Skip to main content

Hyperpolarization-activated cation channels: A multi-gene family

  • Chapter
  • First Online:
Book cover Reviews of Physiology, Biochemistry and Pharmacology, Volume 136

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 136))

Abstract

Since the first discovery of an Ih current in heart pacemaker cells about twenty years ago our knowledge on this ion channel class has increased substantially. Studies from a variety of groups have clearly demonstrated that Ih is not only required for cardiac pacemaking but also is a key regulator of several neuronal functions. The long-sought molecular cloning of the genes underlying Ih has now provided the basis to achieve a deeper understanding of the molecular function and physiological regulation of these channels. In addition, the powerful approaches of mouse genetics will enable us to study the physiological roles of the channels in significantly more detail than it was possible up to now.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber, RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 89:3736–3740

    PubMed  Google Scholar 

  • Attwell D, Wilson M (1980) Behaviour of the rod network in the tiger salamander retina mediated by membrane properties of individual rods. J Physiol 309:287–315

    PubMed  Google Scholar 

  • Bader CR, Bertrand D (1984) Effect of changes in intra-and extracellular sodium on the inward (anomalous) rectification in salamander photoreceptors. J Physiol 347:611–31

    PubMed  Google Scholar 

  • Baker K, Warren KS, Yellen G, Fishman MC (1997) Defective “pacemaker” current (Ih) in a zebrafish mutant with a slow heart rate. Proc Natl Acad Sci 94:4554–4559

    Article  PubMed  Google Scholar 

  • Barnes S, Hille B (1989) Ionic channels of the inner segment of tiger salamander cone photoreceptor. J Gen Physiol 94:719–743

    Article  PubMed  Google Scholar 

  • Biel M, Sautter A, Ludwig A, Hofmann F, Zong X (1998) Cyclic nucleotide-gated channels — mediators of NO:cGMP-regulated processes. Naunyn Schmiedebergs Arch Pharmacol 358:140–144

    PubMed  Google Scholar 

  • Biel M, Zong X, Distler M, Bosse E, Klugbauer N, Murakami M, Flockerzi V, Hofmann F (1994) Another member of the cyclic nucleotide-gated channels family, expressed in testis, kidney, and heart. Proc Natl Sci USA 91:3505–3509

    Google Scholar 

  • Brown HF, Giles W, Noble SJ (1977) Membrane currents underlying activity in frog sinus venosus. J Physiol 271:783–816

    PubMed  Google Scholar 

  • Brown HF, Ho WK (1996) The hyperpolarization-activated inward channel and cardiac pacemaker activity. In: Morad M, Ebashi S, Trautwein W, Kurachi Y (eds) Molecular physiology and pharmacology of cardiac ion channels and transporters. Kluwer Academic Publishers, Dordrecht, pp 17–30

    Google Scholar 

  • Choe S, Robinson R (1998) An ingenious filter: the structural basis for ion channel selectivity. Neuron 20:821–823

    Article  PubMed  Google Scholar 

  • Clapham DE (1998) Not so funny anymore: pacing channels are cloned. Neuron 21:5–7

    Article  PubMed  Google Scholar 

  • Denyer JC, Brown HF (1990) Rabbit sino-atrial node cells: isolation and electrophysiological properties. J Physiol 428:405–424

    PubMed  Google Scholar 

  • DiFrancesco D (1981) A new interpretation of the pacemaker current in calf Purkinje fibres. J Physiol 314:359–376

    PubMed  Google Scholar 

  • DiFrancesco D (1993) Pacemaker mechanisms in cardiac tissue: Annu Rev Physiol 55:455–472

    Article  PubMed  Google Scholar 

  • DiFrancesco D (1996) The hyperpolarization actiated (if) current. Autonomic regulation and the control of pacing. In: Morad M, Ebashi S, Trautwein W, Kurachi Y (eds) Molecular physiology and pharmacology of cardiac ion channels and transporters. Kluwer Academic Publishers, Dordrecht, pp 31–37

    Google Scholar 

  • DiFrancesco D, Ducouret, Robinson RB (1989) Muscarinic modulation of cardiac rate at low acetylcholine concentrations. Science 243:669–671

    PubMed  Google Scholar 

  • DiFrancesco D, Mangoni M (1994) Modulation of single hyperpolaritation-activated channels (if) by cAMP in the rabbit sino-atrial node. J Physiol 474:473–482

    PubMed  Google Scholar 

  • DiFrancesco D, Tortora P (1991) Direct activation of cardiac pacemaker channels by intracellular AMP. Nature 351:145–147

    Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  Google Scholar 

  • Finn JT, Grunwald ME, Yau KW (1996) Cyclic nucleotide-gated ion channels: an extended family with diverse functions. Annu Rev Physiol 58:395–426

    Article  PubMed  Google Scholar 

  • Frace AM, Maruoka F, Noma A (1992a) Control of the hyperpolarization-activated cation current by external anions in rabbit sino-atrial node cells. J Physiol 453:307–318

    PubMed  Google Scholar 

  • Frace AM, Maruoka F, Noma A (1992b) External K+ increases Na+ conductances of the hyperpolarization-activated current in rabbit cardiac pacemaker cells. Pflügers Arch 421:94–96

    Article  Google Scholar 

  • Gauss R, Seifert R, Kaupp UB (1998) Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 393:583–587

    Article  PubMed  Google Scholar 

  • Halliwell JV, Adams PR (1982) Voltage-clamp analysis of muscarinic excitation in hippocampal neurons. Brain Res 250:71–92

    Article  PubMed  Google Scholar 

  • Heginbotham L, Lu Z, Abramson T, MacKinnon R (1994) Mutations in the K+ channel signature sequence. Biophys J 66:1061–1067

    PubMed  Google Scholar 

  • Hess P, Tsien RW (1984) Mechanism of ion permeation through calcium channels. Nature 309:453–456

    Article  PubMed  Google Scholar 

  • Ho WK, Brown HF, Noble D (1994) High selectivity of the if channels to Na+ and K+ in rabbit isolated sinoatrial node cells. Pflügers Arch 426:68–74

    Article  Google Scholar 

  • Hoppe UC, Jansen E, Südkamp M, Beuckelmann DJ (1998) Hyperpolarization-activated inward current in ventricular myocytes from normal and failing human hearts. Circulation 97:55–65

    PubMed  Google Scholar 

  • Jan LY, Jan YN (1994) Potassium channels and their evolving gates. Nature 371:119–122

    Article  PubMed  Google Scholar 

  • Liu DT, Tibbs GR, Paoletti P, Siegelbaum SA (1998) Constraining ligand-binding site stoichiometry suggests that a cyclic nucleotide-gated channel is composed of two functional dimers. Neuron 21:235–248

    Article  PubMed  Google Scholar 

  • Liu DT, Tibbs GR, Siegelbaum SA (1996) Subunit stoichiometry of cyclic nucleotidegated channels and effects of subunit order on channel function. Neuron 16:983–990

    Article  PubMed  Google Scholar 

  • Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M (1998) A family of hyperpolarization-activated mammalian cation channels. 393:587–591

    Google Scholar 

  • Lüthi A, McCormick DA (1998) H-Current: Properties of a neuronal and network pacemaker. Neuron 21:9–12

    Article  PubMed  Google Scholar 

  • Maccaferri G, Mangoni M, Lazzari A, DiFrancesco D (1993) Properties of the hyperpolarization-activated current in rat hippocampal CA1 pyramidal cells. J Neurophysiol 69:2129–2136

    PubMed  Google Scholar 

  • MacKinnon R (1995) Pore loops: an emerging theme in ion channel structure. Neuron 14:889–892

    Article  PubMed  Google Scholar 

  • Marten I, Hoshi T (1998) The N-terminus of the K channel KAT1 controls its voltage-dependent gating by altering the membrane electric field. Biophys J 74:2953–2962

    PubMed  Google Scholar 

  • McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurons. J Physiol 432:291–318

    Google Scholar 

  • Miller AG, Aldrich RW (1996) Conversion of a delayed rectifier K+ channel to a voltage-gated inward rectifier K+ channel by three amino acid substitutions. Neuron 16:853–858

    Article  PubMed  Google Scholar 

  • Pape HC (1992) Adenosine promotes burst activity in guinea-pig geniculocortical neurons through two different ionic mechanisms. J Physiol 447:729–753

    PubMed  Google Scholar 

  • Pape HC (1996) Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327

    Article  PubMed  Google Scholar 

  • Pape HC, McCormick DA (1989) Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature 340:715–718

    Article  PubMed  Google Scholar 

  • Pedarzani P, Storm JF (1995) Protein kinase A-independent modulation of ion channels in the brain by cyclic AMP. Proc Natl Acad Sci USA 92:11716–11720

    PubMed  Google Scholar 

  • Pfeifer A, Dostmann WRG, Sausbier M, Klatt P, Ruth P, Hofmann F. cGMP-dependent protein kinases: structure and function. Rev Physiol Biochem Pharmacol (in press)

    Google Scholar 

  • Pongs O (1996) Diversity of voltage-dependent K channels. In: Morad M, Ebashi S, Trautwein W, Kurachi Y (eds) Molecular physiology and pharmacology of cardiac ion channels and transporters. Kluwer Academic Publishers, Dordrecht, pp 107–117

    Google Scholar 

  • Santoro B, Grant SGN, Bartsch D, Kandel ER (1997) Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to Eag and cyclic nucleotide-gated channels. Proc Natl Acad Sci 94:12815–14820

    Google Scholar 

  • Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, Tibbs GR (1998) Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 93:717–729

    Article  PubMed  Google Scholar 

  • Sesti F, Eismann E, Kaupp UB, Nizzari M, Torre V (1995) The multi-ion nature of the cGMP-gated channel from vertebrate rods. J Physiol 487:17–36

    PubMed  Google Scholar 

  • Shabb JB, Ng L, Corbin JD (1990) One amino acid change produces a high affinity cGMP-binding site in cAMP-dependent protein kinase. J Biol Chem 265:16031–16034

    PubMed  Google Scholar 

  • Smith PL, Baukrowitz TM, Yellen G (1996) The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379:833–836

    Article  PubMed  Google Scholar 

  • Titani K, Sasagawa T, Ericsson LH, Kumar S, Smith SB, Krebs EG, Walsh KA (1984) Amino acid sequence of the regulatory subunit of bovine type I adenosine cyclic 3′,5′-phosphate dependent protein kinase. Biochemistry 23:4193–4199

    Article  PubMed  Google Scholar 

  • Trudeau MC, Warmke JW, Ganetzky B, Robertson GA (1995) Herg, a human inward rectifier in the voltage-gated potassium channel family. Science 269:92–95

    PubMed  Google Scholar 

  • Varnum MD, Black KD, Zagotta WN (1995) Molecular mechanism for ligand discrimination of cyclic nucleotide-gated channels. Neuron 15:619–625

    Article  PubMed  Google Scholar 

  • Warmke JW, Ganetzky B (1994) A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci USA 91:3438–3442

    PubMed  Google Scholar 

  • Weber IT, Steitz TA (1987) Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 Å. J Mol Biol 198:311–326

    Article  PubMed  Google Scholar 

  • Wickman K, Nemec J, Gendler SJ, Clapham DE (1998) Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 20:103–114

    Article  PubMed  Google Scholar 

  • Wollmuth LP (1995) Multiple ion binding sites in Ih channels of rod photoreceptors in tiger salamander. Pflügers Arch 430:34–43

    Article  Google Scholar 

  • Wollmuth LP, Hille B (1992) Ionic selectivity of Ih channels of rod photoreceptors in tiger salamanders. J Gen Physiol 100:749–765

    Article  PubMed  Google Scholar 

  • Yanagihara K, Irisawa H (1980) Inward current activated during hyperpolarization in the rabbit sinoatrial node cell. Pfluegers Arch 388:11–19

    Article  Google Scholar 

  • Yu H, Chang F, Cohen IS (1995) Pacemaker current if in adult canine cardiac ventricular myocytes. J Physiol 485:469–483

    PubMed  Google Scholar 

  • Zagotta WN, Siegelbaum SA (1996) Structure and function of cyclic nucleotide-gated channels. Annu Rev Neurosci 19:235–263

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this chapter

Cite this chapter

Biel, M., Ludwig, A., Zong, X., Hofmann, F. (1999). Hyperpolarization-activated cation channels: A multi-gene family. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 136. Reviews of Physiology, Biochemistry and Pharmacology, vol 136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0032324

Download citation

  • DOI: https://doi.org/10.1007/BFb0032324

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65151-2

  • Online ISBN: 978-3-540-49542-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics