Skip to main content

Advertisement

Log in

Signalling across the blood brain barrier by angiotensin II: novel implications for neurogenic hypertension

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Angiotensin II (AngII) is a major culprit in essential hypertension. Based on a genetic rodent model of hypertension, we review here evidence that AngII may signal across the blood brain barrier to affect neuronal circuits within the nucleus tractus solitarii (NTS) of the brainstem, a pivotal region regulating both the baroreceptor reflex and set point control of arterial pressure. We have termed this form of signalling as vascular–neuronal signalling. We describe that the depressant action of AngII in NTS on the baroreceptor reflex is mediated via activation of endothelial nitric oxide synthase (eNOS) releasing NO that promotes release of the inhibitory transmitter—GABA. This could shunt the incoming excitatory baroreceptor afferent traffic impinging on NTS neurones. Chronic studies recording arterial pressure in conscious unrestrained rats using radio-telemetry have revealed that eNOS in NTS plays an endogenous physiological role in the homeostatic regulation of the gain of the cardiac baroreceptor reflex. However, in the spontaneously hypertensive rat, eNOS mRNA was higher (compared to normotensive rats), and its chronic blockade in NTS restored the abnormally depressed cardiac baroreceptor reflex to levels akin to normotensive rats, improved heart rate variability and lowered arterial pressure. Hence, it seems that excessive eNOS activity in NTS of the SHR contributes to the pathological state of this animal model’s cardiovascular autonomic nervous system. We speculate on why eNOS activity may be up regulated in the NTS of the SHR and propose that it is a consequence of high cerebral vascular resistance and inadequate blood perfusion of the brainstem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Doba N, Reis DJ (1973) Acute fulminating neurogenic hypertension produced by brainstem lesions in the rat. Circ Res 32:584–593

    PubMed  CAS  Google Scholar 

  2. Boscan P, Pickering AE, Paton JFR (2002) The nucleus of the solitary tract: an integrating station for nociceptive and cardiorespiratory afferents. Exp Physiol 87:259–266

    Article  PubMed  Google Scholar 

  3. Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346

    Article  PubMed  CAS  Google Scholar 

  4. Casto R, Phillips MI (1986) Angiotensin II attenuates baroreflexes at nucleus tractus solitarius of rats. Am J Physiol 250:R193–R198

    PubMed  CAS  Google Scholar 

  5. Paton JFR, Kasparov S (1999) Differential effects of angiotensin II on cardiovascular reflexes mediated by nucleus tractus solitarii I. A microinjection study. J Physiol 521:213–225

    Article  PubMed  CAS  Google Scholar 

  6. Paton JFR, Deuchars J, Ahmad Z, Wong L-F, Murphy D, Kasparov S (2001b) Adenoviral vector demonstrates that angiotensin II-induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. J Physiol 531:445–458

    Article  PubMed  CAS  Google Scholar 

  7. Allen AM, McKinley MJ, Oldfield BJ, Dampney RA, Mendelsohn FA (1988) Angiotensin II receptor binding and the baroreflex pathway. Clin Exp Hypertens Suppl 1:63–78

    Article  Google Scholar 

  8. Polson JW, Dampney RA, Boscan P, Pickering AE, Paton JFR (2007) Differential baroreflex control of sympathetic drive by angiotensin II in the nucleus tractus solitarii. Am J Physiol 293:R1954–R1960

    CAS  Google Scholar 

  9. Boscan P, Allen AM, Paton JFR (2001) Baroreflex inhibition of cardiac sympathetic outflow is attenuated by angiotensin II in the solitary tract nucleus. Neurosci 103:153–160

    Article  CAS  Google Scholar 

  10. Campagnole-Santos MJ, Diz DI, Ferrario CM (1988) Baroreceptor reflex modulation by angiotensin II at the nucleus tractus solitarius. Hypertension 11(Suppl I):I-167–I-171

    CAS  Google Scholar 

  11. Guo GB, Abboud FM (1984) Angiotensin II attenuates baroreflex control of heart rate and sympathetic activity. Am J Physiol 246:H80–H89

    PubMed  CAS  Google Scholar 

  12. Bishop VS, Sanderford MG (2000) Angiotensin II modulation of the arterial baroreflex: role of the area postrema. Clin Exp Pharmacol Physiol 27:428–431

    Article  PubMed  CAS  Google Scholar 

  13. Tan PS, Killinger S, Horiuchi J, Dampney RAL (2007) Baroreceptor reflex modulation by circulating angiotensin II is mediated by AT1 receptors in the nucleus tractus solitarius. Am J Physiol 293:R2267–78

    CAS  Google Scholar 

  14. Paton JFR, Kasparov S, Paterson DJ (2002) Site-specific differential modulation of cardiac autonomic control by nitric oxide. TINS 25:626–631

    PubMed  CAS  Google Scholar 

  15. Huang J, Hara Y, Anrather J, Speth RC, Iadecola C, Pickel VM (2003) Angiotensin II subtype 1A (AT1A) receptors in the rat sensory vagal complex: subcellular localization and association with endogenous angiotensin. Neurosci 122:21–36

    Article  CAS  Google Scholar 

  16. Paton JFR, Lonergan T, Deuchars J, James PE, Kasparov S (2006) Detection of angiotensin II mediated nitric oxide release within the nucleus of the solitary tract using electron-paramagnetic resonance (epr) spectroscopy. Auton Neurosci 126–127:193–201

    Article  PubMed  CAS  Google Scholar 

  17. Rocha I, Brás-Rosário L, Amparo-Barros M, Silva-Carvalho L (2003) Angiotensin AT1 receptor antagonist losartan and the defence reaction in the anaesthetised rat. Effect on the carotid chemoreflex. Exp Physiol 88:309–314

    Article  PubMed  CAS  Google Scholar 

  18. Gross PM (1991) Morphology and physiology of capillary systems in subregions of the subfornical organ and area postrema. Can J Physiol Pharmacol 69:1010–1025

    PubMed  CAS  Google Scholar 

  19. Waki H, Kasparov S, Wong L.-F, Murphy D, Shimizu T, Paton JFR (2003) Chronic inhibition of eNOS activity in NTS enhances baroreceptor reflex in conscious rats. J Physiol 546:233–242

    Article  PubMed  CAS  Google Scholar 

  20. Dinerman JL, Dawson TM, Schell MJ (1994) Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implications for synaptic plasticity. Proc Natl Acad Sci USA 91:4214–4218

    Article  PubMed  CAS  Google Scholar 

  21. O’Dell TJ, Huang PL, Dawson TM (1994) Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOS. Science 265:542–546

    Article  PubMed  CAS  Google Scholar 

  22. Doyle CA, Slater P (1997) Localization of neuronal and endothelial nitric oxide synthase isoforms in human hippocampus. Neurosci 76:387–395

    Article  CAS  Google Scholar 

  23. Caillol M, Devinoy E, Lacroix MC (2000) Endothelial and neuronal nitric oxide synthases are present in the suprachiasmatic nuclei of Syrian hamsters and rats. Eur J Neurosci 12:649–661

    Article  PubMed  CAS  Google Scholar 

  24. Seidel B, Stanarius A, Wolf G (1997) Differential expression of neuronal and endothelial nitric oxide synthase in blood vessels of the rat brain. Neurosci Lett 239:109–112

    Article  PubMed  CAS  Google Scholar 

  25. Topel I, Stanarius A, Wolf G (1998) Distribution of the endothelial constitutive nitric oxide synthase in the developing rat brain: an immunohistochemical study. Brain Res 788:43–48

    Article  PubMed  CAS  Google Scholar 

  26. Blackshaw S, Eliasson MJ, Sawa A, Watkins CC, Krug D, Gupta A, Arai T, Ferrante RJ, Snyder SH (2003) Species, strain and developmental variations in hippocampal neuronal and endothelial nitric oxide synthase clarify discrepancies in nitric oxide-dependent synaptic plasticity. Neurosci 119:979–990

    Article  CAS  Google Scholar 

  27. Paton JFR, Boscan P, Murphy D, Kasparov S (2001) Unravelling mechanisms of action of angiotensin II on cardiorespiratory function using in vivo gene transfer. Acta Physiol Scand 173:127–137

    Article  PubMed  CAS  Google Scholar 

  28. Kasparov S, Paton JFR (1999) Differential effects of angiotensin II in the nucleus tractus solitarius—II. Plausible neuronal mechanisms. J Physiol 521:227–238

    Article  PubMed  CAS  Google Scholar 

  29. Wang S, Teschemacher AG, Paton JFR, Kasparov S (2006) The mechanism of nitric oxide action on inhibitory GABAergic signaling within the nucleus tractus solitarii. FASEB J 20:E821–E831

    Google Scholar 

  30. Wang S, Paton JFR, Kasparov S (2007) Differential sensitivity of excitatory and inhibitory synaptic transmission to modulation by nitric oxide in the nucleus tractus solitarii. Exp Physiol 92:371–382

    Article  PubMed  CAS  Google Scholar 

  31. Thrasher TN (2006) Arterial baroreceptor input contributes to long-term control of blood pressure. Curr Hypertens Rep 8:249–254

    Article  PubMed  Google Scholar 

  32. Waki H, Murphy D, Yao ST, Kasparov S, Paton JFR (2006) Endothelial nitric oxide synthase in the nucleus tractus solitarii contributes to the hypertension in the spontaneously hypertensive rat. Hypertension 48:644–650

    Article  PubMed  CAS  Google Scholar 

  33. Bendall JK, Alp NJ, Warrick N, Cai S, Adlam D, Rockett K, Yokoyama M, Kawashima S, Channon KM (2005) Stoichiometric relationships between endothelial tetrahydrobiopterin, endothelial NO synthase (eNOS) activity, and eNOS coupling in vivo: insights from transgenic mice with endothelial-targeted GTP cyclohydrolase 1 and eNOS overexpression. Circ Res 97:864–871

    Article  PubMed  CAS  Google Scholar 

  34. Channon KM (2004) Tetrahydrobiopterin: regulator of endothelial nitric oxide synthase in vascular disease. Trends Card Med 14:323–327

    Article  CAS  Google Scholar 

  35. Min J, Jin YM, Moon JS (2006) Hypoxia-induced endothelial NO synthase gene transcriptional activation is mediated through the tax-responsive element in endothelial cells. Hypertens 47:1189–1196

    Article  CAS  Google Scholar 

  36. Paton JFR, Waki H, Abdala APL, Dickinson CJ Kasparov S (2007) Vascular-brain signaling in hypertension: role of angiotensin II and nitric oxide. Curr Hyperten Rep 9:242–247

    Article  CAS  Google Scholar 

  37. Cushing H (1901) Concerning a definitive regulatory mechanism of the vaso-motor centre which controls blood pressure during cerebral compression. Bull Johns Hopk Hosp 12:290–292

    Google Scholar 

  38. Smith EE, Guyton AC (1963) Center of arterial pressure regulation during rotation of normal and abnormal dogs. Am J Physiol 204:979–882

    PubMed  CAS  Google Scholar 

  39. Dickinson CJ (1991) Neurogenic hypertension: A synthesis and review. Monograph. Chapman & Hall Medical p123

  40. Osborn JW (2005) Hypothesis: set-points and long-term control of arterial pressure. A theoretical argument for a long-term arterial pressure control system in the brain rather than the kidney. Clin Exp Pharmacol Physiol 32:384–393

    Article  PubMed  CAS  Google Scholar 

  41. Wang G, Zhou P, Repucci MA, Golanov EV, Reis DJ (2001) Specific actions of cyanide on membrane potential and voltage-gated ion currents in rostral ventrolateral medulla neurons in rat brainstem slices. Neurosci Lett 309:125–129

    Article  PubMed  CAS  Google Scholar 

  42. Braga VA, Paton JFR, Machado BM (2007) Ischemia-induced sympathoexcitation in spinalyzed rats. Neurosci Lett 415:73–76

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by a British Heart Foundation programme grant awarded to JFRP and SK. JWP is supported by a British Heart Foundation project grant awarded to Professor A Wolf (PICU, Bristol Royal Infirmary, University of Bristol) and JFRP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian F. R. Paton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paton, J.F.R., Wang, S., Polson, J.W. et al. Signalling across the blood brain barrier by angiotensin II: novel implications for neurogenic hypertension. J Mol Med 86, 705–710 (2008). https://doi.org/10.1007/s00109-008-0324-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0324-4

Keywords

Navigation