Skip to main content
Log in

New insights into tumor-host interactions in lymphoma metastasis

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The metastatic process is characterized by a complex series of sequential steps involving constant interactions (mutual “cross-talks”) of metastasized tumor cells with their microenvironment (lymphocyte, macrophages, endothelial cells, etc.) in target organs. These interactions determine the outcome of metastasis (either the eradication of metastatic cells or their increased proliferation and invasion). Recently developed methods of tumor and host cell analysis at the molecular level allow better elucidation of molecular mechanisms of metastasis and of immune mechanisms involved in antitumor responses. Direct modulation of these processes will probably increase the success of clinical cancer treatment. Here we review data (a) on the expression of some costimulatory (MHC class II, CD80, sialoadhesin) and adhesion (LFA1, ICAM-1, VLA-4) molecules on both metastasized tumor cells and host cells and (b) on the production of a cytotoxic molecule, nitric oxide, by in situ activated Kupffer and endothelial cells in the process of liver metastasis. This study was performed with well-characterized murine ESbL T lymphoma cells transduced with the bacterial lacZ gene, which allows detection and quantification of metastases at the single cell level throughout lymphoma growth and metastasis. Experimental results are discussed in the context of recent literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APC :

Antigen-presenting cells

hCRP :

Human C-reactive protein

ICAM :

Intercellular adhesion molecule

IFN :

Interferon

IL :

Interleukin

iNOS :

Inducible NO synthase

LFA :

Leukocyte function associated antigen

SER :

Sheep erythrocyte receptor

TA :

Tumor-associated rejection antigens

TNF :

Tumor necrosis factor

VCAM :

Vascular cell adhesion molecule

VLA :

Very late activated antigen

References

  1. Weiss L (1985) Principles of metastasis. Academic, Orlando

    Google Scholar 

  2. Fidler IJ, Balch KI (1987) The biology of cancer metastasis and implications for therapy. Curr Probl Surg 24:131–209

    CAS  PubMed  Google Scholar 

  3. Nicolson GL (1993) Cancer progression and growth: relationship of paracrine and autocrine growth mechanisms to organ preference of metastasis. Exp Cell Res 204:171–180

    Google Scholar 

  4. Mareel MM, Van Roy FM, Bracke ME (1993) How and when do tumor cells metastasize? Crit Rev Oncogenesis 4:559–594

    Google Scholar 

  5. Price JE (1994) Host-tumor interactions in the progression of breast cancer metastasis. In Vivo 8:145–154

    Google Scholar 

  6. Nicolson GL (1989) Organ specificity of tumor metastasis: role of preferential adhesion, invasion, and growth of malignant cells at specific secondary sites. Cancer Metastasis Rev 7:143–188

    Google Scholar 

  7. Fidler IJ (1990) Host and tumour factors in cancer metastasis. Eur J Clin Invest 20:481–486

    Google Scholar 

  8. Whiteside TL, Herberman RB (1992) Extravasation of antitumor effector cells. Invasion Metastasis 12:128–146

    Google Scholar 

  9. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet I:571–573

    Google Scholar 

  10. Schirrmacher V (1992) Immunity and metastasis: In situ activation of protective T-cells by virus modified cancer vaccines. Cancer Surv 13:129–154

    Google Scholar 

  11. Den Otter W (1986) Immune surveillance and natural resistance: an evaluation. Cancer Immunol Immunother 21:85–92

    Google Scholar 

  12. Whitworth PW, Pak CC, Esgro J, Kleinerman ES, Fidler IJ (1990) Macrophages and cancer. Cancer Metastasis Rev 8:319–351

    Google Scholar 

  13. Belloni PN, Tressler RJ (1990) Microvascular endothelial cell heterogeneity: interactions with leucocytes and tumor cells. Cancer Metastasis Rev 8:353–389

    Google Scholar 

  14. Miller FR (1993) Immune mechanisms in the sequential steps of metastasis. Crit Rev Oncogenesis 4:293–311

    Google Scholar 

  15. Rosenberg SA (1991) Immunotherapy and gene therapy of cancer. Cancer Res 51:5074–5079

    Google Scholar 

  16. Fidler IJ (1991) Orthotopic implantation of human colon carcinomas into nude mice provides a valuable model for the biology and therapy of metastasis. Cancer Metastasis Rev 10:229–243

    Google Scholar 

  17. Radinsky R, Fidler IJ (1992) Regulation of tumor cell growth at organ-specific metastases. In Vivo 6:325–331

    Google Scholar 

  18. Pallesen G, Hamilton-Dutoit SJ, Zhou X (1993) The association of Epstein-Barr virus (EBV) with T cell lymphoproliferations and Hodgkin's disease: two developments in the EBV field. Adv Cancer Res 62:179–239

    Google Scholar 

  19. Armitage JO (1993) Treatment of non-Hodgkin's lymphoma. N Engl J Med 328:1023–1030

    Google Scholar 

  20. Rudders R, Levin A, Jespersen D, Zacks J, Delellis R, Ranger A, Kronitis T (1992) Crossreacting human lymphoma idiotypes. Blood 80:1039–1044

    Google Scholar 

  21. Benke R, Lang E, Komitowski D, Muto S, Schirrmacher V (1988) Changes in tumor cell adhesiveness affecting speed of dissemination and mode of metastatic growth. Invasion Metastasis 8:159–176

    Google Scholar 

  22. Schackert G, Fidler IJ (1988) Site-specific metastasis of mouse melanomas and a fibrosarcoma in the brain or meninges of syngeneic animals. Cancer Res 48:3478–3484

    Google Scholar 

  23. Krüger A, Schirrmacher V, von Hoegen P (1994) Scattered micrometastasis visualized at the single-cell level: detection and re-isolation of lacZ-labeled metastasized lymphoma cells. Int J Cancer 58:275–284

    Google Scholar 

  24. Lampson LA, Lampson MA, Dunne AD (1993) Exploiting the lacZ reporter gene for quantitative analysis of disseminated tumor growth within the brain: use of the lacZ gene product as a tumor antigen, for evaluation of antigenic modulation, and to facilitate image analysis of tumor growth in situ. Cancer Res 53:176–182

    Google Scholar 

  25. Dooley TP, Stamp-Cole M, Ouding RJ (1993) Evaluation of a nude mouse tumor model using β-galactosidase-expressing melanoma cells. Lab Anim Sci 43:48–57

    Google Scholar 

  26. Kurebayashi J, MsLeskey SW, Johnson MD, Lippman ME, Dickson RB, Kern FG (1993) Quantitative demonstration of spontaneous metastasis by MCF-7 human breast cancer cells cotransfected with fibroblast growth factor 4 and LacZ. Cancer Res 53:2178–2187

    Google Scholar 

  27. Schirrmacher V, Beckhove P, Krüger A, Rocha M, Umansky V, Fichtner KP, Hull WE, Zangemeister-Wittke U, Griesbach A, Jurianz K, von Hoegen P (1995) Effective immune rejection of advanced metastasized cancer. Int J Oncol 6:505–521

    Google Scholar 

  28. Schirrmacher V, Schild HJ, Gückel B, von Hoegen P (1992) Tumor specific CTL response requiring interactions of four different cell types and dual recognition of MHC class I and class II restricted tumor antigens. Immunl Cell Biol 71:311–326

    Google Scholar 

  29. Schirrmacher V, Zangemeister-Wittke U (1994) γ-Irradiation suppresses T cell mediated protective immunity against a metastatic tumor in the afferent phase of the immune response but enhances it in the efferent phase when given before immune cell transfer. Int J Oncol 4:335–346

    Google Scholar 

  30. Schild HJ, Kyewski B, von Hoegen P, Schirrmacher V (1987) CD4+ helper T cells are required for resistance to a highly metastatic murine tumour. Eur J Immunol 17:1863–1866

    Google Scholar 

  31. Gückel B, Berek C, Lutz M, Altevogt P, Schirrmacher V, Kyewski B (1991) Anti-CD2 antibodies induce T cell unresponsiveness in vivo. J Exp Med 174:957–967

    Google Scholar 

  32. Schirrmacher V, Leidig S, Griesbach A (1991) In situ activation of syngeneic tumour-specific cytotoxic T lymphocytes: intra-pinna immunization followed by restimulation in the peritoneal cavity. Cancer Immunol Immunother 33:299–306

    Google Scholar 

  33. Krüger A, Umansky V, Rocha M, Hacker HJ, Schirrmacher V, von Hoegen P (1994) Pattern and load of spontaneous liver metastasis dependent on host immune status studied with a lacZ transduced lymphoma. Blood 84:3166–3174

    Google Scholar 

  34. Rocha M, Krüger A, Umansky V, von Hoegen P, Naor D, Schirrmacher V (1996) Dynamic expression-changes in vivo of adhesion and costimulatory molecules determine load and pattern of lymphoma liver metastasis. Clin Cancer Res (in press)

  35. Plautz GE, Yang ZY, Wu BY, Gao X, Huang L, Nabel GJ (1994) Immunotherapy of malignancy by in vivo transfer into tumors. Proc Natl Acad Sci USA 90:4645–4649

    Google Scholar 

  36. Schirrmacher V, Fogel M, Russmann E, Bosslet K, Altevogt P, Beck L (1982) Antigenic variation in cancer metastasis: immune escape versus immune control. Cancer Met Rev 1:241–274

    Google Scholar 

  37. Cromme FV, Airey J, Heemels MT, Ploegh HL, Keating PJ, Stern PL, Meijer CJ, Walboomers JM (1994) Loss of transporter protein, encoded by the TAP-1 gene, is highly correlated with loss of HLA expression in cervical carcinomas. J Exp Med 179:335–340

    Google Scholar 

  38. Guardiola J, Maffei A (1993) Control of MHC class II gene expression in autoimmune, infectious and neoplastic disease. Crit Rev Immunol 13:247–268

    Google Scholar 

  39. Janeway CA Jr, Bottomly K (1994) Signals and signs for lymphocyte responses. Cell 76:275–285

    Google Scholar 

  40. Azuma M, Yssel H, Phillips JJ, Spits H, Lanier LL (1993) Functional expression of B7/BB1 on activated T lymphocytes. J Exp Med 177:845–850

    Google Scholar 

  41. Chen L, Ashe S, Brady WA, Hellstrom I, Hellstrom KE, Ledbetter JA, McGovan P, Linsley PS (1992) Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71:1093–1098

    Google Scholar 

  42. Chen L, Linsley PS, Hellstrom KE (1993) Costimulation of T cells for tumor immunity. Immunol Today 14:483–486

    Google Scholar 

  43. Towsend SE, Allison JP (1993) Tumor rejection after direct Costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 259:368–371

    Google Scholar 

  44. Baskar S, Nabavi N, Glimcher LH, Rosenberg S (1993) Tumor cells expressing major histocompatibility complex class II and B7 activation molecules stimulate potent tumor-specific immunity. J Immunother 14:209–215

    Google Scholar 

  45. Becker JC, Brabletz T, Czerny C, Termeer C, Brocker EB (1993) Tumor escape mechanisms for immunosurveillance: induction of unresponsiveness in a specific MHC-restricted CD4+ human T cell clone by the autologous MHC class II+ melanoma. Int Immunol 5:1501–1508

    Google Scholar 

  46. Graf L, Koch N, Schirrmacher V (1985) Expression of Ia antigens in a murine T-lymphoma variant. Mol Immunol 22:1371–1377

    Google Scholar 

  47. Semino C, Ferlazzo G, Pietra G, Pasquetti W, Repetto L, Rosso R, Mariani M, Melioli G (1993) Heterogeneity of the alpha-interferon mediated overexpression of class I and class II major histocompatibility complex molecules in primary cultured cancer cells. J. Biol Regul Homeost Agents 7:99–104

    Google Scholar 

  48. Crocker PR, Gordon S (1986) Properties and distribution of a lectin-like hemagglutinin differentially expressed by stromal tissue macropages. J Exp Med 164:1862–1875

    Google Scholar 

  49. Crocker PR, Gordon S (1989) Mouse macrophage hemagglutinin (sheep erythrocyte receptor) with specificity for sialylated glycoconjugates characterized by a monoclonal antibody. J Exp Med 169:1333–1346

    Google Scholar 

  50. Crocker PR, Kelm S, Dubois C, Martin B, McWilliam AS, Shotton D, Paulson JC, Gordon S (1991) Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. EMBO J 10:1661–1669

    Google Scholar 

  51. Crocker PR, Mucklow S, Bouckson V, McWilliam A, Willis AC, Gordon S, Milon G, Kelm S, Bradfield P (1994) Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-like domains. EMBO J 13:4490–4503

    Google Scholar 

  52. Van den Berg TK, Breve JJP, Damoiseaux JGMC, Döpp EA, Kelm S, Crocker PR, Dijkstra CD, Kraal G (1992) Sialoadhesin on macrophages: its identification as a lymphocyte adhesion molecule. J Exp Med 176:647–655

    Google Scholar 

  53. Umansky V, Beckhove P, Rocha M, Krüger A, Crocker PR, Schirrmacher V (1996) A role for sialoadhesin-positive tissue macrophages in host resistance to lymphoma metastasis in vivo. Immunology 87:303–309

    Google Scholar 

  54. Damoiseaux JGMC, Döpp EA, Beelen RHJ, Dijkstra CD (1989) Rat bone marrow and monocyte cultures: influence of culture time and lymphokines on the expression of macrophage differentiation antigens. J. Leukocyte Biol 46:246–253

    Google Scholar 

  55. Damoiseaux JGMC, Huitinga I, Döpp EA, Dijkstra CD (1992) Expression of the ED3 antigen on rat macrophages in relation to experimental autoimmune diseases. Immunobiology 184:311–320

    Google Scholar 

  56. Crocker PR, Hill M, Gordon S (1988) Regulation of a murine macrophage haemagglutinin (sheep erythrocyte receptor) by a species-restricted serum factor. Immunology 65:515–522

    Google Scholar 

  57. McWilliam AS, Tree P, Gordon S (1992) Interleukin 4 regulates induction of sialoadhesin, the macrophage sialic acidspecific receptor. Proc Natl Acad Sci USA 89:10522–10526

    Google Scholar 

  58. Doyle AG, Herbein G, Montaner L, Minty AJ, Caput D, Ferrara P, Gordon S (1994) Interleukin-13 alters the activation state of murine macrophages in vitro: comparison with interleukin-4 and interferon-γ. Eur J Immunol 24, 1441–1445

    Google Scholar 

  59. Klein T, Döffinger R, Pepis MB, Rüther U, Kyewski B (1995) Tolerance and immunity to the inducible self antigen C-reactive protein in transgenic mice. Eur J Immunol 25:3489–3495

    Google Scholar 

  60. Albelda SM (1993) Biology of disease. Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab Invest 68:4–17

    Google Scholar 

  61. Roos E, Roosien FF (1987) Involvement of leucocyte function-asocciated antigen-1 (LFA-1) in the invasion of hepatocyte cultures by lymphoma and T-cell hybridoma cells. J Cell Biol 105:553–557

    Google Scholar 

  62. Grander B, Wang P, Einhorn S (1994) Gamma-IFN induced cell adhesion in chronic myelogenous leukemia cells. Leukemia 8:299–304

    Google Scholar 

  63. Stauder R, Greil R, Schulz TF, Gattringer C, Radaskiewicz T, Dierich MP, Huber H (1989) Expression of leucocyte function-associated antigen-1 and 7F7 antigen, an adhesion molecule related to intercellular adhesion molecules-1 (ICAM-1) in non-Hodgkin lymphomas and leukaemias: possible influence of growth and leukaemic behaviour. Clin Exp Immunol 77:234–238

    Google Scholar 

  64. Harning R, Myers C, Merluzzi VJ (1993) Monoclonal antibodies to lymphocyte function-associated antigen-1 inhibit invasion of human lymphoma and metastasis of murine lymphoma. Clin Exp Metast 11:337–342

    Google Scholar 

  65. Zahalka MA, Ökon E, Naor D (1993) Blocking lymphoma invasiveness with a monoclonal antibody directed against the β-chain of the leucocyte adhesion molecule (CD18). J Immunol 150:4466–4477

    Google Scholar 

  66. Clayberger C, Wright A, Medeiros LJ, Koller TD, Link MP, Smith SD, Warnke RA, Krensky AM (1987) Absence of cell surface LFA-1 as a mechanism of escape from immunosurveillance. Lancet II:533–536

    Google Scholar 

  67. Koyama S, Ebihara T, Fukao K (1992) Expression of intercellular adhesion molecule-1 (ICAM-1) during development of invasion and/or metastasis of gastric carcinoma. J Cancer Res Clin Oncol 118:609–614

    Google Scholar 

  68. Dolcetti R, Maestro R, Gasparotto D, Rizzo S, Boiocchi M (1992) Adhesion molecule expression does not influence the leukemic behaviour of murine T-cell lymphomas. Leukemia 6:101S-105S

    Google Scholar 

  69. Johnson JP, Stade BG, Holzman B, Schwable W, Riethmuller G (1989) De novo expression of intercellular adhesion molecule in melanoma correlates with increased risk of metastasis. Proc Natl Acad Sci USA 86:641–644

    Google Scholar 

  70. Schirren CA, Volpel H, Hoffmann JC, Henning SW, Qiao L, Autschbach F, Dengler TJ, Dohner H, Meuer SC (1992) Biological response modifiers render tumor cells susceptible to autologous effector mechanisms by influencing adhesion receptors. Leuk Lymphoma 10:25–33

    Google Scholar 

  71. Gonzalez-Amaro R, Garcia-Monzon C, Garcia-Buey L, Moreno-Otero R, Alonso JL, Yague E, Pivel JP, Lopez Cabrera M, Fernandez Ruiz E (1994) Induction of tumor necrosis factor alpha production by human hepatocytes in chronic viral hepatitis. J Exp Med 179:841–848

    Google Scholar 

  72. Jurianz K (1995) Molekulare Analyse der Induktion tumorspezifische Immunantworten: Vergleich von Tumor-resistenz und Suszeptibilität in einem Maus Tumor Modellsystem. PhD Thesis, University of Heidelberg

  73. Dustin ML, Staunton DE, Springer TA (1988) Supergene families meet in the immune system. Immunol Today 9:213–215

    Google Scholar 

  74. Kim SJ, Kim NS, Lee JL (1993) Effect of cytokines on the expression of cell adhesion molecules and on the adhesion of melanoma cells to endothelial cells. J Korean Med Sci 8:41–52

    Google Scholar 

  75. Grander B, Wang P, Einhorn S (1994) Gamma-IFN induced cell adhesion in chronic myelogenous leukemia cells. Leukemia 8:299–304

    Google Scholar 

  76. Hansen AB, Bouchelouche PN, Lillevang ST, Andersen CB (1994) Interferon-gamma increases cellular calcium ion concentration and inositol 1,4,5-trisphosphate formation in human renal carcinoma cells: relation to ICAM-1 antigen expression. Br J Cancer 69:291–298

    Google Scholar 

  77. Hutchins D, Steel M (1994) Regulation of ICAM-1 (CD54) expression in human breast cancer lines by interleukin 6 and fibroblast-derived factors. Int J Cancer 58:80–84

    Google Scholar 

  78. Swerlick RA, Lawley TJ (1993) Role of microvascular endothelial cells in inflammation. J Invest Dermatol 100:111S-115S

    Google Scholar 

  79. Antonia SJJ, Uchida S, Cohen S, Cohen MC (1989) Attachment of tumor cells to endothelial monolayers: detection of surface molecules involved in cell-binding. Clin Immunol Immunopathol 53:281–285

    Google Scholar 

  80. Rice GE, Beviclaqua MP (1989) An inducible endothelial surface glycoprotein mediates melanoma adhesion. Science 246:1303–1306

    Google Scholar 

  81. Hemler ME, Elices MJ, Parker C, Takada Y (1990) Structure of the integrin VLA-4 and its cell-cell and cell-matrix adhesion functions. Immunol Rev 114:45–65

    Google Scholar 

  82. Freedmann AS, Saporito L, Rhynhart K, Morimoto C, Nadler LM (1994) Adhesion of follicular lymphoid germinal centers: a potential mechanism of tumor cell homing following autologous transplantation. Leuk Lymphoma 13:47–52

    Google Scholar 

  83. Van Riet I, Van Camp B (1993) The involvement of adhesion molecules in the biology of multiple myeloma. Leuk Lymphoma 9:441–452

    Google Scholar 

  84. Juneja HS, Schmalsteig FC, Lee S, Chen J (1993) Vascular cell adhesion molecule-1 and VLA-4 are obligatory adhesion proteins in the heterotypic adherence between human leukemia/lymphoma cells and marrow stromal cells. Exp Hematol 21:444–450

    Google Scholar 

  85. Qian F, Vaux DL, Weissmann IL (1994) Expression of the integrin α4β1 on melanoma cells can inhibit the invasive stage of metastasis formation. Cell 77:335–347

    Google Scholar 

  86. Okahara H, Yagita H, Miyake K, Okumura K (1994) Involvement of very late activation antigen 4 (VLA-4) and vascular cell adhesion molcule (VCAM-1) in tumor necrosis factor alpha enhancement of experimental metastasis. Cancer Res 54:3233–3236

    Google Scholar 

  87. Garofalo A, Chiviri RGS, Foglieni C, Pigott R, Mortarini R, Martin-Padura I, Anichini A, Gearing AI, Sanchez-Madrid F, Dejana E, Giavazzi, R (1995) Involvement of very late antigen 4 integrin on melanoma in interleukin 1-augmented experimental metastasis. Cancer Res 55:414–419

    Google Scholar 

  88. Rocha M, Umansky V, Schirrmacher V, Elices MJ (1996) In situ downregulation of VLA-4 integrin cell surface expression during lymphoma growth and liver metastasis. (submitted)

  89. Bouwens L, Baekeland M, Wisse E (1984) Importance of local proliferation in the expanding Kupffer cell population of rat liver after zymosan stimulation and partial hepatectomy. Hepatology 4:213–219

    Google Scholar 

  90. Phillips NC (1989) Kupffer cells and liver metastases. Optimization and limitation of activation of tumoricidal activity. Cancer Metastasis Rev 8:231–252

    Google Scholar 

  91. Zhang W, Arii S, Sassaoki T, Adachi Y, Funaki N, Higashitsuji H, Fujita S, Furutani M, Mise M, Ishiguro S (1993) The role of Kupffer cells in the surveillance of tumor growth in the liver. J Surg Res 55:140–146

    Google Scholar 

  92. McCuskey PA, Kan Z, Wallace S (1994) An electron microscopy study of Kupffer cells in livers of mice having Friend erythroleukemia hepatic metastases. Clin Exp Metastasis 12:416–426

    Google Scholar 

  93. Kan Z, Ivancev K, Lunderquist A, McCuskey PA, McCuskey RS, Wallace S (1995) In vivo microscopy of hepatic metastases: dynamic observation of tumor cell invasion and interaction with Kupffer cells. Hepatology 21:487–494

    Google Scholar 

  94. Heuff G, Oldenburg HSA, Boutkan H, Visser JJ, Beelen RHJ, Van Rooijen N, Dijkstra CD, Meyer S (1993) Enhanced tumour growth in the rat liver after selective elimination of Kupffer cells. Cancer Immunol Immunother 37:125–130

    Google Scholar 

  95. Hibbs JB, Taintor R, Vavrin Z, Rachlin EM (1988) Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun 157:87–94

    Google Scholar 

  96. Stuehr DJ, Nathan CF (1989) Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med 169:1543–1555

    Article  CAS  PubMed  Google Scholar 

  97. Moncada S, Palmer RJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 43:109–134

    CAS  PubMed  Google Scholar 

  98. Marletta MA, Yoon PS, Lyengar R, Leaf CD, Wishnok JS (1988) Macrophage oxidation of -arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 27:8706–8711

    Google Scholar 

  99. Kwon NS, Stuehr DJ, Nathan CF (1991) Inhibition of tumor cell ribonucleotide ribonuclease by macrophage-derived nitric oxide. J Exp Med 174:761–767

    Google Scholar 

  100. Umansky V, Rocha M, Krüger A, von Hoegen P, Schirrmacher V (1995) In situ activated macrophages are involved in host resistance to lymphoma metastasis by production of nitric oxide. Int J Oncol 7:33–40

    Google Scholar 

  101. Fidler U, Schroit AJ (1988) Recognition and destruction of neoplastic cells by activated macrophages: discrimination of altered self. Biochem Biophys Acta 948:151–174

    Google Scholar 

  102. Takeshita M, Sumiyoshi Y, Masuda Y, Ohshima K, Yoshida T, Kikuchi M, Muller H (1993) Cytokine (interleukin-1 alpha, interleukin-1 beta, tumor necrosis factor alpha, and interleukin-6) possessing in lymph nodes of malignant lymphoma. Pathol Res Pract 189:18–25

    Google Scholar 

  103. Aono K, Isobe K, Nakashima I, Kondo S, Miyachi M, Nimura Y (1994) Kupffer cells cytotoxicity against hepatoma cells is related to nitric oxide. Biochem Biophys Res Commun 201:1175–1181

    Google Scholar 

  104. Kurose I, Miura S, Fukumura D, Yonei Y, Saito H, Tada S, Suematsu M, Tsuchiya M (1993) Nitric oxide mediates Kupffer cell-induced reduction of mitochondrial energization in hepatoma cells. A comparison with oxidative burst. Cancer Res 53:2676–2682

    Google Scholar 

  105. Karnovsky ML, Lazdins JK (1978) Biochemical criteria for activated macrophages. J Immunol 121:809–813

    Google Scholar 

  106. Xie K, Huang S, Dong Z, Gutman M, Fidler IJ (1995) Direct correlation between expression of endogenous inducible nitric oxide synthase and regression of M5076 reticulum cell sarcoma hepatic metastases in mice treated with liposomes containing lipopeptide CGP 31362. Cancer Res 55:3123–3131

    Google Scholar 

  107. Senger DR, Perruzzi CA, Gracey CF, Papadopoulos A, Tenen DG (1988) Secreted phosphoproteins associated with neoplastic transformation: close homology with plasma proteins cleaved during blood coagulation. Cancer Res 48:5770–5774

    Google Scholar 

  108. Denhardt DT, Chambers AF (1994) Overcoming obstacles to metastasis-defenses against host defenses: osteopontin (OPN) as a shield against attack by cytotoxic host cells. J Cell Biochem 56:1–4

    Google Scholar 

  109. Feng B, Rollo EE, Denhardt DT (1995) Osteopontin (OPN) may facilitate metastasis by protecting cells from macrophage NO-mediated cytotoxicity: evidence from cell lines downregulated for OPN expression by a targeted ribozyme. Clin Exp Met 13:453–462

    Google Scholar 

  110. Weber GF, Ashkar S, Glimcher MJ, Cantor H (1996) Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Scince 271:509–512

    Google Scholar 

  111. Schirrmacher V, Fogel M, Russmann E, Bosslet K, Altevogt P, Beck L (1982) Antigenic variation in cancer metastasis: Immune escape versus immune control. Cancer Met Rev 1:241–274

    Google Scholar 

  112. Von Hoegen P, Weber E and Schirrmacher V (1986) Modification of tumor cells by a low dose of Newcastle disease virus. I. Augmentation of the tumor-specific T cell response in the absence of an antiviral response. Eur J Immunol 18:1159–1164

    Google Scholar 

  113. Schirrmacher V (1989) Immunobiology and immunotherapy of cancer metastases. Interdise Sci Rev 14:291–303

    Google Scholar 

  114. Thorbecke GJ, Silberberg-Sinakin I, Flotte TJ (1980) Langerhans cells as macrophages in skin and lymphoid organs. J Invest Dermatol 75:32–43

    Google Scholar 

  115. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  CAS  PubMed  Google Scholar 

  116. Li L, Kilbourn RG, Adams J, Fidler IJ (1991) Role of nitric oxide in lysis of tumor cells by cytokine-activated endothelial cells. Cancer Res 51:2531–2535

    Google Scholar 

  117. Li L, Nicolson GL, Fidler IJ (1991) Direct in vitro lysis of metastatic tumor cells by cytokine-activated murine vascular endothelial cells. Cancer Res 51:245–254

    Google Scholar 

  118. Rocha M, Krüger A, van Rooijen N, Schirrmacher V, Umansky V (1995) Liver endothelial cells participate in T cell dependent host resistance to lymphoma metastasis by production of nitric oxide in vivo. Int J Cancer 63:405–411

    Google Scholar 

  119. Estrada C, Gomez C, Martin C, Moncada S, Gonzalez C (1992) Nitric oxide medites tumor necrois factor-alpha cytotoxicity in endothelial cells. Biochem Biophys Res Commun 186:475–82

    Google Scholar 

  120. Van Roojien N, Sanders AM (1994) Liposome mediated depletion of macrophages: mechansim of action, preparation of liposomes and applications. J Immunol Method 174:83–93

    Google Scholar 

  121. Bogers WMJM, Stadt RK, Jansenn DJ, Van Rooijen N, Van Es LA, Dajha MR (1991) Kupffer cell depletion in vivo results in preferential elimination of IgG aggregates and immune complexes via specific Fc receptors on rat liver endothelial cells. Clin Exp Immunol 86:328–333

    Google Scholar 

  122. Radinsky R, Beltran PJ, Tsan R, Zhang R, Cone RD, Fidler IJ (1995) Transcriptional induction of the melanocyte-stimulating hormone receptor in brain metastases of murine K-1735 melanoma. Cancer Res 55:141–148

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umansky, V., Schirrmacher, V. & Rocha, M. New insights into tumor-host interactions in lymphoma metastasis. J Mol Med 74, 353–363 (1996). https://doi.org/10.1007/BF00210630

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00210630

Key words

Navigation