Skip to main content
Log in

Diversity and specificity of the mitogen-activated protein kinase phosphatase-1 functions

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The balance of protein phosphorylation is achieved through the actions of a family of protein serine/threonine kinases called the mitogen-activated protein kinases (MAPKs). The propagation of MAPK signals is attenuated through the actions of the MAPK phosphatases (MKPs). The MKPs specifically inactivate the MAPKs by direct dephosphorylation. The archetypal MKP family member, MKP-1 has garnered much of the attention amongst its ten other MKP family members. Initially viewed to play a redundant role in the control of MAPK signaling, it is now clear that MKP-1 exerts profound regulatory functions on the immune, metabolic, musculoskeletal and nervous systems. This review focuses on the physiological functions of MKP-1 that have been revealed using mouse genetic approaches. The implications from studies using MKP-1-deficient mice to uncover the role of MKP-1 in disease will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26(22):3100–3112

    Article  PubMed  CAS  Google Scholar 

  2. Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B-E, Wright A, Vanderbilt C, Cobb MH (2001) MAP kinases. Chem Rev 101(8):2449–2476

    Article  PubMed  CAS  Google Scholar 

  3. Cobb MH, Goldsmith EJ (1995) How MAP kinases are regulated. J Biol Chem 270(25):14843–14846

    Article  PubMed  CAS  Google Scholar 

  4. Weston CR, Davis RJ (2007) The JNK signal transduction pathway. Curr Opin Cell Biol 19(2):142–149

    Article  PubMed  CAS  Google Scholar 

  5. Karin M, Gallagher E (2005) From JNK to pay dirt: jun kinases, their biochemistry. Physiol Clin Import IUBMB Life 57(4–5):283–295

    Article  CAS  Google Scholar 

  6. Cuenda A, Rousseau S (2007) p38 MAP-Kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta (BBA) Mol Cell Res 1773(8):1358–1375

    Article  CAS  Google Scholar 

  7. Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283(5400):381–387

    Article  PubMed  CAS  Google Scholar 

  8. Pouyssegur J, Volmat V, Lenormand P (2002) Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol 64(5–6):755–763

    Article  PubMed  CAS  Google Scholar 

  9. Karlsson M, Mandl M, Keyse SM (2006) Spatio-temporal regulation of mitogen-activated protein kinase (MAPK) signalling by protein phosphatases. Biochem Soc Trans 34(Pt 5):842–845

    PubMed  CAS  Google Scholar 

  10. Keyse SM (2000) Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol 12(2):186–192

    Article  PubMed  CAS  Google Scholar 

  11. Boutros T, Chevet E, Metrakos P (2008) Mitogen-activated protein (MAP) kinase/MAP kinase phosphatase regulation: roles in cell growth, death, and cancer. Pharmacol Rev 60(3):261–310

    Article  PubMed  CAS  Google Scholar 

  12. Camps M, Nichols A, Arkinstall S (2000) Dual specificity phosphatases: a gene family for control of MAP kinase function. Faseb J 14(1):6–16

    PubMed  CAS  Google Scholar 

  13. Alonso A, Sasin J, Bottini N, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117(6):699–711

    Article  PubMed  CAS  Google Scholar 

  14. Theodosiou A, Ashworth A (2002) MAP kinase phosphatases. Genome Biol 3(7):REVIEWS3009

    Google Scholar 

  15. Guan K-L, Butch E (1995) Isolation of a novel dual specific phosphatase, HVH2 which selectively dephosphorylates the mitogen-activated protein kinase. J Biol Chem 270(13):7197–7203

    Article  PubMed  CAS  Google Scholar 

  16. Farooq A, Chaturvedi G, Mujtaba S, Plotnikova O, Zeng L, Dhalluin C, Ashton R, Zhou MM (2001) Solution structure of ERK2 binding domain of MAPK phosphatase MKP-3: structural insights into MKP-3 activation by ERK2. Mol Cell 7(2):387–399

    Article  PubMed  CAS  Google Scholar 

  17. Farooq A, Plotnikova O, Chaturvedi G, Yan S, Zeng L, Zhang Q, Zhou MM (2003) Solution structure of the MAPK phosphatase PAC-1 catalytic domain. Insights into substrate-induced enzymatic activation of MKP. Structure (Camb) 11(2):155–164

    Google Scholar 

  18. Jeong DG, Yoon T-S, Kim JH, Shim MY, Jung S-K, Son JH, Ryu SE, Kim SJ (2006) Crystal structure of the catalytic domain of human MAP kinase phosphatase 5: structural insight into constitutively active phosphatase. J Mol Biol 360(5):946–955

    Article  PubMed  CAS  Google Scholar 

  19. Jeong DG, Jung SK, Yoon TS, Woo EJ, Kim JH, Park BC, Ryu SE, Kim SJ (2009) Crystal structure of the catalytic domain of human MKP-2 reveals a 24-mer assembly. Proteins 76(3):763–767

    Article  PubMed  CAS  Google Scholar 

  20. Zhang YY, Wu JW, Wang ZX (2011) A distinct interaction mode revealed by the crystal structure of the kinase p38alpha with the MAPK binding domain of the phosphatase MKP5. Sci Signal 4(204):ra88

    Google Scholar 

  21. Farooq A, Zhou MM (2004) Structure and regulation of MAPK phosphatases. Cell Signal 16(7):769–779

    Article  PubMed  CAS  Google Scholar 

  22. Noguchi T, Metz R, Chen L, Mattei M-G, Carrsaco D, Bravo R (1993) Structure, mapping, and expression of erp, a growth factor-inducible gene encoding a nontransmembrane protein tyrosine phosphatase, and effect of ERP on cell growth. Mol Cell Biol 13:5195–5205

    PubMed  CAS  Google Scholar 

  23. Keyse SM, Emslie EA (1992) Oxidative stress and heat shock induce a human gene encoding a protein-tyrosine phosphatase. Nature 359:644–647

    Article  PubMed  CAS  Google Scholar 

  24. Tanoue T, Moriguchi T, Nishida E (1999) Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5. J Biol Chem 274(28):19949–19956

    Article  PubMed  CAS  Google Scholar 

  25. Mandl M, Slack DN, Keyse SM (2005) Specific inactivation and nuclear anchoring of extracellular signal-regulated kinase 2 by the inducible dual-specificity protein phosphatase DUSP5. Mol Cell Biol 25(5):1830–1845

    Article  PubMed  CAS  Google Scholar 

  26. Al-Mutairi M, Al-Harthi S, Cadalbert L, Plevin R (2010) Over-expression of mitogen-activated protein kinase phosphatase-2 enhances adhesion molecule expression and protects against apoptosis in human endothelial cells. Br J Pharmacol 161(4):782–798

    Article  PubMed  CAS  Google Scholar 

  27. Chi H, Barry SP, Roth RJ, Wu JJ, Jones EA, Bennett AM, Flavell RA (2006) Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. PNAS 103(7):2274–2279

    Article  PubMed  CAS  Google Scholar 

  28. Reffas S, Schlegel W (2000) Compartment-specific regulation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs) by ERK-dependent and non-ERK-dependent inductions of MAPK phosphatase (MKP)-3 and MKP-1 in differentiating P19 cells. Bi. Biochem J 352(Pt 3):701–708

    Article  PubMed  CAS  Google Scholar 

  29. Dowd S, Sneddon AA, Keyse SM (1998) Isolation of the human genes encoding the pyst1 and Pyst2 phosphatases: characterisation of Pyst2 as a cytosolic dual-specificity MAP kinase phosphatase and its catalytic activation by both MAP and SAP kinases. J Cell Sci 111(Pt 22):3389–3399

    PubMed  CAS  Google Scholar 

  30. Muda M, Boschert U, Dickinson R, Martinou J-C, Martinou I, Camps M, Schlegel W, Arkinstall S (1996) MKP-3, a novel cytosolic protein-tyrosine phosphatase that exemplifies a new class of mitogen-activated protein kinase phosphatase. J Biol Chem 271(8):4319–4326

    Article  PubMed  CAS  Google Scholar 

  31. Muda M, Boschert U, Smith A, Antonsson B, Gillieron C, Chabert C, Camps M, Martinou I, Ashworth A, Arkinstall S (1997) Molecular cloning and functional characterization of a novel mitogen-activated protein kinase phosphatase, MKP-4. J Biol Chem 272(8):8

    Google Scholar 

  32. Muda M, Theodosiou A, Rodrigues N, Boschert U, Camps M, Gillieron C, Davies K, Ashworth A, Arkinstall S (1996) The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J Biol Chem 271(44):27205–27208

    Article  PubMed  CAS  Google Scholar 

  33. Masuda K, Shima H, Watanabe M, Kikuchi K (2001) MKP-7, a novel mitogen-activated protein kinase phosphatase, functions as a shuttle protein. J Biol Chem 276(42):39002–39011

    Article  PubMed  CAS  Google Scholar 

  34. Owens DM, Keyse SM (2007) Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 26(22):3203–3213

    Article  PubMed  CAS  Google Scholar 

  35. Dorfman K, Carrasco D, Gruda M, Ryan C, Lira SA, Bravo R (1996) Disruption of the erp/mkp-1 gene does not affect mouse development: normal MAP kinase activity in ERP/MKP-1-deficient fibroblasts. Oncogene 13:925–931

    PubMed  CAS  Google Scholar 

  36. Charles CH, Abler AS, Lau LF (1992) cDNA sequence of a growth-inducible immediate early gene and characterization of its encoded protein. Oncogene 7:187–190

    PubMed  CAS  Google Scholar 

  37. Mohn KL, Laz TM, Hsu J-C, Melby AE, Bravo R, Taub R (1991) The immediate-early growth response in regenerating liver and insulin- stimulated H-35 cells: comparison with serum-stimulated 3T3 cells and identification of 41 novel immediate-early genes. Mol Cell Biol 11(1):381–390

    PubMed  CAS  Google Scholar 

  38. Lau LF, Nathans D (1985) Identification of a set of genes expressed during the G0/G1 transition of cultured mouse cells. EMBO J 4(12):3145–3151

    PubMed  CAS  Google Scholar 

  39. Wu JJ, Zhang L, Bennett AM (2005) The noncatalytic amino terminus of mitogen-activated protein kinase phosphatase 1 directs nuclear targeting and serum response element transcriptional regulation. Mol Cell Biol 25(11):4792–4803

    Article  PubMed  CAS  Google Scholar 

  40. Slack DN, Seternes OM, Gabrielsen M, Keyse SM (2001) Distinct binding determinants for erk2/p38alpha and jnk map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. J Biol Chem 276(19):16491–16500

    Article  PubMed  CAS  Google Scholar 

  41. Hutter D, Chen P, Barnes J, Liu Y (2000) Catalytic activation of mitogen-activated protein (MAP) kinase phosphatase-1 by binding to p38 MAP kinase: critical role of the p38 C-terminal domain in its negative regulation. Biochem J 352(Pt 1):155–163

    Article  PubMed  CAS  Google Scholar 

  42. Franklin CC, Kraft AS (1997) Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U397 cells. J Biol Chem 272:16917–16923

    Article  PubMed  CAS  Google Scholar 

  43. Sun H, Charles CH, Lau LF, Tonks NK (1993) MKP-1 (3CH134), an intermediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 75:487–493

    Article  PubMed  CAS  Google Scholar 

  44. Cho IJ, Woo NR, Kim SG (2008) The identification of C/EBPbeta as a transcription factor necessary for the induction of MAPK phosphatase-1 by toll-like receptor-4 ligand. Arch Biochem Biophys 479(1):88–96

    Article  PubMed  CAS  Google Scholar 

  45. Kuwano Y, Kim HH, Abdelmohsen K, Pullmann R Jr, Martindale JL, Yang X, Gorospe M (2008) MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90. Mol Cell Biol 28(14):4562–4575

    Article  PubMed  CAS  Google Scholar 

  46. Kuwano Y, Pullmann R Jr, Marasa BS, Abdelmohsen K, Lee EK, Yang X, Martindale JL, Zhan M, Gorospe M (2010) NF90 selectively represses the translation of target mRNAs bearing an AU-rich signature motif. Nucleic Acids Res 38(1):225–238

    Article  PubMed  CAS  Google Scholar 

  47. Emmons J, Townley-Tilson WHD, Deleault KM, Skinner SJ, Gross RH, Whitfield ML, Brooks SA (2008) Identification of TTP mRNA targets in human dendritic cells reveals TTP as a critical regulator of dendritic cell maturation. RNA 14(5):888–902

    Article  PubMed  CAS  Google Scholar 

  48. Lin N-Y, Lin C-T, Chang C-J (2008) Modulation of immediate early gene expression by tristetraprolin in the differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 365(1):69–74

    Article  PubMed  CAS  Google Scholar 

  49. Scimeca JC, Servant MJ, Dyer JO, Meloche S (1997) Essential role of calcium in the regulation of MAP kinase phosphatase-1 expression. Oncogene 15(6):717–725

    Article  PubMed  CAS  Google Scholar 

  50. Zhu QY, Liu Q, Chen JX, Lan K, Ge BX (2010) MicroRNA-101 targets MAPK phosphatase-1 to regulate the activation of MAPKs in macrophages. J Immunol 185(12):7435–7442

    Article  PubMed  CAS  Google Scholar 

  51. Brondello JM, Pouyssegur J, McKenzie FR (1999) Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK- dependent phosphorylation. Science 286(5449):2514–2517

    Article  PubMed  CAS  Google Scholar 

  52. Lin YW, Yang JL (2006) Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J Biol Chem 281(2):915–926

    Article  PubMed  CAS  Google Scholar 

  53. Lin YW, Chuang SM, Yang JL (2003) ERK1/2 achieves sustained activation by stimulating MAPK phosphatase-1 degradation via the ubiquitin-proteasome pathway. J Biol Chem 278(24):21534–21541

    Article  PubMed  CAS  Google Scholar 

  54. Cao W, Bao C, Padalko E, Lowenstein CJ (2008) Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling. J Exp Med 205(6):1491–1503

    Article  PubMed  CAS  Google Scholar 

  55. Kassel O, Sancono A, Kratzschmar J, Kreft B, Stassen M, Cato AC (2001) Glucocorticoids inhibit MAP kinase via increased expression and decreased degradation of MKP-1. EMBO J 20(24):7108–7116

    Article  PubMed  CAS  Google Scholar 

  56. Wu JJ, Bennett AM (2005) Essential role for mitogen-activated protein (MAP) kinase phosphatase-1 in stress-responsive MAP kinase and cell survival signaling. J Biol Chem 280(16):16461–16466

    Article  PubMed  CAS  Google Scholar 

  57. Murray PJ, Wynn TA (2011) Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11(11):723–737

    Article  PubMed  CAS  Google Scholar 

  58. Hammer M, Mages J, Dietrich H, Servatius A, Howells N, Cato ACB, Lang R (2006) Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J Exp Med 203(1):15–20

    Article  PubMed  CAS  Google Scholar 

  59. Salojin KV, Owusu IB, Millerchip KA, Potter M, Platt KA, Oravecz T (2006) Essential role of MAPK phosphatase-1 in the negative control of innate immune responses. J Immunol 176(3):1899–1907

    PubMed  CAS  Google Scholar 

  60. Zhao Q, Wang X, Nelin LD, Yao Y, Matta R, Manson ME, Baliga RS, Meng X, Smith CV, Bauer JA, Chang C-H, Liu Y (2006) MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. J Exp Med 203(1):131–140

    Article  PubMed  CAS  Google Scholar 

  61. Calvert TJ, Chicoine LG, Liu Y, Nelin LD (2008) Deficiency of mitogen-activated protein kinase phosphatase-1 results in iNOS-mediated hypotension in response to low-dose endotoxin. Am J Physiol Heart Circ Physiol 294(4):H1621–H1629

    Article  PubMed  CAS  Google Scholar 

  62. Sartori R, Li F, Kirkwood KL (2009) MAP kinase phosphatase-1 protects against inflammatory bone loss. J Dent Res 88(12):1125–1130

    Article  PubMed  CAS  Google Scholar 

  63. Wang X, Meng X, Kuhlman JR, Nelin LD, Nicol KK, English BK, Liu Y (2007) Knockout of Mkp-1 enhances the host inflammatory responses to gram-positive bacteria. J Immunol 178(8):5312–5320

    PubMed  CAS  Google Scholar 

  64. Yu H, Sun Y, Haycraft C, Palanisamy V, Kirkwood KL (2011) MKP-1 regulates cytokine mRNA stability through selectively modulation subcellular translocation of AUF1. Cytokine 56(2):245–255

    Article  PubMed  CAS  Google Scholar 

  65. Jeong HJ, Na HJ, Hong SH, Kim HM (2003) Inhibition of the stem cell factor-induced migration of mast cells by dexamethasone. Endocrinology 144(9):4080–4086

    Article  PubMed  CAS  Google Scholar 

  66. Maier JV, Brema S, Tuckermann J, Herzer U, Klein M, Stassen M, Moorthy A, Cato AC (2007) Dual specificity phosphatase 1 knockout mice show enhanced susceptibility to anaphylaxis but are sensitive to glucocorticoids. Mol Endocrinol 21(11):2663–2671

    Article  PubMed  CAS  Google Scholar 

  67. Stritesky GL, Jameson SC, Hogquist KA (2012) Selection of self-reactive T cells in the thymus. Annu Rev Immunol 30:95–114

    Article  PubMed  CAS  Google Scholar 

  68. Tanzola MB, Kersh GJ (2006) The dual specificity phosphatase transcriptome of the murine thymus. Mol Immunol 43(6):754–762

    Article  PubMed  CAS  Google Scholar 

  69. Zhang Y, Reynolds JM, Chang SH, Martin-Orozco N, Chung Y, Nurieva RI, Dong C (2009) MKP-1 is necessary for T cell activation and function. J Biol Chem 284(45):30815–30824

    Article  PubMed  CAS  Google Scholar 

  70. Luo C, Yang X, Yao L, Jiang L, Liu W, Li X, Wang L (2012) Mitogen-activated protein kinase phosphatase-1 expression in macrophages is controlled by lymphocytes during macrophage activation. Int J Mol Med 29(1):25–31

    PubMed  CAS  Google Scholar 

  71. Srivastava N, Sudan R, Saha B (2011) CD40-modulated dual-specificity phosphatases MAPK phosphatase (MKP)-1 and MKP-3 reciprocally regulate Leishmania major infection. J Immunol 186(10):5863–5872

    Article  PubMed  CAS  Google Scholar 

  72. Huang G, Wang Y, Shi LZ, Kanneganti TD, Chi H (2011) Signaling by the phosphatase MKP-1 in dendritic cells imprints distinct effector and regulatory T cell fates. Immunity 35(1):45–58

    Article  PubMed  CAS  Google Scholar 

  73. Lewis CE, McTigue KM, Burke LE, Poirier P, Eckel RH, Howard BV, Allison DB, Kumanyika S, Pi-Sunyer FX (2009) Mortality, health outcomes, and body mass index in the overweight range: a science advisory from the American Heart Association. Circulation 119(25):3263–3271

    Article  PubMed  Google Scholar 

  74. Bost F, Aouadi M, Caron L, Binetruy B (2005) The role of MAPKs in adipocyte differentiation and obesity. Biochimie 87(1):51–56

    Article  PubMed  CAS  Google Scholar 

  75. Bost F, Aouadi M, Caron L, Even P, Belmonte N, Prot M, Dani C, Hofman P, Pages G, Pouyssegur J, Le Marchand-Brustel Y, Binetruy B (2005) The extracellular signal-regulated kinase isoform ERK1 is specifically required for in vitro and in vivo adipogenesis. Diabetes 54(2):402–411

    Article  PubMed  CAS  Google Scholar 

  76. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS (2002) A central role for JNK in obesity and insulin resistance. Nature 420(6913):333–336

    Article  PubMed  CAS  Google Scholar 

  77. Puigserver P, Rhee J, Lin J, Wu Z, Yoon JC, Zhang CY, Krauss S, Mootha VK, Lowell BB, Spiegelman BM (2001) Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARgamma coactivator-1. Mol Cell 8(5):971–982

    Article  PubMed  CAS  Google Scholar 

  78. Xiong Y, Collins QF, An J, Lupo E Jr, Liu H-Y, Liu D, Robidoux J, Liu Z, Cao W (2007) p38 Mitogen-activated protein kinase plays an inhibitory role in hepatic lipogenesis. J Biol Chem 282(7):4975–4982

    Article  PubMed  CAS  Google Scholar 

  79. Burns KA, Vanden Heuvel JP (2007) Modulation of PPAR activity via phosphorylation. Biochim Biophys Acta 1771(8):952–960

    Article  PubMed  CAS  Google Scholar 

  80. Somwar R, Koterski S, Sweeney G, Sciotti R, Djuric S, Berg C, Trevillyan J, Scherer PE, Rondinone CM, Klip A (2002) A dominant-negative p38 MAPK mutant and novel selective inhibitors of p38 MAPK reduce insulin-stimulated glucose uptake in 3T3-L1 adipocytes without affecting GLUT4 translocation. J Biol Chem 277(52):50386–50395

    Article  PubMed  CAS  Google Scholar 

  81. Barger PM, Browning AC, Garner AN, Kelly DP (2001) p38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor alpha: a potential role in the cardiac metabolic stress response. J Biol Chem 276(48):44495–44501

    Article  PubMed  CAS  Google Scholar 

  82. Flach RJR, Qin H, Zhang L, Bennett AM (2011) Loss of mitogen-activated protein kinase phosphatase-1 protects from hepatic steatosis by repression of cell death-inducing DNA fragmentation factor A (DFFA)-like effector C (CIDEC)/fat-specific protein 27. J Biol Chem 286(25):22195–22202

    Article  PubMed  CAS  Google Scholar 

  83. Roth RJ, Le AM, Zhang L, Kahn M, Samuel VT, Shulman GI, Bennett AM (2009) MAPK phosphatase-1 facilitates the loss of oxidative myofibers associated with obesity in mice. J Clin Invest 119:3817–3829

    Article  PubMed  CAS  Google Scholar 

  84. Wu JJ, Roth RJ, Anderson EJ, Hong E-G, Lee M-K, Choi CS, Neufer PD, Shulman GI, Kim JK, Bennett AM (2006) Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metab 4(1):61–73

    Article  PubMed  CAS  Google Scholar 

  85. Emanuelli B, Eberle D, Suzuki R, Kahn CR (2008) Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance. Proc Natl Acad Sci USA 105(9):3545–3550

    Article  PubMed  CAS  Google Scholar 

  86. Wu Z, Jiao P, Huang X, Feng B, Feng Y, Yang S, Hwang P, Du J, Nie Y, Xiao G, Xu H (2010) MAPK phosphatase-3 promotes hepatic gluconeogenesis through dephosphorylation of forkhead box O1 in mice. J Clin Invest 120(11):3901–3911

    Article  PubMed  CAS  Google Scholar 

  87. Zierath JR, Hawley JA (2004) Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2(10):e348

    Article  PubMed  CAS  Google Scholar 

  88. Flach RJ, Qin H, Zhang L, Bennett AM (2011) Loss of mitogen-activated protein kinase phosphatase-1 protects from hepatic steatosis by repression of cell death-inducing DNA fragmentation factor A (DFFA)-like effector C (CIDEC)/fat-specific protein 27. J Biol Chem 286(25):22195–22202

    Article  PubMed  CAS  Google Scholar 

  89. Lehrke M, Lazar MA (2005) The many faces of PPARgamma. Cell 123(6):993–999

    Article  PubMed  CAS  Google Scholar 

  90. Gavrilova O, Haluzik M, Matsusue K, Cutson JJ, Johnson L, Dietz KR, Nicol CJ, Vinson C, Gonzalez FJ, Reitman ML (2003) Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem 278(36):34268–34276

    Article  PubMed  CAS  Google Scholar 

  91. Matsusue K, Haluzik M, Lambert G, Yim SH, Gavrilova O, Ward JM, Brewer B Jr, Reitman ML, Gonzalez FJ (2003) Liver-specific disruption of PPARgamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest 111(5):737–747

    PubMed  CAS  Google Scholar 

  92. Matsusue K, Kusakabe T, Noguchi T, Takiguchi S, Suzuki T, Yamano S, Gonzalez FJ (2008) Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27. Cell Metab 7(4):302–311

    Article  PubMed  CAS  Google Scholar 

  93. Traini M, Jessup W (2009) Lipid droplets and adipose metabolism: a novel role for FSP27/CIDEC. Curr Opin Lipidol 20(2):147–149

    Article  PubMed  CAS  Google Scholar 

  94. Reddy ST, Nguyen JT, Grijalva V, Hough G, Hama S, Navab M, Fogelman AM (2004) Potential role for mitogen-activated protein kinase phosphatase-1 in the development of atherosclerotic lesions in mouse models. Arterioscler Thromb Vasc Biol 24(9):1676–1681

    Article  PubMed  CAS  Google Scholar 

  95. Dankel SN, Fadnes DJ, Stavrum AK, Stansberg C, Holdhus R, Hoang T, Veum VL, Christensen BJ, Vage V, Sagen JV, Steen VM, Mellgren G (2010) Switch from stress response to homeobox transcription factors in adipose tissue after profound fat loss. PLoS ONE 5(6):e11033

    Article  PubMed  CAS  Google Scholar 

  96. Weber C, Noels H (2011) Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 17(11):1410–1422

    Article  PubMed  CAS  Google Scholar 

  97. Ricci R, Sumara G, Sumara I, Rozenberg I, Kurrer M, Akhmedov A, Hersberger M, Eriksson U, Eberli FR, Becher B, Boren J, Chen M, Cybulsky MI, Moore KJ, Freeman MW, Wagner EF, Matter CM, Luscher TF (2004) Requirement of JNK2 for scavenger receptor A-mediated foam cell formation in atherogenesis. Science 306(5701):1558–1561

    Article  PubMed  CAS  Google Scholar 

  98. Shen J, Chandrasekharan UM, Ashraf MZ, Long E, Morton RE, Liu Y, Smith JD, DiCorleto PE (2010) Lack of mitogen-activated protein kinase phosphatase-1 protects ApoE-null mice against atherosclerosis. Circ Res 106(5):902–910

    Article  PubMed  CAS  Google Scholar 

  99. Imaizumi S, Grijalva V, Priceman S, Wu L, Su F, Farias-Eisner R, Hama S, Navab M, Fogelman AM, Reddy ST (2010) Mitogen-activated protein kinase phosphatase-1 deficiency decreases atherosclerosis in apolipoprotein E null mice by reducing monocyte chemoattractant protein-1 levels. Mol Genet Metab 101(1):66–75

    Article  PubMed  CAS  Google Scholar 

  100. Chaudhury H, Zakkar M, Boyle J, Cuhlmann S, van der Heiden K, le Luong A, Davis J, Platt A, Mason JC, Krams R, Haskard DO, Clark AR, Evans PC (2010) c-Jun N-terminal kinase primes endothelial cells at atheroprone sites for apoptosis. Arterioscler Thromb Vasc Biol 30(3):546–553

    Article  PubMed  CAS  Google Scholar 

  101. Jin Y, Calvert TJ, Chen B, Chicoine LG, Joshi M, Bauer JA, Liu Y, Nelin LD (2010) Mice deficient in Mkp-1 develop more severe pulmonary hypertension and greater lung protein levels of arginase in response to chronic hypoxia. Am J Physiol Heart Circ Physiol 298(5):H1518–H1528

    Article  PubMed  CAS  Google Scholar 

  102. Rudnicki MA, Le Grand F, McKinnell I, Kuang S (2008) The molecular regulation of muscle stem cell function. Cold Spring Harb Symp Quant Biol 73:323–331

    Article  PubMed  CAS  Google Scholar 

  103. Cerletti M, Shadrach JL, Jurga S, Sherwood R, Wagers AJ (2008) Regulation and function of skeletal muscle stem cells. Cold Spring Harb Symp Quant Biol 73:317–322

    Article  PubMed  CAS  Google Scholar 

  104. Gallo R, Serafini M, Castellani L, Falcone G, Alema S (1999) Distinct effects of rac1 on differentiation of primary avian myoblasts. Mol Biol Cell 10(10):3137–3150

    PubMed  CAS  Google Scholar 

  105. Khurana A, Dey CS (2003) p38 MAPK interacts with actin and modulates filament assembly during skeletal muscle differentiation. Differentiation 71(1):42–50

    Article  PubMed  CAS  Google Scholar 

  106. Khurana A, Dey CS (2004) Involvement of c-Jun N-terminal kinase activities in skeletal muscle differentiation. J Muscle Res Cell Motil 25(8):645–655

    Article  PubMed  CAS  Google Scholar 

  107. Charrasse S, Meriane M, Comunale F, Blangy A, Gauthier-Rouviere C (2002) N-cadherin-dependent cell–cell contact regulates Rho GTPases and beta-catenin localization in mouse C2C12 myoblasts. J Cell Biol 158(5):953–965

    Article  PubMed  CAS  Google Scholar 

  108. Lluis F, Perdiguero E, Nebreda AR, Munoz-Canoves P (2006) Regulation of skeletal muscle gene expression by p38 MAP kinases. Trends Cell Biol 16(1):36–44

    Article  PubMed  CAS  Google Scholar 

  109. Perdiguero E, Ruiz-Bonilla V, Gresh L, Hui L, Ballestar E, Sousa-Victor P, Baeza-Raja B, Jardi M, Bosch-Comas A, Esteller M, Caelles C, Serrano AL, Wagner EF, Munoz-Canoves P (2007) Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38alpha in abrogating myoblast proliferation. EMBO J 26(5):1245–1256

    Article  PubMed  CAS  Google Scholar 

  110. Perdiguero E, Ruiz-Bonilla V, Serrano AL, Munoz-Canoves P (2007) Genetic deficiency of p38alpha reveals its critical role in myoblast cell cycle exit: the p38alpha-JNK connection. Cell Cycle 6(11):1298–1303

    Article  PubMed  CAS  Google Scholar 

  111. Kondoh K, Sunadome K, Nishida E (2007) Notch signaling suppresses p38 MAPK activity via induction of MKP-1 in myogenesis. J Biol Chem 282(5):3058–3065

    Article  PubMed  CAS  Google Scholar 

  112. Sunadome K, Yamamoto T, Ebisuya M, Kondoh K, Sehara-Fujisawa A, Nishida E (2011) ERK5 regulates muscle cell fusion through Klf transcription factors. Dev Cell 20(2):192–205

    Article  PubMed  CAS  Google Scholar 

  113. Bennett AM, Tonks NK (1997) Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 278:1288–1291

    Article  PubMed  CAS  Google Scholar 

  114. Shi H, Boadu E, Mercan F, Le AM, Flach RJ, Zhang L, Tyner KJ, Olwin BB, Bennett AM (2010) MAP kinase phosphatase-1 deficiency impairs skeletal muscle regeneration and exacerbates muscular dystrophy. FASEB J 24(8):2985–2997

    Article  PubMed  CAS  Google Scholar 

  115. Carlson J, Zhang Q, Bennett A, Vignery A (2009) Deletion of mitogen-activated protein kinase phosphatase 1 modifies the response to mechanical bone marrow ablation in a mouse model. Comp Med 59(3):221–226

    PubMed  CAS  Google Scholar 

  116. Carlson J, Cui W, Zhang Q, Xu X, Mercan F, Bennett AM, Vignery A (2009) Role of MKP-1 in osteoclasts and bone homeostasis. Am J Pathol 175(4):1564–1573

    Article  PubMed  CAS  Google Scholar 

  117. Mahalingam CD, Datta T, Patil RV, Kreider J, Bonfil RD, Kirkwood KL, Goldstein SA, Abou-Samra AB, Datta NS (2011) Mitogen-activated protein kinase phosphatase 1 regulates bone mass, osteoblast gene expression, and responsiveness to parathyroid hormone. J Endocrinol 211(2):145–156

    Article  PubMed  CAS  Google Scholar 

  118. Valjent E, Caboche J, Vanhoutte P (2001) Mitogen-activated protein kinase/extracellular signal-regulated kinase induced gene regulation in brain. Mol Neurobiol 23(2):83–99

    Article  PubMed  CAS  Google Scholar 

  119. Jeanneteau F, Deinhardt K (2011) Fine-tuning MAPK signaling in the brain: the role of MKP-1. Commun Integr Biol 4(3):281–283

    Article  PubMed  Google Scholar 

  120. Duric V, Banasr M, Licznerski P, Schmidt HD, Stockmeier CA, Simen AA, Newton SS, Duman RS (2010) A negative regulator of MAP kinase causes depressive behavior. Nat Med 16(11):1328–1332

    Article  PubMed  CAS  Google Scholar 

  121. Kristiansen M, Hughes R, Patel P, Jacques TS, Clark AR, Ham J (2010) Mkp1 is a c-Jun target gene that antagonizes JNK-dependent apoptosis in sympathetic neurons. J Neurosci 30(32):10820–10832

    Article  PubMed  CAS  Google Scholar 

  122. Dhillon AS, Hagan S, Rath O, Kolch W (2007) MAP kinase signalling pathways in cancer. Oncogene 26(22):3279–3290

    Article  PubMed  CAS  Google Scholar 

  123. Magi-Galluzzi C, Mishra R, Fiorentino M, Montironi R, Yao H, Capodieci P, Wishnow K, Kaplan I, Stork PJ, Loda M (1997) Mitogen-activated protein kinase phosphatase 1 is overexpressed in prostate cancers and is inversely related to apoptosis. Lab Invest J Tech Methods Pathol 76(1):37–51

    CAS  Google Scholar 

  124. Arnoldussen YJ, Saatcioglu F (2009) Dual specificity phosphatases in prostate cancer. Mol Cell Endocrinol 309(1–2):1–7

    Article  PubMed  CAS  Google Scholar 

  125. Rauhala HE, Porkka KP, Tolonen TT, Martikainen PM, Tammela TL, Visakorpi T (2005) Dual-specificity phosphatase 1 and serum/glucocorticoid-regulated kinase are downregulated in prostate cancer. Int J Cancer J Int cancer 117(5):738–745

    Article  CAS  Google Scholar 

  126. Tai CJ, Wu AT, Chiou JF, Jan HJ, Wei HJ, Hsu CH, Lin CT, Chiu WT, Wu CW, Lee HM, Deng WP (2010) The investigation of mitogen-activated protein kinase phosphatase-1 as a potential pharmacological target in non-small cell lung carcinomas, assisted by non-invasive molecular imaging. BMC cancer 10:95

    Article  PubMed  CAS  Google Scholar 

  127. Li M, Zhou J-Y, Ge Y, Matherly LH, Wu GS (2003) The phosphatase MKP1 is a transcriptional target of p53 involved in cell cycle regulation. J Biol Chem 278(42):41059–41068

    Article  PubMed  CAS  Google Scholar 

  128. Small GW, Shi YY, Higgins LS, Orlowski RZ (2007) Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Res 67(9):4459–4466

    Article  PubMed  CAS  Google Scholar 

  129. Bai L, Xu X, Wang X, Xu S, Ju W, Chen W, He W, Wang Q, Tang H, Lin Y (2012) A superoxide-mediated MKP-1 degradation and JNK activation pathway for luteolin-induced lung cancer cytotoxicity. Mol Pharmacol 81(4):549–555

    Google Scholar 

  130. Bang YJ, Kwon JH, Kang SH, Kim JW, Yang YC (1998) Increased MAPK activity and MKP-1 overexpression in human gastric adenocarcinoma. Biochem Biophys Res Commun 250(1):43–47

    Article  PubMed  CAS  Google Scholar 

  131. Colombo J, Fachel AA, De Freitas Calmon M, Cury PM, Fukuyama EE, Tajara EH, Cordeiro JA, Verjovski-Almeida S, Reis EM, Rahal P (2009) Gene expression profiling reveals molecular marker candidates of laryngeal squamous cell carcinoma. Oncol Rep 21(3):649–663

    PubMed  CAS  Google Scholar 

  132. Tomioka H, Morita K, Hasegawa S, Omura K (2006) Gene expression analysis by cDNA microarray in oral squamous cell carcinoma. J Oral Pathol Med Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol 35(4):206–211

    CAS  Google Scholar 

  133. Vicent S, Garayoa M, Lopez-Picazo JM, Lozano MD, Toledo G, Thunnissen FB, Manzano RG, Montuenga LM (2004) Mitogen-activated protein kinase phosphatase-1 is overexpressed in non-small cell lung cancer and is an independent predictor of outcome in patients. Clin Cancer Res Off J Am Assoc Cancer Res 10(11):3639–3649

    Article  CAS  Google Scholar 

  134. Wang HY, Cheng Z, Malbon CC (2003) Overexpression of mitogen-activated protein kinase phosphatases MKP1, MKP2 in human breast cancer. Cancer Lett 191(2):229–237

    Article  PubMed  CAS  Google Scholar 

  135. Rojo F, Gonzalez-Navarrete I, Bragado R, Dalmases A, Menendez S, Cortes-Sempere M, Suarez C, Oliva C, Servitja S, Rodriguez-Fanjul V, Sanchez-Perez I, Campas C, Corominas JM, Tusquets I, Bellosillo B, Serrano S, Perona R, Rovira A, Albanell J (2009) Mitogen-activated protein kinase phosphatase-1 in human breast cancer independently predicts prognosis and is repressed by doxorubicin. Clin Cancer Res Off J Am Assoc Cancer Res 15(10):3530–3539

    Article  CAS  Google Scholar 

  136. Liao Q, Guo J, Kleeff J, Zimmermann A, Buchler MW, Korc M, Friess H (2003) Down-regulation of the dual-specificity phosphatase MKP-1 suppresses tumorigenicity of pancreatic cancer cells. Gastroenterology 124(7):1830–1845

    Article  PubMed  CAS  Google Scholar 

  137. Loda M, Capoodieci P, Mishra R, Yao H, Corless C, Grigioni W, Wang Y, Magi-Galluzzi C, Stork PJS (1996) Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis. Am J Pathol 149(5):1553–1564

    PubMed  CAS  Google Scholar 

  138. Kundu S, Fan K, Cao M, Lindner DJ, Tuthill R, Liu L, Gerson S, Borden E, Yi T (2010) Tyrosine phosphatase inhibitor-3 sensitizes melanoma and colon cancer to biotherapeutics and chemotherapeutics. Mol Cancer Ther 9(8):2287–2296

    Article  PubMed  CAS  Google Scholar 

  139. Manzano RG, Montuenga LM, Dayton M, Dent P, Kinoshita I, Vicent S, Gardner GJ, Nguyen P, Choi YH, Trepel J, Auersperg N, Birrer MJ (2002) CL100 expression is down-regulated in advanced epithelial ovarian cancer and its re-expression decreases its malignant potential. Oncogene 21(28):4435–4447

    Article  PubMed  CAS  Google Scholar 

  140. Denkert C, Schmitt WD, Berger S, Reles A, Pest S, Siegert A, Lichtenegger W, Dietel M, Hauptmann S (2002) Expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) in primary human ovarian carcinoma. Int J Cancer J Int Cancer 102(5):507–513

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to A.M.B. from the National Institutes of Health and from the Muscular Dystrophy Association to H.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton M. Bennett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawan, A., Shi, H., Gatzke, F. et al. Diversity and specificity of the mitogen-activated protein kinase phosphatase-1 functions. Cell. Mol. Life Sci. 70, 223–237 (2013). https://doi.org/10.1007/s00018-012-1041-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1041-2

Keywords

Navigation