Skip to main content

Advertisement

Log in

The biology and therapeutic potential of interleukin 27

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Interleukin (IL-) 27 is a helical cytokine of the greater IL-6/IL-12 family with a broad range of pro- and anti-inflammatory properties. It can skew T helper cell development, suppress T cell proliferation, stimulate cytotoxic T cell activity, induce isotype switching in B cells, and has diverse effects on innate immune cells. In vivo, its most important role appears to be that of immune regulation, as mice with defects in IL-27 or its receptor display enhanced immune responses in a range of infectious and noninfectious situations. In this review, we discuss the body of knowledge on IL-27 and its potential therapeutic utility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pflanz S, Timans JC, Cheung J et al (2002) IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4(+) T cells. Immunity 16:779–790

    Article  PubMed  CAS  Google Scholar 

  2. Devergne O, Hummel M, Koeppen H et al (1996) A novel interleukin-12 p40-related protein induced by latent Epstein–Barr virus infection in B lymphocytes. J Virol 70:1143–1153

    PubMed  CAS  Google Scholar 

  3. Stumhofer JS, Laurence A, Wilson EH et al (2006) Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol 7:937–945

    Article  PubMed  CAS  Google Scholar 

  4. Oppmann B, Lesley R, Blom B et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725

    Article  PubMed  CAS  Google Scholar 

  5. Khader SA, Partida-Sanchez S, Bell G et al (2006) Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. J Exp Med 203:1805–1815

    Article  PubMed  CAS  Google Scholar 

  6. Devergne O, Birkenbach M, Kieff E (1997) Epstein–Barr virus-induced gene 3 and the p35 subunit of interleukin 12 form a novel heterodimeric hematopoietin. Proc Natl Acad Sci USA 94:12041–12046

    Article  PubMed  CAS  Google Scholar 

  7. Wirtz S, Becker C, Fantini MC et al (2005) EBV-induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF-kappa B activation. J Immunol 174:2814–2824

    PubMed  CAS  Google Scholar 

  8. Hibbert L, Pflanz S, De Waal Malefyt R, Kastelein RA (2003) IL-27 and IFN-alpha signal via Stat1 and Stat3 and induce T-Bet and IL-12Rbeta2 in naive T cells. J Interferon Cytokine Res 23:513–522

    Article  PubMed  CAS  Google Scholar 

  9. Schuetze N, Schoeneberger S, Mueller U, Freudenberg MA, Alber G, Straubinger RK (2005) IL-12 family members: differential kinetics of their TLR4-mediated induction by Salmonella enteritidis and the impact of IL-10 in bone marrow-derived macrophages. Int Immunol 17:649–659

    Article  PubMed  CAS  Google Scholar 

  10. Schnurr M, Toy T, Shin A, Wagner M, Cebon J, Maraskovsky E (2005) Extracellular nucleotide signaling by P2 receptors inhibits IL-12 and enhances IL-23 expression in human dendritic cells: a novel role for the cAMP pathway. Blood 105:1582–1589

    Article  PubMed  CAS  Google Scholar 

  11. Sonobe Y, Yawata I, Kawanokuchi J, Takeuchi H, Mizuno T, Suzumura A (2005) Production of IL-27 and other IL-12 family cytokines by microglia and their subpopulations. Brain Res 1040:202–207

    Article  PubMed  CAS  Google Scholar 

  12. Maaser C, Egan LJ, Birkenbach MP, Eckmann L, Kagnoff MF (2004) Expression of Epstein–Barr virus-induced gene 3 and other interleukin-12-related molecules by human intestinal epithelium. Immunology 112:437–445

    Article  PubMed  CAS  Google Scholar 

  13. Pflanz S, Hibbert L, Mattson J et al (2004) WSX-1 and glycoprotein 130 constitute a signal-transducing receptor for IL-27. J Immunol 172:2225–2231

    PubMed  CAS  Google Scholar 

  14. Chen Q, Ghilardi N, Wang H et al (2000) Development of Th1-type immune responses requires the type I cytokine receptor TCCR. Nature 407:916–920

    Article  PubMed  CAS  Google Scholar 

  15. Sprecher CA, Grant FJ, Baumgartner JW et al (1998) Cloning and characterization of a novel class I cytokine receptor. Biochem Biophys Res Commun 246:82–90

    Article  PubMed  CAS  Google Scholar 

  16. Wirtz S, Tubbe I, Galle PR et al (2006) Protection from lethal septic peritonitis by neutralizing the biological function of interleukin 27. J Exp Med 203:1875–1881

    Article  PubMed  CAS  Google Scholar 

  17. Scheller J, Schuster B, Holscher C, Yoshimoto T, Rose-John S (2005) No inhibition of IL-27 signaling by soluble gp130. Biochem Biophys Res Commun 326:724–728

    Article  PubMed  CAS  Google Scholar 

  18. Artis D, Villarino A, Silverman M et al (2004) The IL-27 receptor (WSX-1) is an inhibitor of innate and adaptive elements of type 2 immunity. J Immunol 173:5626–5634

    PubMed  CAS  Google Scholar 

  19. Hamano S, Himeno K, Miyazaki Y et al (2003) WSX-1 is required for resistance to Trypanosoma cruzi infection by regulation of proinflammatory cytokine production. Immunity 19:657–667

    Article  PubMed  CAS  Google Scholar 

  20. Holscher C (2005) Targeting IL-23 in autoimmunity. Curr Opin Investig Drugs 6:489–495

    PubMed  Google Scholar 

  21. Larousserie F, Charlot P, Bardel E, Froger J, Kastelein RA, Devergne O (2006) Differential effects of IL-27 on human B cell subsets. J Immunol 176:5890–5897

    PubMed  CAS  Google Scholar 

  22. Lucas S, Ghilardi N, Li J, de Sauvage FJ (2003) IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1-dependent and -independent mechanisms. Proc Natl Acad Sci USA 100:15047–15052

    Article  PubMed  CAS  Google Scholar 

  23. Ruckerl D, Hessmann M, Yoshimoto T, Ehlers S, Holscher C (2006) Alternatively activated macrophages express the IL-27 receptor alpha chain WSX-1. Immunobiology 211:427–436

    Article  PubMed  CAS  Google Scholar 

  24. Villarino AV, Larkin J, 3rd, Saris CJ et al (2005) Positive and negative regulation of the IL-27 receptor during lymphoid cell activation. J Immunol 174:7684–7691

    PubMed  CAS  Google Scholar 

  25. Yamanaka A, Hamano S, Miyazaki Y et al (2004) Hyperproduction of proinflammatory cytokines by WSX-1-deficient NKT cells in concanavalin A-induced hepatitis. J Immunol 172:3590–3596

    PubMed  CAS  Google Scholar 

  26. Yoshida H, Hamano S, Senaldi G et al (2001) WSX-1 is required for the initiation of Th1 responses and resistance to L. major infection. Immunity 15:569–578

    Article  PubMed  CAS  Google Scholar 

  27. Yoshimoto T, Okada K, Morishima N et al (2004) Induction of IgG2a class switching in B cells by IL-27. J Immunol 173:2479–2485

    PubMed  CAS  Google Scholar 

  28. Leonard WJ, O’Shea JJ (1998) Jaks and STATs: biological implications. Annu Rev Immunol 16:293–322

    Article  PubMed  CAS  Google Scholar 

  29. Takeda A, Hamano S, Yamanaka A et al (2003) Cutting edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. J Immunol 170:4886–4890

    PubMed  CAS  Google Scholar 

  30. Kamiya S, Owaki T, Morishima N, Fukai F, Mizuguchi J, Yoshimoto T (2004) An indispensable role for STAT1 in IL-27-induced T-bet expression but not proliferation of naive CD4+ T cells. J Immunol 173:3871–3877

    PubMed  CAS  Google Scholar 

  31. Ernst M, Jenkins BJ (2004) Acquiring signalling specificity from the cytokine receptor gp130. Trends Genet 20:23–32

    Article  PubMed  CAS  Google Scholar 

  32. Yoshimura T, Takeda A, Hamano S et al (2006) Two-sided roles of IL-27: induction of Th1 differentiation on naive CD4+ T cells versus suppression of proinflammatory cytokine production including IL-23-induced IL-17 on activated CD4+ T cells partially through STAT3-dependent mechanism. J Immunol 177:5377–5385

    PubMed  CAS  Google Scholar 

  33. Owaki T, Asakawa M, Morishima N et al (2005) A role for IL-27 in early regulation of Th1 differentiation. J Immunol 175:2191–2200

    PubMed  CAS  Google Scholar 

  34. Peng SL (2006) The T-box transcription factor T-bet in immunity and autoimmunity. Cell Mol Immunol 3:87–95

    PubMed  CAS  Google Scholar 

  35. Agnello D, Lankford CS, Bream J et al (2003) Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. J Clin Immunol 23:147–161

    Article  PubMed  CAS  Google Scholar 

  36. Lighvani AA, Frucht DM, Jankovic D et al (2001) T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc Natl Acad Sci USA 98:15137–15142

    Article  PubMed  CAS  Google Scholar 

  37. Batten M, Li J, Yi S et al (2006) Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat Immunol 7:929–936

    Article  PubMed  CAS  Google Scholar 

  38. Lieberman LA, Banica M, Reiner SL, Hunter CA (2004) STAT1 plays a critical role in the regulation of antimicrobial effector mechanisms, but not in the development of Th1-type responses during toxoplasmosis. J Immunol 172:457–463

    PubMed  CAS  Google Scholar 

  39. Owaki T, Asakawa M, Kamiya S et al (2006) IL-27 Suppresses CD28-mediated IL-2 production through suppressor of cytokine signaling 3. J Immunol 176:2773–2780

    PubMed  CAS  Google Scholar 

  40. Chirathaworn C, Kohlmeier JE, Tibbetts SA, Rumsey LM, Chan MA, Benedict SH (2002) Stimulation through intercellular adhesion molecule-1 provides a second signal for T cell activation. J Immunol 168:5530–5537

    PubMed  CAS  Google Scholar 

  41. Nieuwenhuis EE, Neurath MF, Corazza N et al (2002) Disruption of T helper 2—immune responses in Epstein–Barr virus-induced gene 3-deficient mice. Proc Natl Acad Sci USA 99:16951–16956

    Article  PubMed  CAS  Google Scholar 

  42. Zahn S, Wirtz S, Birkenbach M, Blumberg RS, Neurath MF, von Stebut E (2005) Impaired Th1 responses in mice deficient in Epstein–Barr virus-induced gene 3 and challenged with physiological doses of Leishmania major. Eur J Immunol 35:1106–1112

    Article  PubMed  CAS  Google Scholar 

  43. Pearl JE, Khader SA, Solache A et al (2004) IL-27 signaling compromises control of bacterial growth in mycobacteria-infected mice. J Immunol 173:7490–7496

    PubMed  CAS  Google Scholar 

  44. Holscher C, Holscher A, Ruckerl D et al (2005) The IL-27 receptor chain WSX-1 differentially regulates antibacterial immunity and survival during experimental tuberculosis. J Immunol 174:3534–3544

    PubMed  Google Scholar 

  45. Villarino A, Hibbert L, Lieberman L et al (2003) The IL-27R (WSX-1) is required to suppress T cell hyperactivity during infection. Immunity 19:645–655

    Article  PubMed  CAS  Google Scholar 

  46. Rosas LE, Satoskar AA, Roth KM et al (2006) Interleukin-27R (WSX-1/T-cell cytokine receptor) gene-deficient mice display enhanced resistance to Leishmania donovani infection but develop severe liver immunopathology. Am J Pathol 168:158–169

    Article  PubMed  CAS  Google Scholar 

  47. Artis D, Johnson LM, Joyce K et al (2004) Cutting edge: early IL-4 production governs the requirement for IL-27-WSX-1 signaling in the development of protective Th1 cytokine responses following Leishmania major infection. J Immunol 172:4672–4675

    PubMed  CAS  Google Scholar 

  48. Bancroft AJ, Humphreys NE, Worthington JJ, Yoshida H, Grencis RK (2004) WSX-1: a key role in induction of chronic intestinal nematode infection. J Immunol 172:7635–7641

    PubMed  CAS  Google Scholar 

  49. Miyazaki Y, Inoue H, Matsumura M et al (2005) Exacerbation of experimental allergic asthma by augmented Th2 responses in WSX-1-deficient mice. J Immunol 175:2401–2407

    PubMed  CAS  Google Scholar 

  50. Komiyama Y, Nakae S, Matsuki T et al (2006) IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177:566–573

    PubMed  CAS  Google Scholar 

  51. Cua DJ, Sherlock J, Chen Y et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748

    Article  PubMed  CAS  Google Scholar 

  52. Langrish CL, Chen Y, Blumenschein WM et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240

    Article  PubMed  CAS  Google Scholar 

  53. Goldberg R, Wildbaum G, Zohar Y, Maor G, Karin N (2004) Suppression of ongoing adjuvant-induced arthritis by neutralizing the function of the p28 subunit of IL-27. J Immunol 173:1171–1178

    PubMed  CAS  Google Scholar 

  54. Goldberg R, Zohar Y, Wildbaum G, Geron Y, Maor G, Karin N (2004) Suppression of ongoing experimental autoimmune encephalomyelitis by neutralizing the function of the p28 subunit of IL-27. J Immunol 173:6465–6471

    PubMed  CAS  Google Scholar 

  55. Villarino AV, Stumhofer JS, Saris CJ, Kastelein RA, de Sauvage FJ, Hunter CA (2006) IL-27 limits IL-2 production during Th1 differentiation. J Immunol 176:237–247

    PubMed  CAS  Google Scholar 

  56. Fehervari Z, Yamaguchi T, Sakaguchi S (2006) The dichotomous role of IL-2: tolerance versus immunity. Trends Immunol 27:109–111

    Article  PubMed  CAS  Google Scholar 

  57. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6:1142–1151

    Article  PubMed  CAS  Google Scholar 

  58. Pasare C, Medzhitov R (2003) Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–1036

    Article  PubMed  CAS  Google Scholar 

  59. Gao W, Pereira MA (2002) Interleukin-6 is required for parasite specific response and host resistance to Trypanosoma cruzi. Int J Parasitol 32:167–170

    Article  PubMed  CAS  Google Scholar 

  60. Jebbari H, Roberts CW, Ferguson DJ, Bluethmann H, Alexander J (1998) A protective role for IL-6 during early infection with Toxoplasma gondii. Parasite Immunol 20:231–239

    Article  PubMed  CAS  Google Scholar 

  61. Suzuki Y, Rani S, Liesenfeld O et al (1997) Impaired resistance to the development of toxoplasmic encephalitis in interleukin-6-deficient mice. Infect Immun 65:2339–2345

    PubMed  CAS  Google Scholar 

  62. Doganci A, Sauer K, Karwot R, Finotto S (2005) Pathological role of IL-6 in the experimental allergic bronchial asthma in mice. Clin Rev Allergy Immunol 28:257–270

    Article  PubMed  CAS  Google Scholar 

  63. Samoilova EB, Horton JL, Hilliard B, Liu TS, Chen Y (1998) IL-6-deficient mice are resistant to experimental autoimmune encephalomyelitis: roles of IL-6 in the activation and differentiation of autoreactive T cells. J Immunol 161:6480–6486

    PubMed  CAS  Google Scholar 

  64. Kolls JK, Linden A (2004) Interleukin17 family members and inflammation. Immunity 21:467–476

    Article  PubMed  CAS  Google Scholar 

  65. Lubberts E, Koenders MI, Oppers-Walgreen B et al (2004) Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum 50:650–659

    Article  PubMed  CAS  Google Scholar 

  66. Nakae S, Nambu A, Sudo K, Iwakura Y (2003) Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 171:6173–6177

    PubMed  CAS  Google Scholar 

  67. Kelly MN, Kolls JK, Happel K et al (2005) Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect Immun 73:617–621

    Article  PubMed  CAS  Google Scholar 

  68. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20

    Article  PubMed  CAS  Google Scholar 

  69. Chen Z, Laurence A, Kanno Y et al (2006) Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci USA 103:8137–8142

    Article  PubMed  CAS  Google Scholar 

  70. Tsung K, Meko JB, Peplinski GR, Tsung YL, Norton JA (1997) IL-12 induces T helper 1-directed antitumor response. J Immunol 158:3359–3365

    PubMed  CAS  Google Scholar 

  71. Yu WG, Yamamoto N, Takenaka H et al (1996) Molecular mechanisms underlying IFN-gamma-mediated tumor growth inhibition induced during tumor immunotherapy with rIL-12. Int Immunol 8:855–865

    Article  PubMed  CAS  Google Scholar 

  72. Zou JP, Yamamoto N, Fujii T et al (1995) Systemic administration of rIL-12 induces complete tumor regression and protective immunity: response is correlated with a striking reversal of suppressed IFN-gamma production by anti-tumor T cells. Int Immunol 7:1135–1145

    Article  PubMed  CAS  Google Scholar 

  73. Chiyo M, Shimozato O, Yu L et al (2005) Expression of IL-27 in murine carcinoma cells produces antitumor effects and induces protective immunity in inoculated host animals. Int J Cancer 115:437–442

    Article  PubMed  CAS  Google Scholar 

  74. Hisada M, Kamiya S, Fujita K et al (2004) Potent antitumor activity of interleukin-27. Cancer Res 64:1152–1156

    Article  PubMed  CAS  Google Scholar 

  75. Salcedo R, Stauffer JK, Lincoln E et al (2004) IL-27 mediates complete regression of orthotopic primary and metastatic murine neuroblastoma tumors: role for CD8+ T cells. J Immunol 173:7170–7182

    PubMed  CAS  Google Scholar 

  76. Shimizu S, Sugiyama N, Masutani K et al (2005) Membranous glomerulonephritis development with Th2-type immune deviations in MRL/lpr mice deficient for IL-27 receptor (WSX-1). J Immunol 175:7185–7192

    PubMed  CAS  Google Scholar 

  77. Oniki S, Nagai H, Horikawa T et al (2006) Interleukin-23 and interleukin-27 exert quite different antitumor and vaccine effects on poorly immunogenic melanoma. Cancer Res 66:6395–6404

    Article  PubMed  CAS  Google Scholar 

  78. Matsui M, Moriya O, Belladonna ML et al (2004) Adjuvant activities of novel cytokines, interleukin-23 (IL-23) and IL-27, for induction of hepatitis C virus-specific cytotoxic T lymphocytes in HLA-A*0201 transgenic mice. J Virol 78:9093–9104

    Article  PubMed  CAS  Google Scholar 

  79. Morishima N, Owaki T, Asakawa M, Kamiya S, Mizuguchi J, Yoshimoto T (2005) Augmentation of effector CD8+ T cell generation with enhanced granzyme B expression by IL-27. J Immunol 175:1686–1693

    PubMed  CAS  Google Scholar 

  80. Sullivan BM, Juedes A, Szabo SJ, von Herrath M, Glimcher LH (2003) Antigen-driven effector CD8 T cell function regulated by T-bet. Proc Natl Acad Sci USA 100:15818–15823

    Article  PubMed  CAS  Google Scholar 

  81. Pearce EL, Mullen AC, Martins GA et al (2003) Control of effector CD8+ T cell function by the transcription factor eomesodermin. Science 302:1041–1043

    Article  PubMed  CAS  Google Scholar 

  82. Shimizu M, Shimamura M, Owaki T et al (2006) Antiangiogenic and antitumor activities of IL-27. J Immunol 176:7317–7324

    PubMed  CAS  Google Scholar 

  83. Portielje JE, Gratama JW, van Ojik HH, Stoter G, Kruit WH (2003) IL-12: a promising adjuvant for cancer vaccination. Cancer Immunol Immunotheras 52:133–144

    CAS  Google Scholar 

  84. Hosken NA, Levin S, Bontadelli K et al (2006) IL-27 promotes TH1 development and inflammation partly by affecting regulatory T cells. In: European cytokine network. Cytokines (in press)

  85. Larousserie F, Pflanz S, Coulomb-L’Hermine A, Brousse N, Kastelein R, Devergne O (2004) Expression of IL-27 in human Th1-associated granulomatous diseases. J Pathol 202:164–171

    Article  PubMed  CAS  Google Scholar 

  86. Honda K, Nakamura K, Matsui N et al (2005) T Helper 1—inducing property of IL-27/WSX-1 signaling is required for the induction of experimental colitis. Inflamm Bowel Dis 11:1044–1052

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Ghilardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batten, M., Ghilardi, N. The biology and therapeutic potential of interleukin 27. J Mol Med 85, 661–672 (2007). https://doi.org/10.1007/s00109-007-0164-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0164-7

Keywords

Navigation