Skip to main content
Log in

Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle’s cycle

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Right ventricular hypertrophy (RVH) and RV failure are major determinants of prognosis in pulmonary hypertension and congenital heart disease. In RVH, there is a metabolic shift from glucose oxidation (GO) to glycolysis. Directly increasing GO improves RV function, demonstrating the susceptibility of RVH to metabolic intervention. However, the effects of RVH on fatty acid oxidation (FAO), the main energy source in adult myocardium, are unknown. We hypothesized that partial inhibitors of FAO (pFOXi) would indirectly increase GO and improve RV function by exploiting the reciprocal relationship between FAO and GO (Randle’s cycle). RVH was induced in adult Sprague-Dawley rats by pulmonary artery banding (PAB). pFOXi were administered orally to prevent (trimetazidine, 0.7 g/L for 8 weeks) or regress (ranolazine 20 mg/day or trimetazidine for 1 week, beginning 3 weeks post-PAB) RVH. Metabolic, hemodynamic, molecular, electrophysiologic, and functional comparisons with sham rats were performed 4 or 8 weeks post-PAB. Metabolism was quantified in RV working hearts, using a dual-isotope technique, and in isolated RV myocytes, using a Seahorse Analyzer. PAB-induced RVH did not cause death but reduced cardiac output and treadmill walking distance and elevated plasma epinephrine levels. Increased RV FAO in PAB was accompanied by increased carnitine palmitoyltransferase expression; conversely, GO and pyruvate dehydrogenase (PDH) activity were decreased. pFOXi decreased FAO and restored PDH activity and GO in PAB, thereby increasing ATP levels. pFOXi reduced the elevated RV glycogen levels in RVH. Trimetazidine and ranolazine increased cardiac output and exercise capacity and attenuated exertional lactic acidemia in PAB. RV monophasic action potential duration and QTc interval prolongation in RVH normalized with trimetazidine. pFOXi also decreased the mild RV fibrosis seen in PAB. Maladaptive increases in FAO reduce RV function in PAB-induced RVH. pFOXi inhibit FAO, which increases GO and enhances RV function. Trimetazidine and ranolazine have therapeutic potential in RVH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H (2007) Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 12:331–343

    Article  PubMed  CAS  Google Scholar 

  2. Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, Ockaili R, McCord JM, Voelkel NF (2009) Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation 120:1951–1960

    Article  PubMed  Google Scholar 

  3. Piao L, Fang YH, Cadete VJ, Wietholt C, Urboniene D, Toth PT, Marsboom G, Zhang HJ, Haber I, Rehman J et al (2010) The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med 88:47–60

    Article  PubMed  CAS  Google Scholar 

  4. Oikawa M, Kagaya Y, Otani H, Sakuma M, Demachi J, Suzuki J, Takahashi T, Nawata J, Ido T, Watanabe J et al (2005) Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol 45:1849–1855

    Article  PubMed  CAS  Google Scholar 

  5. Rich S, Pogoriler J, Husain AN, Toth PT, Gomberg-Maitland M, Archer SL (2010) Long-term effects of epoprostenol on the pulmonary vasculature in idiopathic pulmonary arterial hypertension. Chest 138:1234–1239

    Article  PubMed  CAS  Google Scholar 

  6. Stanley WC, Lopaschuk GD, Hall JL, McCormack JG (1997) Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 33:243–257

    Article  PubMed  CAS  Google Scholar 

  7. Randle PJ, Priestman DA, Mistry SC, Halsall A (1994) Glucose fatty acid interactions and the regulation of glucose disposal. J Cell Biochem 55(Suppl):1–11

    Article  PubMed  CAS  Google Scholar 

  8. Abozguia K, Clarke K, Lee L, Frenneaux M (2006) Modification of myocardial substrate use as a therapy for heart failure. Nat Clin Pract Cardiovasc Med 3:490–498

    Article  PubMed  CAS  Google Scholar 

  9. Gunes Y, Guntekin U, Tuncer M, Sahin M (2009) Improved left and right ventricular functions with trimetazidine in patients with heart failure: a tissue Doppler study. Hear Vessel 24:277–282

    Article  Google Scholar 

  10. Kantor PF, Lucien A, Kozak R, Lopaschuk GD (2000) The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 86:580–588

    PubMed  CAS  Google Scholar 

  11. McClellan KJ, Plosker GL (1999) Trimetazidine. A review of its use in stable angina pectoris and other coronary conditions. Drugs 58:143–157

    Article  PubMed  CAS  Google Scholar 

  12. Meng D, Feng L, Chen XJ, Yang D, Zhang JN (2006) Trimetazidine improved Ca2+ handling in isoprenaline-mediated myocardial injury of rats. Exp Physiol 91:591–601

    Article  PubMed  CAS  Google Scholar 

  13. Guarnieri C, Muscari C (1990) Beneficial effects of trimetazidine on mitochondrial function and superoxide production in the cardiac muscle. Cardiovasc Drugs Ther 4(Suppl 4):814–815

    Article  PubMed  Google Scholar 

  14. Wang P, Fraser H, Lloyd SG, McVeigh JJ, Belardinelli L, Chatham JC (2007) A comparison between ranolazine and CVT-4325, a novel inhibitor of fatty acid oxidation, on cardiac metabolism and left ventricular function in rat isolated perfused heart during ischemia and reperfusion. J Pharmacol Exp Ther 321:213–220

    Article  PubMed  CAS  Google Scholar 

  15. Stanley WC (2002) Partial fatty acid oxidation inhibitors for stable angina. Expert Opin Investig Drugs 11:615–629

    Article  PubMed  CAS  Google Scholar 

  16. Fragasso G, Spoladore R, Cuko A, Palloshi A (2007) Modulation of fatty acids oxidation in heart failure by selective pharmacological inhibition of 3-ketoacyl coenzyme-A thiolase. Curr Clin Pharmacol 2:190–196

    Article  PubMed  CAS  Google Scholar 

  17. Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, Kaluarachchi K, Bornmann W, Duvvuri S, Taegtmeyer H et al (2010) Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 120:142–156

    Article  PubMed  CAS  Google Scholar 

  18. McCormack JG, Barr RL, Wolff AA, Lopaschuk GD (1996) Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. Circulation 93:135–142

    PubMed  CAS  Google Scholar 

  19. Clarke B, Wyatt KM, McCormack JG (1996) Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism. J Mol Cell Cardiol 28:341–350

    Article  PubMed  CAS  Google Scholar 

  20. Fraser H, Belardinelli L, Wang L, Light PE, McVeigh JJ, Clanachan AS (2006) Ranolazine decreases diastolic calcium accumulation caused by ATX-II or ischemia in rat hearts. J Mol Cell Cardiol 41:1031–1038

    Article  PubMed  CAS  Google Scholar 

  21. Undrovinas AI, Belardinelli L, Undrovinas NA, Sabbah HN (2006) Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J Cardiovasc Electrophysiol 17(Suppl 1):S169–S177

    Article  PubMed  Google Scholar 

  22. Antzelevitch C, Belardinelli L, Zygmunt AC, Burashnikov A, Di Diego JM, Fish JM, Cordeiro JM, Thomas G (2004) Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation 110:904–910

    Article  PubMed  CAS  Google Scholar 

  23. Sentex E, Helies-Toussaint C, Rousseau D, Lucien A, Ferrary E, Grynberg A (2001) Influence of trimetazidine on the synthesis of complex lipids in the heart and other target organs. Fundam Clin Pharmacol 15:255–264

    Article  PubMed  CAS  Google Scholar 

  24. Lopaschuk GD, Spafford MA, Davies NJ, Wall SR (1990) Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res 66:546–553

    PubMed  CAS  Google Scholar 

  25. Tuunanen H, Engblom E, Naum A, Nagren K, Scheinin M, Hesse B, Juhani Airaksinen KE, Nuutila P, Iozzo P et al (2008) Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy. Circulation 118:1250–1258

    Article  PubMed  CAS  Google Scholar 

  26. Tabbi-Anneni I, Helies-Toussaint C, Morin D, Bescond-Jacquet A, Lucien A, Grynberg A (2003) Prevention of heart failure in rats by trimetazidine treatment: a consequence of accelerated phospholipid turnover? J Pharmacol Exp Ther 304:1003–1009

    Article  PubMed  CAS  Google Scholar 

  27. Guarnieri C, Muscari C (1988) Beneficial effects of trimetazidine on mitochondrial function and superoxide production in the cardiac muscle of monocrotaline-treated rats. Biochem Pharmacol 37:4685–4688

    Article  PubMed  CAS  Google Scholar 

  28. Piao L, Marsboom G, Archer SL (2010) Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J Mol Med 88:1011–1020

    Article  PubMed  CAS  Google Scholar 

  29. Wilson SR, Scirica BM, Braunwald E, Murphy SA, Karwatowska-Prokopczuk E, Buros JL, Chaitman BR, Morrow DA (2009) Efficacy of ranolazine in patients with chronic angina observations from the randomized, double-blind, placebo-controlled MERLIN-TIMI (Metabolic Efficiency With Ranolazine for Less Ischemia in Non-ST-Segment Elevation Acute Coronary Syndromes) 36 Trial. J Am Coll Cardiol 53:1510–1516

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Archer is supported by NIH-RO1-HL071115 and 1RC1HL099462-01, and the American Heart Association (AHA).

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Archer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 157 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, YH., Piao, L., Hong, Z. et al. Therapeutic inhibition of fatty acid oxidation in right ventricular hypertrophy: exploiting Randle’s cycle . J Mol Med 90, 31–43 (2012). https://doi.org/10.1007/s00109-011-0804-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-011-0804-9

Keywords

Navigation