAS  Google Scholar 

  • Zanger UM, Raimundo S, Eichelbaum M (2004) Cytochrome P450 2D6: overview and update on pharmacology, genetics, biochemistry. Naunyn-Schmiedeberg’s Arch Pharmacol 369:23–37

    Article  CAS  Google Scholar 

  • Zobrist RH, Schmid B, Feick A, Quan D, Sanders SW (2001) Pharmacokinetics of the R- and S-enantiomers of oxybutynin and N-desethyloxybutynin following oral and transdermal administration of the racemate in healthy volunteers. Pharm Res 18:1029–1034

    Article  PubMed  CAS  Google Scholar 

  • Zobrist RH, Quan D, Thomas HM, Stanworth S, Sanders SW (2003) Pharmacokinetics and metabolism of transdermal oxybutynin: in vitro and in vivo performance of a novel delivery system. Pharm Res 20:103–109

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest statement

In the therapeutic area of OAB, M.C.M. has received research funds and/or consultancy or lecture honoraria within the last five years from the following companies: 4SC, Apogepha, Astellas, Bayer, Boehringer Ingelheim, Pfizer and Theravance. S.S.H. is an employee of a company with an interest in OAB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin C. Michel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, M.C., Hegde, S.S. Treatment of the overactive bladder syndrome with muscarinic receptor antagonists - a matter of metabolites?. Naunyn-Schmied Arch Pharmacol 374, 79–85 (2006). https://doi.org/10.1007/s00210-006-0105-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-006-0105-y

Keywords

Navigation