Skip to main content

Transport of organic anions in the liver. An update on bile acid, fatty acid, monocarboxylate, anionic amino acid, cholephilic organic anion, and anionic drug transport

  • Chapter
  • First Online:
Book cover Reviews of Physiology, Biochemistry and Pharmacology, Volume 123

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 123))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CA:

cholic acid

CDCA:

chenodeoxycholic acid

DCA:

deoxycholic acid

DHCA:

dehydrocholic acid

DTDHCA:

dansyl-taurodehydrocholic acid

DTCA:

dansyl-taurocholic acid

HDCA:

hyodeoxycholic acid

GCA:

glycocholic acid

GDCA:

glycodeoxycholic acid

GUDCA:

glycoursodeoxycholic acid

7-KLCA:

7-ketolithocholic acid

LCA:

lithocholic acid

TCA:

taurocholic acid

TCDCA:

taurochenodeoxycholic acid

TDHCA:

taurodehydrocholic acid

TUDCA:

tauroursodeoxycholic acid

UDCA:

ursodeoxycholic acid

UDC-CMG:

ursodeoxycholyl N-carboxymethylglycine

nCA:

nor-cholic acid

nUCA:

nor-ursocholic acid

7,7-ACT:

7,7-azotaurocholate

ABATC:

azidobenzamidotaurocholate

125I-CGTyr:

125I-cholylglycyltyrosine

125I-CGH:

125I-cholylglycylhistamine

ANS:

1-anilino-8-naphthalenesulfonate

BSP:

bromosulfophthalein

DBSP:

dibromosulfophthalein

DNP-SG:

DNP-GSH, S-(2,4-dinitrophenyl)glutathione

ICG:

indocyanine green

NPG:

p-nitrophenyl glucuronide

RB:

rose bengal

UCB:

unconjugated bilirubin

DIDS:

4,4′-diisothiocyanato-2,2′-disulfonic acid stilbene

H2DIDS:

4,4′-diisothiocyanatodihydro-2,2′-disulfonic acid stilbene

DTNB:

5,5′-dithiobis(2-nitrobenzoic acid)

NAP:

N-(4-azido-2-nitrophenyl)

NIP:

N-(4-isothiocyano-2-nitrophenyl)

NBD:

4-nitrobenzene-2-oxa-1,3-diazol

NEM:

N-ethylmaleimide

PCMBS:

p-chloromercuribenzenesulfonate

pHMB:

p-hydroxymercuribenzoate

SITS:

4-acetamido-4′-isothiocyano-2,2′-disulfonic acid

AzBHC:

3-p-azidobenzyl-4-hydroxycoumarin

CCCP:

carbonylcyanochlorophenylhydrazone

FABP:

fatty acid-binding protein

h-FABPPM :

hepatic fatty acid-binding protein from plasma membrane

h-FABPc :

hepatic fatty acid-binding protein from cytosol

hLGF:

human liver growth factor

mEH:

microsomal epoxide hydrolase

mGOT:

mitochondrial glutamine oxaloacetate transaminase

OABP:

organic anion binding protein

PII:

photofrin II

SCFA:

short chain fatty acids

γGT:

gamma-glutamyl transpeptidase

References

  • Abberger H, Buscher H-P, Fuchte K, Gerok W, Giese U, Kramer W, Kurz G, Zanger U (1983) Compartmentation of bile salt biosynthesis and transport revealed by photoaffinity labeling of isolated hepatocytes. In: Paumgartner G, Stiehl A, Gerok W (eds) Bile Acids and Cholesterol in Health and Disease. MTP Press, Lancaster, pp 77–87

    Google Scholar 

  • Abumrad NA, Park JH, Park CR (1984) Permeation of long-chain fatty acid into adipocytes. Kinetics, specificity, and evidence for involvement of a membrane protein. J Biol Chem 259:8946–8953

    Google Scholar 

  • Abumrad NA, Perry PR, Whitesell RR (1985) Stimulation by epinephrine of the membrane transport of long chain fatty acid in the adipocyte. J Biol Chem 260:9969–9971

    PubMed  Google Scholar 

  • Abumrad NA, Park CR, Whitesell RR (1986a) Catecholamine activation of the membrane transport of long chain fatty acids in adipocytes is mediated by cyclic AMP and protein kinase. J Biol Chem 261:13062–13086

    Google Scholar 

  • Abumrad NA, Perry PR, Whitesell RR (1986b) Insulin antagonizes epinephrine activation of the membrane transport of fatty acids. J Biol Chem 261:2999–3001

    PubMed  Google Scholar 

  • Abumrad NA, Forest CC, Regen DM, Sanders S (1991) Increase in membrane uptake of long-chain fatty acids early during preadipocyte differentiation. Proc Natl Acad Sci USA 88:6008–6012

    PubMed  Google Scholar 

  • Accatino L, Simon FR (1976) Identification and characterization of a cholic acid receptor in isolated liver surface membranes. J Clin Invest 57:496–508

    PubMed  Google Scholar 

  • Acocella G (1983) Pharmacokinetics and metabolism of rifampicin in humans. Rev Infect Dis 5 [Suppl 3]:S428–S432

    PubMed  Google Scholar 

  • Acocella G, Billing BH (1969) The effect of rifamycin SV on bile pigment excretion in rats. Gastroenterology 49:526–530

    Google Scholar 

  • Acocella G, Nicolis FB, Tenconi LT (1965) The effect of an intravenous infusion of rifamycin SV on the excretion of bilirubin, bromsulfphthalein and indocyanine green in man. Gastroenterology 49:521–525

    PubMed  Google Scholar 

  • Adachi Y, Roy Chowdhury J, Roy Chowdhury N, Kinne R, Tran T, Kobayashi H, Arias IM (1990) Hepatic uptake of bilirubin-diglucuronide: analysis by using sinusoidal plasma membrane vesicles. J Biochem 107:749–754

    PubMed  Google Scholar 

  • Adachi Y, Kinne R, Roy Chowdhury J, Roy Chowdhury N, Theilmann L, Tran T, Arias IM (1991a) Uptake of bilirubin glucuronide by isolated rat hepatocytes. Gastroenterol Jpn 26:350–355

    PubMed  Google Scholar 

  • Adachi Y, Kobayashi H, Kurumi Y, Shouji M, Kitano M, Yamamoto T (1991b) ATP-dependent taurocholate transport by rat liver canalicular membrane vesicles. Hepatology 14:655–659

    Article  PubMed  Google Scholar 

  • Akerboom T, Inoue M, Kinne R, Arias IM (1984) Biliary transport of glutathione disulfide studied with isolated rat-liver canalicular-membrane vesicles. Eur J Biochem 141:211–215

    Article  PubMed  Google Scholar 

  • Akerboom TPM, Narayanaswami V, Kunst M, Sies H (1991) ATP-dependent S-(2,4-dinitrophenyl)-glutathione transport in canalicular plasma membrane vesicles from rat liver. J Biol Chem 266:13147–13152

    PubMed  Google Scholar 

  • Aldini R, Roda A, Morselli-Labate AM, Capelleri G, Roda E, Barbara L (1982) Hepatic bile acid uptake: effect of conjugation, hydroxyl and keto group and albumin binding. J Lipid Res 23:1167–1172

    PubMed  Google Scholar 

  • Aldini R, Roda P, Simoni P, Lenzi P, Roda E, Barbara L (1989) Uptake of bile acids by perfused rat liver. Evidence of a structure-activity relationship. Hepatology 10:840–845

    PubMed  Google Scholar 

  • Aldini R, Roda A, Lenzi P, Calcaterra D, Vaccari C, Calzolari M, Festi D, Mazella G, Bazzoli F, Roda E, Forti GC (1992) Hepatic uptake and biliary secretion of bile acids in the perfused rat liver. Pharmacol Res 25:51–61

    Article  Google Scholar 

  • Alexander J, Aaseth J, Refsvik T (1981) Excretion of zinc in rat bile: a role of glutathione. Acta Pharmacol Toxicol 49:190–194

    Google Scholar 

  • Allen BW, Ellard GA, Mitchison DA, Hatfield ARW, Kenwright S, Levi AJ (1975) Probenecid and serum-rifampicin. Lancet 2:1309

    Article  Google Scholar 

  • Almé B, Sjövall J (1980) Analysis of bile glucuronides in urine. Identification of 3α,6α,12α-trihydroxy-5β-cholanoic acid. J Steroid Biochem 13:907–916

    Article  PubMed  Google Scholar 

  • Alpers DH, Strauss, AW, Ockner RK, Bass NM (1984) Cloning of a cDNA encoding rat intestinal fatty acid binding protein. Proc Natl Acad Sci USA 81:313–317

    PubMed  Google Scholar 

  • Alpert S, Mosher M, Shanske A, Arias IM (1969) Multiplicity of hepatic excretory mechanisms for organic anions. J Gen Physiol 53:238–247

    Article  PubMed  Google Scholar 

  • Amsler K, Kinne R (1986) Photoinactivation of sodium-potassium-chloride cotransport in LLC-PK1/C14 cells by bumetanide. Am J Physiol 250 (Cell Physiol 19): C799–C806

    PubMed  Google Scholar 

  • Ananthanarayanan M, Von Dippe P, Levy D (1988) Identification of the hepatocyte Na+ dependent bile acid transport protein using monoclonal antibodies. J Biol Chem 263:8338–8343

    PubMed  Google Scholar 

  • Ananthananrayanan M, Bucuvalas JC, Shneider BJ, Sippel CJ, Suchy FJ (1991) An ontogenically regulated 48-kDa protein is a component of the Na+-bile acid cotransporter of rat liver. Am J Physiol 261 (Gastrointest Liver Physiol 24): G810–G817

    PubMed  Google Scholar 

  • Anwer MS (1991) Anatomy and physiology of bile formation In: Siegers C-P, Watkins JB III (eds) Biliary Excretion of Drugs and Other Chemicals. Fischer, Stuttgart, pp 3–23 (Progress in Pharmacology and Clinical Pharmacology, vol 8/4)

    Google Scholar 

  • Anwer MS, Gronwall R (1976) A compartmental model for bilirubin kinetics in isolated perfused rat liver. Can J Physiol Pharmacol 54:277–286

    PubMed  Google Scholar 

  • Anwer MS, Hegner D (1978a) Effect of Na+ on bile acid uptake by isolated rat hepatocytes. Evidence for a heterogenous system. Hoppe Seyler's Z Physiol Chem 359:181–192

    PubMed  Google Scholar 

  • Anwer MS, Hegner D (1978b) Effect of organic anions on bile acid uptake by isolated rat hepatocytes. Hoppe-Seyler's Z Physiol Chem 359:1027–1030

    PubMed  Google Scholar 

  • Anwer MS, Hegner D (1978c) Interaction of fusidates with bile acid uptake by isolated rat hepatocytes. Naunyn-Schmiedeberg's Arch Pharmacol 302:329–332

    Article  Google Scholar 

  • Anwer MS, Gronwall RR, Engelking CR, Klentz RD (1975) Bile acid kinetics and bile secretion in the pony. Am J Physiol 229(3):592–597

    PubMed  Google Scholar 

  • Anwer MS, Kroker R, Hegner D (1976a) Cholic acid uptake into isolated rat hepatocytes. Hoppe Seyler's Z Physiol Chem 357:1477–1486

    PubMed  Google Scholar 

  • Anwer MS, Kroker R, Hegner D (1976b) Effect of albumin on bile acid uptake in isolated rat hepatocytes. Is there a common bile acid carrier? Biochem Biophys Res Commun 73:63–71

    PubMed  Google Scholar 

  • Anwer MS, Kroker R, Hegner D, Petter A (1977) Cholic acid binding to isolated rat liver plasma membranes. Hoppe-Seyler's Z Physiol Chem 358:543–553

    PubMed  Google Scholar 

  • Anwer MS, Kroker R, Hegner D (1978) Inhibition of hepatic uptake of bile acids by rifamycins. Naunyn-Schmiedeberg's Arch Pharmacol 302:19–24

    Article  Google Scholar 

  • Anwer MS, O'Maille ERL, Hofmann AF, DiPietro RA, Michelotti E (1985) Influence of side chain charge on hepatic transport of bile acids and bile acid analogs. Am J Physiol 249 (Gastrointest Liver Physiol 12): G479–G488

    PubMed  Google Scholar 

  • Anwer MS, Nolan K, Hardison WGM (1988) Role of bicarbonate in biliary excretion of diisothiocyanostilbene disulfonate. Am J Physiol 255 (Gastrointest Liver Physiol 18): G713–G722

    PubMed  Google Scholar 

  • Anwer MS, Hondalus MK, Atkinson JM (1989) Ursodeoxycholate-induced changes in hepatic Na+/H+ exchange and biliary HCO -3 excretion. Am J Physiol 257 (Gastrointest Liver Physiol 20): G371–G379

    PubMed  Google Scholar 

  • Answer MS, Atkinson JM, Zimniak P (1990) Amiloride and taurine inhibit cholate-induced HCO -3 rich choleresis in perfused rat livers. Am J Physiol 259 (Gastrointest Liver Physiol 22): G453–G461

    PubMed  Google Scholar 

  • Anwer S, Branson AU, Atkinson JM (1991) Mechanism of inhibition of hepatic bile acid uptake by amiloride and 4,4′-diisothiocyano-2,2′-disulfonic stilbene (DIDS). Biochem Pharmacol 42:S135–S141

    Article  PubMed  Google Scholar 

  • Aoyagi Y, Ikenaka T, Ichida F (1979) α-Fetoprotein as a carrier protein in plasma and its bilirubin-binding ability. Cancer Res 39:3571–3574

    PubMed  Google Scholar 

  • Aoyama N, Tokuma H, Okya T, Chandler K, Holzbach T (1991) A novel transcellular transport pathway for non-bile salt cholephilic organic anions. Am J Physiol 261 (Gastrointest Liver Physiol 24): G305–G311

    PubMed  Google Scholar 

  • Aronchik CA, Brooks FP (1985) Anatomy and physiology of the biliary tract. In: Berk JE, Haubrich WS, Kalser MD, Roth JLA, Schaffner F (ed) Bockus' Gastroenterology, vol 5. Saunders, Philadelphia, pp 3449–3485

    Google Scholar 

  • Aronson PS (1989) The renal proximal tubule: a model for diversity of anion exchangers and stilbene-sensitive anion transporters. Ann Rev Physiol 51:419–441

    Article  Google Scholar 

  • Aurivillius M, Hansen OC, Lazrek MBS, Bock E, Öbrink B (1990) The cell adhesion molecule Cell-CAM 105 is an ecto-ATPase and a member of the immunoglobin super-family. FEBS Lett 264:267–269

    Article  PubMed  Google Scholar 

  • Avanzati B, Catala A (1982) Exchange of palmitic acid from cytosolic proteins to microsomes, mitochondria and lipid vesicles. Acta Physiol Lat Am 32:267–276

    PubMed  Google Scholar 

  • Avanzati B, Catala A (1983) The partial purification of fatty-acid binding protein by ammonium sulphate fractionation. Arch Int Physiol Biochim 91:103–108

    PubMed  Google Scholar 

  • Awasthi YC, Singhal SS, Gupta S, Ahmad H, Zimniak P, Radominska A, Lester R, Sharma R (1991) Purification and characterization of an ATPase from human liver which catalyzes ATP hydrolysis in presence of the conjugates of bilirubin, bile acids and glutathione. Biochem Biophys Res Commun 175:1090–1096

    Article  PubMed  Google Scholar 

  • Bachrach WH, Hofmann AF (1982) Ursodeoxycholic acid in the treatment of cholesterol cholelithiasis. Dig Dis Sci 27:737–761, 833–856

    Article  PubMed  Google Scholar 

  • Back P (1976) Isolation and identification of a chenodeoxycholic acid glucuronide from human plasma in intrahepatic cholestasis. Hoppe Seyler's Z Physiol Chem 357:213–217

    PubMed  Google Scholar 

  • Back P, Walter K (1980a) Retrodifferenzierung des Gallensäurestoffwechsels bei Cholestase. Verh Dtsch Ges Inn Med 86:793–795

    Google Scholar 

  • Back P, Walter K (1980b) Developmental pattern of bile acid metabolism as revealed by bile acid analysis of meconium. Gastroenterol 78:671–676

    Google Scholar 

  • Back P, Spaczynsky K, Gerok W (1974) Bile acid glucuronides in urine. Hoppe Seyler's Z Physiol Chem 335:749–752

    Google Scholar 

  • Baker DH, Czarnecki-Maulden GL (1991) Comparative nutrition of cats and dogs. Ann Rev Nutr 11:239–263

    Article  Google Scholar 

  • Bakker-Grunwald T (1983) Potassium permeability and volume control in isolated hepatocytes. Biochim Biophys Acta 731:239–241

    PubMed  Google Scholar 

  • Baldini B, Passamonti S, Lunazzi GC, Tiribelli C, Sottocasa GL (1986) Cellular localization of sulfobromophthalein transport activity in rat liver. Biochim Biophys Acta 856:1–10

    PubMed  Google Scholar 

  • Ballatori N, Clarkson TW (1985) Biliary secretion of glutathione and glutathione metal complexes. Fundam Appl Toxicol 5:816–831

    Article  PubMed  Google Scholar 

  • Ballatori N, Boyer JL (1992a) Taurine transport in skate hepatocytes. I. Uptake and efflux. Am J Physiol 262 (Gastrointest Liver Physiol 25): G445–G450

    PubMed  Google Scholar 

  • Ballatori N, Boyer JL (1992b) Taurine transport in skate hepatocytes. II. Volume activation, energy, and sulfhydryl dependence. Am J Physiol 262 (Gastrointest Liver Physiol 25): G451–G460

    PubMed  Google Scholar 

  • Ballatori N, Moseley RH, Boyer JL (1986) Sodium gradient-dependent L-glutamate transport is localized to the canalicular domain of liver plasma membranes. J Biol Chem 261:6216–6221

    PubMed  Google Scholar 

  • Banaszak EF, Stekiel WJ, Grace RA, Smith JJ (1960) Estimation of hepatic blood flow using a single injection dye clearance method. Am J Physiol 198:877–880

    PubMed  Google Scholar 

  • Barac-Nieto M, Murer H, Kinne R (1982) Asymmetry in the transport of lactate by basolateral and brush border membranes of rat kidney cortex. Pflügers Arch Eur J Physiol 392:366–371

    Article  Google Scholar 

  • Barnhard JA, Ghishan FK (1986) Methylprednisolone accelerates the ontogeny of sodium taurocholate cotransport of rat ileal brush border membranes. J Lab Clin Med 108:549–555

    PubMed  Google Scholar 

  • Barnhard JA, Ghishan FK, Wilson FA (1985) Ontogenesis of taurocholate transport by rat ileal brush border membrane vesicles. J Clin Invest 75:869–873

    PubMed  Google Scholar 

  • Barnhart JL, Gronwall RR, Combes B (1981) Biliary excretion of sulfobromophthalein compounds in normal and mutant Corriedale sheep: Evidence for a disproportionate transport defect for conjugated sulfobromophthalein. Hepatology 1:441–447

    PubMed  Google Scholar 

  • Barnhart JL, Witt BL, Berk RN (1982) Biliary excretion of iopanoic acid in Gunn rats. Proc Soc Exp Biol Med 170:172–177

    PubMed  Google Scholar 

  • Barnhart JL, Witt BL, Hardison WG, Berk RN (1983a) Uptake of iopanoic acid by isolated rat hepatocytes in primary culture. Am J Physiol 244 (Gastrointest Liver Physiol 7): G630–G636

    PubMed  Google Scholar 

  • Barnhart JL, Gronwall RR, Combes B (1983b) Biliary excretion of infused conjugated sulfobromophthalein in sheep heterozygotes for the transport defect present in mutant Corriedale sheep. Am J Vet Res 44:2403–2404

    PubMed  Google Scholar 

  • Baron PG, Iles RA, Cohen RD (1978) Effect of varying PCO2 on intracellular pH and lactate consumption in the isolated perfused rat liver. Clin Sci Mol Med 55:175–181

    PubMed  Google Scholar 

  • Barth A (1991) Influence of bile acids on the development of hepatic transport of organic anions. Arch Toxicol [Suppl 14]:205–208

    Google Scholar 

  • Barth A, Klinger W (1980) Speicher-und Exkretionsfähigkeit der Rattenleber für Indocyanin Grün in Abhängigkeit vom Alter. Ergeb Exp Med 36:147–152

    Google Scholar 

  • Barth A, Klinger W (1983) Influence of age on hepatic transport of eosine in vivo and in vitro. Zbl Pharm 122:1278–1280

    Google Scholar 

  • Barth A, Klinger W (1987) Influence of triiodothyronine and dexamethasone on the postnatal development of hepatic eosine transport in rats. Exp Clin Endocrinol 90:190–198

    PubMed  Google Scholar 

  • Barth A, Klinger W, Hoppe H (1986a) Hepatic elimination kinetics of organic anions in rats — developmental aspects and influece of phenobarbital. Arch Int Pharmacodyn 283:16–19

    PubMed  Google Scholar 

  • Barth A, Chemnitius KH, Schneider B, Klinger W (1986b) Influence of new estrogens on liver transport function in rats. Arch Int Pharmacodyn 283:5–15

    PubMed  Google Scholar 

  • Bartholomew TC, Billing BH (1983) The effect of 3-sulphation and taurine conjugation on the uptake of chenodeoxycholic acid by rat hepatocytes. Biochim Biophys Acta 754:101–109

    PubMed  Google Scholar 

  • Bass NM (1985) Function and regulation of hepatic and intestinal fatty acid binding proteins. Chem Phys Lipids 38:95–114

    Article  PubMed  Google Scholar 

  • Bass NM (1988) The cellular fatty acid binding proteins: aspects of structure, regulation, and function. Int Rev Cytol 3:143–184

    Google Scholar 

  • Bass L, Pond SM (1988) The puzzle of rates of cellular uptake of protein-bound ligands. In: Pecile A, Rescigno A (eds) Pharmacokinetics: mathematical and statistical approaches to metabolism and distribution of chemicals and drugs. Plenum, London, pp 245–269

    Google Scholar 

  • Bass NM, Manning JA, Ockner RK, Gordon JI, Seetharam S, Alpers DH (1985) Regulation of the biosynthesis of two distinct fatty acid-binding proteins in rat liver and intestine: influences of sex differences and of clofibrate. J Biol Chem 260:1432–1436

    PubMed  Google Scholar 

  • Bass NM, Barker ME, Manning JA, Jones AL, Ockner RK (1989) Acinar heterogeneity of fatty acid binding protein expression in the livers of male, female and clofibrate treated rats. Hepatology 9:12–24

    PubMed  Google Scholar 

  • Bear CE, Davison JS, Shaffer EA (1987) Sodium-dependent taurocholate uptake by isolated rat hepatocytes occurs through an electrogenic mechanism. Biochim Biophys Acta 903:388–394

    PubMed  Google Scholar 

  • Beaudoin M, Carey MC, Small DM (1975) Effects of taurodihydrofusidate, a small bile salt analogue, on bile formation and biliary lipid secretion in rhesus monkey. J Clin Invest 56:1431–1441

    PubMed  Google Scholar 

  • Becker A, Neumeier R, Park C-S, Gossrau R, Reutter W (1985) Identification of a transformation-sensitive 110-kDa plasma membrane glycoprotein of rat hepatocytes. Eur J Cell Biol 39:417–423

    Google Scholar 

  • Becker A, Neumeier R, Heidrich C, Loch N, Hartel S, Reutter W (1986) Cell surface glycoproteins of hepatocytes and hepatoma cells identified by monoclonal antibodies. Biol Chem Hoppe-Seyler 367:681–688

    PubMed  Google Scholar 

  • Becker A, Gossrau R, Hoffmann C, Reutter W (1989) Localization of a putative cell adhesion molecule (gp 110) in Wistar and Fischer rat tissues. Histochemistry 93:55–61

    Article  PubMed  Google Scholar 

  • Beckh KH, Arnold R (1991) Regulation of bile secretion by sympathetic nerves in perfused rat liver. Am J Physiol 261 (Gastrointest Liver Physiol 24): G775–G780

    PubMed  Google Scholar 

  • Beckh KH, Kneip S, Arnold R (1990) Direct regulation of bile secretion by prostaglandins in the perfused rat liver Gastroenterology 98: A568 (abstr)

    Google Scholar 

  • Beliveau R, Demeule, M, Jette, M, Potier, M (1990) Molecular size of amino acid transporters in the luminal membrane from the kidney cortex, estimated by the radiation-inactivation method. Biochem J 268:195–200

    PubMed  Google Scholar 

  • Bellentani S, Hardison WGM, Grisendi A, Barbieri I, Manenti F (1984) Bile-acid binding to isolated rat liver plasma membranes. Failure to find a specific binding site. Hoppe-Seyler's Z Physiol Chem 365:357–363

    PubMed  Google Scholar 

  • Bellentani S, Hardison WGM, Marchegiano P, Zanasi G, Manenti F (1987) Bile acid inhibition of taurocholate uptake by rat hepatocytes: role of OH groups. Am J Physiol 252 (Gastrointest Liver Physiol 15): G339–G344

    PubMed  Google Scholar 

  • Berg JD, Ruddock S, Allen-Narker RA, Bradley GV, Davis M, Buckley BM (1987) Drugs as probes of organ function: evaluation of the hepatobiliary axis using oral rifampicin and novel high performance liquid chromatography. Ann Clin Biochem 24:36–40

    PubMed  Google Scholar 

  • Berk PD (1985) Bilirubin metabolism and the heriditary hyperbilirubinemias. In: Berk JE, Haubrich WS, Kalser MD, Roth JLA, Achaffner F (eds) Bockus' Gastroenterology, vol 5: Liver. Saunders, Philadelphia, chap 149, pp 2732–2797

    Google Scholar 

  • Berk PD, Stremmel W (1986) Hepatocellular uptake of organic anions. Prog Liver Dis 8:125–144

    PubMed  Google Scholar 

  • Berk PD, Lowe RB, Bloomer JR, Berlin NI (1969) Studies on bilirubin kinetics in normal adults. J Clin Invest 48:2176–2190

    PubMed  Google Scholar 

  • Berk PD, Potter BJ, Stremmel W (1987) Role of plasma membrane ligand-binding proteins in the hepatocellular uptake of albumin-bound organic anions. Hepatology 7:165–176

    PubMed  Google Scholar 

  • Berk PD, Wada H, Horio Y, Potter BJ, Sorrentino D, Thung S, Stump D, Zhou S-L, Kiang C-L (1988) Hepatic plasma membrane fatty acid binding protein and mitochondrial glutamate-oxaloacetate transaminase are related. Hepatology 8:1255 (Abstract)

    Google Scholar 

  • Berk PD, Potter BJ, Sorrentino D, Stremmel W, Stump D, Kiang CL, Zhou SL (1989) Characteristics of organic anion binding proteins from rat liver sinusoidal plasma membranes. In: Petzinger E, Kinne RKH, Sies H (eds) Hepatic transport of organic substances. Springer, Berlin, Heidelberg, pp 195–210

    Google Scholar 

  • Berk RN, Loeb PM (1973) Pharmacology and physiology of the biliary radiographic contrast materials. Semin Roentgen 11:147–156

    Article  Google Scholar 

  • Bernier J, Jolles P (1987) A survey on cytosolic non-enzymic proteins involved in the metabolism of lipophilic compounds: from organic anion binders to new protein families. Biochimie 69:1127–1152

    Article  PubMed  Google Scholar 

  • Bertelott A (1984) Characteristics of glutamic acid transport by rabbit intestinal brush-border membrane vesicles. Biochim Biophys Acta 775:129–140

    PubMed  Google Scholar 

  • Bertrams AA, Ziegler K (1991) Hepatocellular uptake of peptides by bile acid transporters. Biochim Biophys Acta 1091:337–348

    Article  PubMed  Google Scholar 

  • Bettermann P (1981) Amino acid transport and rubidium-ion uptake in monolayer cultures of hepatocytes from neonatal rats. Biochem J 198:475–483

    PubMed  Google Scholar 

  • Beuers U, Spengler U, Zwiebel FM, Pauletzki J, Fischer S, Paumgartner G (1992) Effect of ursodeoxycholic acid on the kinetics of the major hydrophobic bile acids in health and in chronic cholestatic liver disease. Hepatology 15:603–608

    PubMed  Google Scholar 

  • Bhat R, Bernstein MS, Anderson RJ, Vidyasagar D, Evans MA (1985) Uptake of taurocholate by freshly isolated hepatocytes from fetal and newborn rabbits. Biol Neonate 47:99–106

    PubMed  Google Scholar 

  • Biade S, Mazière JC, Mora L, Santus R, Morlière P, Mazière C, Salmon S, Gatt S, Dubertret L (1992) Photosensitization by photofrin II delivered to W126VA4 SV40-transformed human fibroblasts by low density lipoproteins: inhibition of lipid synthesis and fatty acid uptake. Photochem Photobiol 55:55–61

    PubMed  Google Scholar 

  • Billheimer JT, Gaylor JL (1980) Cytosolic modulators of activities of microsomal enzymes of cholesterol biosynthesis. Role of a cytosolic protein with properties similar to Z-protein (fatty acid-binding protein). J Biol Chem 255:8128–8135

    PubMed  Google Scholar 

  • Binda G, Domenichini E, Gottardi A, Orlandi B, Ortelli E, Pancini B, Fowst G (1971) Rifampicin, a general review. Arzneim Forsch (Drug Res) 21:1907–1977

    Google Scholar 

  • Björkhem I (1987) Mechanistic aspects on the different steps in bile acid biosynthesis. In: Paumgartner G, Stiehl A, Gerok W (eds) Bile acids and the liver. MTP Press Ltd, Lancaster, pp 3–12

    Google Scholar 

  • Blitzer BL (1989) Mechanisms of sinusoidal bile acid transport. In: Petzinger E, Kinne RKH, Sies H (eds) Hepatic transport of organic substances, Springer Verlag Berlin-Heidelberg-New York, pp 233–239

    Google Scholar 

  • Blitzer, BL, Donovan, CB, (1984) A new method for the rapid isolation of basolateral plasma membrane vesicles from rat liver. Characterization, validation and bile acid transport studies. J Biol Chem 259:9295–9301

    PubMed  Google Scholar 

  • Blitzer BL, Lyons L (1985) Enhancement of Na+-dependent bile acid uptake by albumin: direct demonstration in rat basolateral liver plasma membrane vesicles. Am J Physiol 249 (Gastrointest Liver Physiol 12): G34–G38

    PubMed  Google Scholar 

  • Blitzer BL, Ratoosh SL, Donovan CB, Boyer JL (1982) Effects of inhibitors of Na+ coupled ion transport on bile acid uptake by isolated rat hepatocytes. Am J Physiol 243 (Gastrointest Liver Physiol 10): G48–G53

    PubMed  Google Scholar 

  • Blitzer BL, Ratoosh SL, Donovan CB (1983) Amino acid inhibition of bile acid uptake by isolated rat hepatocytes: relationship to dissipation of transmembrane Na+ gradient. Am J Physiol 245 (Gastrointest Liver Physiol 8): G399–G403

    PubMed  Google Scholar 

  • Blitzer BL, Terzakis C, Scott KA (1986) Hydroxyl/bile acid exchange. A new mechanism for the uphill transport of cholate by basolateral liver plasma membrane vesicles. J Biol Chem 261:12042–12046

    PubMed  Google Scholar 

  • Blom A, Keulemans K, Meijer DKF (1981) Transport of dibromosulphthalein by isolated rat hepatocytes. Biochem Pharmacol 30:1809–1816

    Article  PubMed  Google Scholar 

  • Blom A, Scaf AHJ, Meijer DKF (1982) Hepatic drug transport in the rat. A comparison between isolated hepatocytes, the isolated perfused liver and the liver in vivo. Biochem Pharmacol 31:1553–1565

    Article  PubMed  Google Scholar 

  • Bloomer JR, Zaccaria J (1976) Effect of graded bilirubin loads on bilirubin transported by perfused rat liver. Am J Physiol 230:736–742

    PubMed  Google Scholar 

  • Blumrich M, Petzinger E (1990) Membrane transport of conjugated and unconjugated bile acids into hepatocytes is susceptible to SH-blocking reagents. Biochim Biophys Acta 1029:1–12

    PubMed  Google Scholar 

  • Blumrich M, Petzinger E (1993) Two distinct types of SH-Groups are necessary for bumetanide and bile acid uptake into isolated rat hepatocytes. Biochim Biophys Acta 1149:278–284

    PubMed  Google Scholar 

  • Blumrich M, Petzinger E, Boyer JL (1993) Characterization of bumetanide uptake in isolated skate hepatocytes as related to the bile acid transport system. Am J Physiol 265 (Gastrointest Liver Physiol 28): G926–G933

    PubMed  Google Scholar 

  • Boberg KM, Lund E, Ölund J, Björkhem I (1990) Formation of C21 bile acids from plant sterols in the rat. J Biol Chem 265:7967–7975

    PubMed  Google Scholar 

  • Bonasch H, Cornelius CE (1964) Indocyanine green clearance. A liver function test for the dog. Am J Vet Res 25:254–259

    PubMed  Google Scholar 

  • Bonazzi P, Novelli G, Galeazzi R (1986) The interaction of rifamycin-SV with the hepatic transport and sulfation of taurolithocholic acid in rats. Pharmacol Res Commun 18:675–685

    Article  PubMed  Google Scholar 

  • Boyer JL (1986) Mechanisms of bile secretion and hepatic transport. In: Andreoli TE, Hoffman JF, Fanestil DD, Schultz SG (eds) Physiology of membrane disorders, 2nd edn, Chap 35. Plenum Medical Book Company New York, London. pp 609–636

    Google Scholar 

  • Boyer JL, Schwarz J, Smith N (1976a) Biliary secretion in elasmobranch. Hepatic uptake and biliary excretion of organic anions. Am J Physiol 230:974–981

    PubMed  Google Scholar 

  • Boyer JL, Schwarz J, Smith N (1976b) Selective hepatic uptake and biliary excretion of 35S-sulfobromophthalein in marine elasmobranchs. Gastroenterology 70:254–256

    PubMed  Google Scholar 

  • Boyer JL, Ng OC, Hagenbuch B, Steiger B, Meier-Abt PJ (1992) Expression of the Na+-dependent bile acid contransport system of the rat liver in cos-7 cells. XII international Conference of Bile Acids. FALK Symposium 68, Bile acids and the hepatobiliary system. From Basic Science to Clinical Practice. Basel 12.–14.10.1992. p 16 (Abstract)

    Google Scholar 

  • Bremmelgaard A, Sjövall J (1980) Hydroxylation of cholic, chenodeoxycholic and deoxycholic acids in patients with intrahepatic cholestasis. J Lipid Res 21:1072–1081

    PubMed  Google Scholar 

  • Brodersen R (1979) Bilirubin. Solubility and interaction with albumin and phospholipid. J Biol Chem 254:2364–2369

    PubMed  Google Scholar 

  • Brodersen R, Friis-Hansen B, Stern L (1983) Drug-induced displacement of bilirubin from albumin in the newborn. Dev Pharmacol Ther 6:217–229

    PubMed  Google Scholar 

  • Brühl W (1969) Die Indocyaningrün-Probe als Leberfunktionstest. Z Gastroenterol 7:294–297

    Google Scholar 

  • Bucuvalas JC, Goodrich AL, Suchy FJ (1985a) Mechanisms of taurine transport by plasma membrane vesicles from rat liver. Pediatr Res 19:214A (Abstract)

    Google Scholar 

  • Bucuvalas JC, Goodrich AL, Blitzer BL, et al (1985b) Amino acids are potent inhibitors of bile acid uptake by liver plasma membrane vesicles isolated from suckling rats. Pediatr Res 19:1298–1305

    PubMed  Google Scholar 

  • Bucuvalas JC, Goodrich AL, Suchy FJ (1987) Hepatic taurine transport: a Na+-dependent carrier on basolateral plasma membranes. Am J Physiol 253 (Gastrointest Liver Physiol 16):G351–G358

    PubMed  Google Scholar 

  • Burckhardt G, Greger R (1992) Principles of electrolyte transport across plasma membranes of renal tubular cells. In: Windhager EE (ed) Electrolyte transport, Oxford University Press New York, pp 641–657 (Handbook of physiology, Sect 8, Chap 14)

    Google Scholar 

  • Burckhardt G, Kinne RKH (1992) Transport proteins — Co-and countertransporters. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology, 2nd edn. Raven Press, New York, pp 537–586

    Google Scholar 

  • Burckhardt G, Kinne R, Stange G, Murer H (1980) The effects of potassium and membrane potential on sodium-dependent glutamic acid uptake. Biochim Biophys Acta 599:191–201

    PubMed  Google Scholar 

  • Burckhardt G, Kramer W, Wilson FA, Kurz G (1984a) Characterization of the renal bile salt transport system by photoaffinity labeling. Pflüger's Arch 400: R 29

    Google Scholar 

  • Burckhardt G, Kramer W, Wilson FA, Kurz G (1984b) Investigation of the rat renal bile salt transport system by photoaffinity labeling. Pflüger's Arch 400: R29

    Google Scholar 

  • Burczynski FJ, Cai ZS, Moran JB, Forker EL (1989) Palmitate uptake by cultured hepatocytes: albumin binding and stagnant layer phenomena. Am J Physiol 257 (Gastrointest Liver Physiol 20): G584–G593

    PubMed  Google Scholar 

  • Burczynski FJ, Moran JB, Cai ZS, Forker EL (1990) β-Lactoglobulin enhances the uptake of free palmitate by hepatocyte monolayers: the relative importance of diffusion and facilitated diffusion. Can J Physiol Pharmacol 68:201–206

    PubMed  Google Scholar 

  • Burger HJ, Gebhardt R, Mayer C, Mecke D (1989) Different capacities for amino acid transport in periportal and perivenous hepatocytes isolated by digitonin-collagenase perfusion. Hepatology 9:22–28

    PubMed  Google Scholar 

  • Buscher H-P, Gerok W, Kurz G, Schneider S (1985) Visualization of bile salt transport with fluorescent derivatives. In: Paumgartner G, Stiehl A, Gerok W (eds) Enterohepatic circulation of bile acids and sterol metabolism. MTP-Press, Lancaster, England, pp 243–247

    Google Scholar 

  • Buscher H-P, Fricker G, Gerok W, Kramer W, Kurz G, Müller M, Schneider S (1986) Membrane transport of amphiphilic compounds by hepatocytes. In: Greten H, Windler E, Beisiegel U (eds) Receptor-mediated uptake in the liver. Springer, Berlin, Heidelberg New York Tokyo, pp 189–204

    Google Scholar 

  • Buscher H-P, Fricker G, Gerok W, Kurz G, Müller M, Schneider S, Schramm U, Schreyer A (1987) Hepatic transport systems for bile salts: Localization and specificity. In: Paumgartner G, Stiehl S, Gerok W (eds) Bile acids and the liver with an update on gallstone disease. MTP Press, Lancaster, England, pp 95–110

    Google Scholar 

  • Buscher H-P, Gerok W, Kurz G, Schramm U, Thom H (1988) Hepatocyte primary culture and bile salt transport. In: Stiehl A, Gerok W (eds) Trends in bile acid research. MTP-Press, Lancaster, England, pp 133–142

    Google Scholar 

  • Byington KH, Hansbrough E (1979) Inhibition of the enzymatic activity of ligandin by organogermanium, organolead or organotin compound and the biliary excretion of sulfobromophthalein by the rat. J Pharmacol Exp Ther 208:248–253

    PubMed  Google Scholar 

  • Cabantchik ZI, Greger R (1992) Chemical probes for anion transporters of mammalian cell membranes. Am J Physiol 262 (Cell Physiol 31): C803–C827

    PubMed  Google Scholar 

  • Cabantchik ZI, Knauf PA, Rothstein A (1978) The anion transport system of the red blood cell: The role of membrane protein evaluated by the use of “probes”. Biochim Biophys Acta 515:239–303

    PubMed  Google Scholar 

  • Cabral DJ, Hamilton JA, Small DM (1986) The ionization behaviour of bile acids in different aqueous environment. J Lipid Res 27:334–343

    PubMed  Google Scholar 

  • Cabral DJ, Small DM, Lilly HS, Hamilton JA (1987) Transbilayer movement of bile acids in model membranes. Biochem 26:1801–1804

    Article  Google Scholar 

  • Caesar J, Shaldon S, Chiandussi L, Guevara L, Sherlock S (1961) The use of indocyanine green in the measurement of hepatic blood flow and as a test of hepatic function. Clin Sci 21:43–57

    PubMed  Google Scholar 

  • Caflish C, Zimmerli B, Reichen J, Meier PJ (1990) Cholate uptake in basolateral rat liver plasma membrane vesicles and in liposomes. Biochim Biophys Acta 1021:70–76

    PubMed  Google Scholar 

  • Cagen SZ, Klaassen CD (1982) Evaluation of hepatic storage of sulfobromophthalein in rats and dogs. Toxicology 25:261–270

    Article  PubMed  Google Scholar 

  • Calhoun P, Hanks JB (1984) Hormonal contributions to biliary secretion. Surg Gastroenterol 3:8–16

    PubMed  Google Scholar 

  • Calmus Y, Poupon R (1991) Ursodeoxycholic acid (UDCA) in the treatment of chronic cholestatic disease. Biochimie 73:1335–1338

    Article  PubMed  Google Scholar 

  • Capron F, Coltoff-Schiller B, Johnson AB, Fleischner G, Goldfischer S (1979) Immunocytochemical localization of hepatic ligandin and Z protein utilizing frozen sections for light and electron microscopy. J Histochem Cytochem 27:961–966

    PubMed  Google Scholar 

  • Carey M (1984) Bile acids and bile salts: Ionization and solubility properties. Hepatology 4:665–715

    Google Scholar 

  • Carey MC, Small DM (1971) Micellar properties of sodium fusidate, a steroid antibiotic structurally resembling the bile salts. J Lipid Res 12:604–613

    PubMed  Google Scholar 

  • Casado J, Pastor-Auglada M, Remesar X (1987) Hepatic uptake of amino acids and mid-lactation in the rat. Biochem J 245:297–300

    PubMed  Google Scholar 

  • Chambaz J, Guillouzo A, Cardot P, Pepin D, Bereziat G (1986) Essential fatty acid uptake and esterification in primary culture of rat hepatocytes. Biochim Biophys Acta 878:310–319

    PubMed  Google Scholar 

  • Chan L, Wei C-F, Li W-H, Yang C-Y, Ratner P, Pownall H, Gotto Jr AM, Smith LC (1985) Human liver fatty acid binding protein cDNA and amino acid sequence. Functional and evolutionary implications. J Biol Chem 260:2629–2632

    PubMed  Google Scholar 

  • Cheng, S, Levy, D (1980) Characterization of the anion transport system in hepatocyte plasma membranes. J Biol Chem 255:2637–2640

    PubMed  Google Scholar 

  • Chesney, RW, Gusowski, N, Dabbagh, S, Theissen, M, Padilla, M, Diehl, A (1985) Factors effecting the transport of β-amino acids in rat renal brush-border membrane vesicles. The role of external chloride. Biochim Biophys Acta 812:702–712

    PubMed  Google Scholar 

  • Chiles, TC, Kilberg MS (1986) System A transport activity in normal rat hepatocytes and transformed liver cells: substrate protection from inactivation by sulfhydryl-modifying reagents. J Cell Physiol 129:321–328

    Article  PubMed  Google Scholar 

  • Christensen HN, Makowske M, Vadgame JV (1983) Changes of amino acid transport systems on maturation and transformation of rat hepatocytes. How can ASC serve for amino acids of unlike charge? In: Harris RA, Cornell NW (eds) Isolation, characterization and use of hepatocytes. Elsevier Press, North Holland-New York, pp 217–226

    Google Scholar 

  • Chung YB, Miyauchi S, Sugiyama Y, Harashima H, Iga T, Hanano M (1990a) Effect of various organic anions on the plasma disappearance of 1-anilino-8-naphthalene sulfonate. J Hepatol 11:240–251

    Article  PubMed  Google Scholar 

  • Chung YB, Miyauchi S, Sugiyama Y, Harashima H, Iga T, Hanano M (1990b) Kinetic analysis of the dose-dependent hepatic handling of 1-anilino-8-naphthalene sulfonate in rats. J Pharmacokin Biopharm 18:313–333

    Article  Google Scholar 

  • Claffey KP, Herrera VL, Brecher P, Ruiz-Opazo N (1987) Cloning and tissue distribution of rat heart fatty acid binding protein mRNA: Identical forms in heart and skeletal muscle. Biochem 26:7900–7904

    Article  Google Scholar 

  • Clark AG, Hirom PC, Millburn P, Smith RL (1971) Absorption of some organic compounds from the biliary system of the rat. J Pharm Pharmacol 23:150–152

    PubMed  Google Scholar 

  • Clayton LM, Gurantz D, Hofmann AF, Hagey LR, Schteingart CD (1989) Role of bile acid conjugation in hepatic transport of dihydroxy bile acids. J Pharmacol Exp Ther 248:1130–1137

    PubMed  Google Scholar 

  • Cohen RD, Woods HF (1983) Lactic acidosis revisited. Diabetes 32:181–191

    PubMed  Google Scholar 

  • Collarini EJ, Oxender DL (1987) Mechanisms of transport of amino acids across membranes. Ann Rev Nutr 7:75–90

    Article  Google Scholar 

  • Combettes L, Berthon B, Doucet E, Erlinger S, Claret M (1990) Bile acids mobilise internal Ca2+, independently of external Ca2+ in rat hepatocytes. Eur J Biochem 190:619–623

    Article  PubMed  Google Scholar 

  • Cooper R, Noy N, Zakim D (1987) A physical-chemical model for cellular uptake of fatty acids: Prediction of intracellular pool sizes. Biochem 26:5890–5896

    Article  Google Scholar 

  • Cooper RB, Noy N, Zakim D (1989) Mechanism for binding of fatty acids to hepatocyte plasma membrane. J Lipid Res 30:1719–1726

    PubMed  Google Scholar 

  • Coquil JF, Berthon B, Chomik N, Combettes L, Jourdan P, Schteingart C, Erlinger S, Claret M (1991) Effects of taurolithocholate, a Ca2+-mobilizing agent, on rat hepatocytes, human platelets and neuroblastoma NG108-15 cell line. Biochem J 273:153–160

    PubMed  Google Scholar 

  • Corasanti JG, Gleeson D, Boyer JL (1989) Ionic mechanisms of cell volume regulation in isolated rat hepatocytes. Ann NY Acad Sci 574:385–387

    Google Scholar 

  • Corasanti JG, Gleeson D, Boyer JL (1990) Effects of osmotic stresses on isolated rat hepatocytes. I. Ionic mechanisms of cell volume regulation. Am J Physiol 258 (Gastrointest Liver Physiol 21): G290–G298

    PubMed  Google Scholar 

  • Corbic M, Dumont M, Peignoux M, Erlinger S (1985) Uptake of ursodeoxycholate and tauroursodeoxycholate in isolated rat hepatocytes. Hepatology 5:583 (Abstract)

    Google Scholar 

  • Cornelius CE, Arias I, Osburn BI (1965) Hepatic pigmentation with photosensitivity: a syndrome in Corriedale sheep resembling Dubin-Johnson syndrome in man. J Am Vet Med Assoc 146:709–713

    PubMed  Google Scholar 

  • Cornelius CE, Ben-Ezzer J, Arias IM (1967) Binding of sulfobromophthalein sodium (BSP) and other organic anions by isolated hepatic cell plasma membranes in vitro. Proc Soc Exp Biol (NY) 124:665–667

    Google Scholar 

  • Crawford JM, Hauser SC, Gollan JL (1988) Formation, hepatic metabolism, and transport of bile pigments: a status report. Semin Liver Dis 8:105–118

    PubMed  Google Scholar 

  • Crawford JM, Lin YJ, Teicher BA, Narcisca JP, Gollan JL (1991) Physical and biological properties of fluorescent dansylated bile salt derivatives: the role of steroid ring hydroxylation. Biochim Biophys Acta 1085:223–234

    PubMed  Google Scholar 

  • Daimon T, Zglinicki V, Marx I (1982) Correlated ultrastructural and morphometric studies on the liver during prenatal development of rats. Exp Pathol 21:237–250

    PubMed  Google Scholar 

  • Daniels C, Noy N, Zakim D (1985) Rates of hydration of fatty acids bound to unilamellar vesicles of phosphatidylcholine or to albumin. Biochem 24:3286–3292

    Article  Google Scholar 

  • David H (1985) The hepatocyte. Development, differentiation and aging. Exp Pathol (Suppl 11) 1–148

    Google Scholar 

  • Davis DR, Yeary RA (1980) Interaction of bilirubin and indocyanine green with the binding and conjugation of sulfobromophthalein by rat liver cytosol proteins. Res Commun Chem Pathol Pharmacol 27:373–388

    PubMed  Google Scholar 

  • DeGrella RF, Light RJ (1980a) Uptake and metabolism of fatty acids by dispersed adult rat heart myocytes. I. Kinetic of homologous fatty acids. J Biol Chem 255:9731–9738

    PubMed  Google Scholar 

  • DeGrella RF, Light RJ (1980b) Uptake and metabolism of fatty acids by dispersed adult rat heart myocytes. II. Inhibition by albumin and fatty acid homologous, and the effect of temperature and metabolic reagents. J Biol Chem 255:9739–9745

    PubMed  Google Scholar 

  • De La Rosa, J, Stipanuk MH (1985) The effect of taurine depletion with guanidinoethanesulfonate on bile acid metabolism in the rat. Life Sci 36:1347–1351

    Article  PubMed  Google Scholar 

  • Dempsey ME, McCoy KE, Baker HN, Dimitriadou-Vafiadou A, Lorsbach T, Howard JB (1981) Large scale purification and structural characterization of squalene and sterol carrier protein. J Biol Chem 256:1867–1873

    PubMed  Google Scholar 

  • Deuticke B (1982) Monocarboxylate transport in erythrocytes. J Membr Biol 70:89–103

    Article  PubMed  Google Scholar 

  • Deuticke B, Beyer E, Forst B (1982) Discrimination of three parallel pathways of lactate transport in the human erythrocyte membrane by inhibitors and kinetic properties. Biochim Biophys Acta 684:96–110

    PubMed  Google Scholar 

  • Deutsch JC, Iwahashi MM, Sutherland EM, Mapoles J, Simon FR (1992) Characterization of the transport of a synthetic bile salt, iodinated cholyl-glycoyl-tyrosine, in isolated cultured rat hepatocytes. Hepatology 15:917–922

    PubMed  Google Scholar 

  • De Vries MH, Groothuis GMM, Mulder GJ, Nguyen H, Meijer DKF (1985) Secretion of the organic anion harmol sulfate from the liver into blood. Evidence for a carrier mediated mechanism. Biochem Pharmacol 43:2129–2135

    Article  Google Scholar 

  • Diaz-Gil JJ, Escartin P, Garcia-Cañero R, Trilla C, Veloso JJ, Sánchez G, Moreno-Caparrós A, Enrique de Salamanca C, Lozano R, Gavilanes JG, Garcia-Segura JM (1986) Purification of a liver DNA-synthesis promotor from plasma of partially hepatectomized rats. Biochem J 235:49–55

    PubMed  Google Scholar 

  • Diaz-Gil JJ, Gavilanes JG, Sánchez G, Garcia-Cañero R, Garcia-Segura JM, Santamaria L, Trilla C, Escartin P (1987) Identification of a liver growth factor as an albumin-bilirubin complex. Biochem J 243:443–448

    PubMed  Google Scholar 

  • Diaz-Gil JJ, Sánchez G, Trilla C, Escartin P (1988) Identification of biliprotein as a liver growth factor. Hepatology 8:484–486

    PubMed  Google Scholar 

  • Diaz-Gil JJ, Gavilanes JG, Garcia-Cañero R, Garcia-Segura JM, Santamaria L, Trilla C, Martin AM, Guerra MA, Garcia-Escandón F, Iñiguez JA, Muñoz-Dominguez F, Escartin P (1989) Liver growth factor purified from human plasma is an albumin-bilirubin complex. Mol Biol Med 6:197–207

    PubMed  Google Scholar 

  • Diede HE, Rodilla-Sala E, Gunawan J, Manns M, Stremmel W (1992) Identification and characterization of a monoclonal antibody for the membrane fatty acid binding protein. Biochim Biophys Acta 1125:13–20

    PubMed  Google Scholar 

  • Dietmaier AR, Gasser R, Graf J, Peterlik M (1976) Investigation on the sodium dependence of bile acid fluxes in the isolated perfused rat liver. Biochim Biophys Acta 443:81–91

    PubMed  Google Scholar 

  • Dijkstra M, Kuipers F, Havinga R, Smit EP, Vonk RJ (1990) Bile secretion of trace elements in rats with a congenital defect in hepatobiliary transport of glutathione. Pediatric Res 28:339–343

    Google Scholar 

  • Dionne S, Russol P, Tuchweber B, Plaa GL, Yousef IM (1990) Cholic acid and chenodeoxycholic acid transport in the hepatic acinus in rats. Liver 10:336–342

    PubMed  Google Scholar 

  • Dooley JS, Bartholomew C, Summerfield JA, Billing BH (1984) The biliary excretion of sulphated and non-sulphated bile acids and bilirubin in patients with external bile drainage. Clin Sci 67:61–68

    PubMed  Google Scholar 

  • Dowling RH (1972) The enterohepatic circulation. Gastroenterology 62:122–140

    PubMed  Google Scholar 

  • Duane WC, Gilberstadt ML, Weigand DM (1979) Diurnal rhythmus of bile acid production in the rat. Am J Physiol 236 (Regulatory Integrative Comp Physiol 5): R175–R179

    PubMed  Google Scholar 

  • Duane WC, Levitt DG, Mueller SM (1983) Regulation of bile acid synthesis in man: presence of diurnal rhythm. J Clin Invest 72:1930–1936

    PubMed  Google Scholar 

  • Duffy MC, Blitzer BL, Boyer JI (1983) Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles. J Clin Invest 72:1470–1481

    PubMed  Google Scholar 

  • Dumont M, Erlinger S, Uchman S (1980) Hypercholeresis induced by ursodeoxycholic acid and 7-ketolithocholic acid in the rat: possible role of bicarbonate transport. Gastroenterol 79:82–89

    Google Scholar 

  • Dutta-Roy AK, Gopalswamy N, Trulzsch DV (1987) Prostaglandin E1 binds to Z protein of rat liver. Eur J Biochem 162:615–619

    Article  PubMed  Google Scholar 

  • Eaton DL, Richards JA (1986) Kinetic evaluation of carrier-mediated transport of ouabain and taurocholic acid in isolated rat hepatocytes. Evidence for independent transport systems. Biochem Pharmacol 35:2721–2725

    Article  PubMed  Google Scholar 

  • Edlund GL, Halestrap AP (1988) The kinetics of transport of lactate and pyruvate into rat hepatocytes. Evidence for the presence of a specific carrier similar to that in erythrocytes. Biochem J 249:117–126

    PubMed  Google Scholar 

  • Edmondson JW, Miller BA, Lumeng L (1985) Effect of glucagon on hepatic taurocholate uptake. Am J Physiol 249 (Gastrointest Liver Physiol 12): G427–G433

    PubMed  Google Scholar 

  • Eisenmann-Tappe I, Wizigmann S, Gebhardt R (1991) Glutamate uptake in primary cultures of biliary epithelial cells from normal rat liver. Cell Biol Toxicol 7:315–325

    Article  PubMed  Google Scholar 

  • Elias MM, Lunazzi GC, Passamonti S, Gazzin B, Miccio M, Stanta G, Sottocasa GL, Tiribelli C (1990) Bilitranslocase localization and function in basolateral plasma membrane of renal proximal tubule in rat. Am J Physiol 259 (Renal Fluid Electrolyte Physiol 28): F559–F564

    PubMed  Google Scholar 

  • Elliott WH (1985) Metabolism of bile acids in liver and extrahepatic tissues. In: Danielsson H, Sjövall J (eds) Sterols and Bile Acids, Elsevier, Amsterdam, pp 303–329

    Google Scholar 

  • Elsner RH, Ziegler K (1989) Determination of the apparent functional molecular mass of the hepatocellular sodium-dependent taurocholate transporter by radiation inactivation. Biochim Biophys Acta 983:113–117

    PubMed  Google Scholar 

  • Engelking LR, Gronwall R (1989) Bile acid clearance in sheep with heriditary hyperbilirubinemia. Am J Vet Res 40:1277–1280

    Google Scholar 

  • Erlinger S (1972) Physiology of bile flow. In: Popper H, Schaffner F (eds) Progress in liver disease, Vol IV, pp 63–82, Grune and Stratton, New York

    Google Scholar 

  • Erlinger S (1990) Role of intracellular organelles in the hepatic transport of bile acids. Biomed & Pharmacother 44:409–416

    Google Scholar 

  • Erlinger S, Dhumeaux D (1974) Mechanisms and control of secretion of bile water and electrolytes. Gastroenterol 66:281–304

    Google Scholar 

  • Erlinger S, Dumont M, Zouboulis-Vafiadis I, DeConet G (1984) The importance of conjugation in biliary secretion of ursodeoxycholate and 7-ketolithocholate in the rat. Clin Sci 66:487–491.

    PubMed  Google Scholar 

  • Fafournoux P, Demigné C, Rémésy C, Le Cam A (1983) Bidirectional transport of glutamine across the cell membrane in rat liver. Biochem J 216:401–408

    PubMed  Google Scholar 

  • Fafournoux P, Demigné C, Rémésy C (1984) Effect of alanine transport on ionic fluxes across the cell membrane in rat liver. Arch Inter Physiol Biochim 92:369–378

    Google Scholar 

  • Fafournoux P, Demigné C, Rémésy C (1985a) Carrier-mediated uptake of lactate in rat hepatocytes. Effects of pH and possible mechanisms for L-lactate transport. J Biol Chem 260:292–300

    PubMed  Google Scholar 

  • Fafournoux P, Rémésy C, Demigné C (1985b) Propionate transport in rat liver cells. Biochim Biophys Acta 1029:1–12

    Google Scholar 

  • Fallon RJ, Allan GW, Lees AW, Smith J, Tyrell WF (1975) Probenecid and rifampicin serum levels. Lancet 2:792–796

    PubMed  Google Scholar 

  • Feit PW, Hoffmann EK, Schmidt M, Kristensen P, Jessen F, Dunham PB (1988) Purification of proteins of the Na/Cl cotransporter from membranes of Ehrlich ascites cells using a bumetanide-sepharose affinity column. J Membr Biol 103:135–147

    Article  PubMed  Google Scholar 

  • Felicetta JV, Green WL, Nelp WB (1980) Inhibition of hepatic binding of thyroxine by cholecystographic agents. J Clin Invest 65:1032–1040

    PubMed  Google Scholar 

  • Felicetta JV, Green WL, Huber-Smith MJ (1983) Effects of cholecystographic agents and sulfobromophtaleine on binding of thyroid hormones to serum proteins. J Clin Endocrin Metab 57:207–212

    Google Scholar 

  • Felipe A, Remesar X, Pastor-Anglada M (1991) L-Lactate uptake by rat liver. Biochem J 273:195–198

    PubMed  Google Scholar 

  • Fincham DA, Wolowyk MW, Young JD (1987) Volume-sensitive taurine transport in fish erythrocytes. J Membr Biol 96:45–56

    Article  PubMed  Google Scholar 

  • Fini A, Roda A, De Maria P (1982) Chemical properties of bile acids. Part 2. pKa values in water and aqueous methanol of some hydroxy bile acids. Eur J Med Chem — Chim Ther 17:467–470

    Google Scholar 

  • Fischer E, Varga F (1983) Effect of pretreatment with exogenous organic anions on biliary excretion in rats. Arch Int Pharmacodyn Ther 264:135–143

    PubMed  Google Scholar 

  • Fisher MM, Kerly M (1964) Amino acid metabolism in the perfused rat liver. J Physiol 174:273–294

    PubMed  Google Scholar 

  • Fitz GJ, Bass NM, Weisinger RA (1991) Hepatic transport of a fluorescent stearate derivative: electrochemical driving forces in intact liver. Am J Physiol 261 (Gastrointest. Liver Physiol. 24): G83–G91

    PubMed  Google Scholar 

  • Fleischer S, Fleischer B (1989a) Biomembranes Part R. Transport Theory: Cells and model membranes. Methods in Enzymology Vol 171, Academic Press Inc.

    Google Scholar 

  • Fleischer S, Fleischer B (1989b) Biomembranes Part S. Transport: Membrane isolation and characterization. Methods in Enzymology Vol 172, Academic Press Inc.

    Google Scholar 

  • Fleischer S, Fleischer B (1989c) Biomembranes Part T. Cellular and Subcellular Transport: Eucaryotic (nonepithelial) cells. Methods in Enzymology Vol 173, Academic Press Inc.

    Google Scholar 

  • Fleischer S, Fleischer B (1989d) Biomembranes Part U. Cellular and Subcellular Transport: Eucaryotic (nonepithelial) cells. Methods in Enzymology Vol 174, Academic Press Inc.

    Google Scholar 

  • Fleischner G, Robbins J, Arias IM (1972) Immunological studies of y-protein. A major cytoplasmic organic anion-binding protein in rat liver. J Clin Invest 51:677–684

    PubMed  Google Scholar 

  • Foliot A, Glaise D, Erlinger S, Guguen-Guillouzo C (1985) Long-term maintenance of taurocholate uptake by adult rat hepatocytes co-cultured with a liver epithelial cell line. Hepatology 5:215–219

    PubMed  Google Scholar 

  • Föllmann W, Petzinger E, Kinne RKH (1990) Alteration of bile acid and bumetanide uptake during culturing of rat hepatocytes. Am J Physiol 258 (Cell Physiol 27): C700–C712

    PubMed  Google Scholar 

  • Forker EL (1977) Mechanism of hepatic bile formation. Ann Rev Physiol 39:323–347

    Article  Google Scholar 

  • Forker EL, Ghiron C (1988) ESR, albumin and the riddle of organic anion uptake by the liver. Am J Physiol 254 (Gastrointest Liver Physiol 17): G463–G464

    PubMed  Google Scholar 

  • Forker EL, Luxon BA (1981) Albumin helps mediate removal of taurocholate by rat liver. J Clin Invest 67:1517–1522

    PubMed  Google Scholar 

  • Forker EL, Luxon BA (1983) Albumin-mediated transport of rose bengal by perfused rat liver. Kinetics of the reaction at the cell surface. J Clin Invest 72:1764–1771

    PubMed  Google Scholar 

  • Forker EL, Luxon BA, Snell M, Shurmantine WO (1982) Effect of albumin binding on the hepatic transport of rose bengal: surface-mediated dissociation of limited capacity. J Pharmacol Exp Ther 223:342–347

    PubMed  Google Scholar 

  • Fox IJ, Wood EH (1957) Applications of dilution curves recorded from the right side of the heart or venous circulation with the aid of a new indicator dye. Proc Mayo Clin 32:541–550

    PubMed  Google Scholar 

  • Fox IJ, Wood EH (1960) Indocyanine green: Physical and physiologic properties. Proc Mayo Clin 35:732–744

    PubMed  Google Scholar 

  • Fox IJ, Brooker LGS, Heseltine DW, Essex HE, Wood EH (1957) A tricarbocyanine dye for continuous recording of dilution curves in whole blood independent of variations in blood oxygen saturation. Proc Mayo Clin 32:478–484

    PubMed  Google Scholar 

  • French SW (1985) Role of canalicular contraction in bile flow. Lab Invest 53:245–249

    PubMed  Google Scholar 

  • Frese DK, Sharp HL, Ganson HF (1981) Bile acid synthesis in the neonatal rat: Evidence for an alternate pathway. Hepatology 1:509

    Google Scholar 

  • Frezza M, Tiribelli C, Panfili E, Sandri G (1974) Evidence for the existance of a carrier for bromosulfophthalein in the liver cell plasma membrane. FEBS Lett 38:125–128

    Article  Google Scholar 

  • Fricker G, Hugentobler G, Meier PJ, Kurz G, Boyer JL (1987a) Identification of a single sinusoidal bile salt uptake system in skate liver. Am J Physiol 253 (Gastrointest Liver Physiol 16): G816–G822

    PubMed  Google Scholar 

  • Fricker G, Schneider S, Gerok W, Kurz G (1987b) Identification of different transport systems for bile salts in sinusoidal and canalicular membranes of hepatocytes. Biol Chem Hoppe Seyler 368:1143–1150

    PubMed  Google Scholar 

  • Fricker G, Landmann L, Meier PJ (1989) Extrahepatic obstructive cholestasis reverses the bile salt secretory polarity of rat hepatocytes. J Clin Invest 84:876–885

    PubMed  Google Scholar 

  • Frimmer M (1987) What we have learned from phalloidin. Toxicol Letters 35:169–182

    Article  Google Scholar 

  • Frimmer M (1989) Uptake of foreign cyclopeptides by liver cells. In: Petzinger E, Kinne RKH, Sies H (eds) Hepatic transport of organic substances, Springer-Verlag, Berlin, Heidelberg, pp 309–316

    Google Scholar 

  • Frimmer M, Ziegler K (1988) The transport of bile acids in liver cells. Biochim Biophys Acta 947:75–99

    PubMed  Google Scholar 

  • Fromm H, Carlson GL, Hofmann AF, Farivar S, Amin P (1980) Metabolism in man of 7-ketolithocholice acid: precursor of cheno-and ursodeoxycholic acids. Am J Physiol 239 (Gastrointest Liver Physiol 2): G161–G166

    PubMed  Google Scholar 

  • Fückel D, Petzinger E (1992) Inhibition of bile acid uptake by oral antidiabetics. Eur J Pharmacol 213:383–404

    Article  Google Scholar 

  • Fugelli K, Thoroed SM (1986) Taurine transport associated with cell volume regulation in flounder erythrocytes under anisosmotic conditions. J Physiol Lond 374:245–261

    PubMed  Google Scholar 

  • Fukuda H, Iritani N (1981) The binding of cholic acid to protein in rat serum and liver. J Biochem 90:1757–1762

    PubMed  Google Scholar 

  • Fukuhara Y, Turner J (1985) Cation dependence of renal outer cortical brush border membrane L-glutamate transport. Am J Physiol 248:F869–F875

    PubMed  Google Scholar 

  • Galivan J (1981a) Transport of methotrexate by primary cultures of rat hepatocytes: stimulation of uptake in vitro by the presence of hormones in the medium. Arch Biochem Biophys 206:113–121

    Article  PubMed  Google Scholar 

  • Galivan J (1981b) Stabilization of cholic acid uptake in primary cultures of hepatocytes by dexamethasone and tocopherol. Arch Biochem Biophys 214:850–852

    Article  Google Scholar 

  • Garcia-Marin JJ, Dumont M, Corbic M, De Couet G, Erlinger S (1985a) Role of H+ transport in ursodeoxycholate-induced biliary HCO3 secretion in the rat. Am J Physiol 249 (Gastrointest Liver Physiol 12):G335–G341

    PubMed  Google Scholar 

  • Garcia-Marin JJ, Dumont M, Corbic M, De Couet G, Erlinger S (1985b) Effect of acid-base balance and acetazolamide on ursodeoxycholate-induced biliary bicarbonate secretion. Am J Physiol 248 (Gastrointest Liver Physiol 11):G20–G27

    PubMed  Google Scholar 

  • Gärtner U, Stockert RJ, Levine WG, Wolkoff AW (1982) Effect of nafenopin on the uptake of bilirubin and sulfobromophthalein by isolated perfused rat liver. Gastroenterology 83:1163–1169

    PubMed  Google Scholar 

  • Gartner LM, Lane DL, Cornelius CE (1971) Bilirubin transport by liver in adult Macaca mulatta. Am J Physiol 220:1528–1535

    PubMed  Google Scholar 

  • Gaull GE (1989) Taurine in pediatric nutrition: review and update. Pediatrics 83:433–442

    PubMed  Google Scholar 

  • Gautam A, Seligson H, Gordon ER, Seligson D, Boyer JL (1984) Irreversible binding of conjugated bilirubin to albumin in cholestatic rats. J Clin Invest 73:873–877

    PubMed  Google Scholar 

  • Gebhardt R (1989) Hormonal control of amino acid transport systems in cultured periportal and perivenous hepatocytes. In: Petzinger E, Kinne RKH, Sies H (eds) Hepatic transport of organic substances, Springer-Verlag Berlin-Heidelberg-New York, pp 177–187

    Google Scholar 

  • Gebhardt R, Burger HJ (1987) Selective loss of hormonal induction of glutamate transport in primary cultures of hepatocytes treated with CCl4. J Hepatol 4:381–389

    Article  PubMed  Google Scholar 

  • Gebhardt R, Mecke D (1983a) Glutamate uptake by cultured rat hepatocytes is mediated by hormonally inducible, sodium-dependent transport systems. FEBS Lett 161:275–278

    Article  PubMed  Google Scholar 

  • Gebhardt R, Mecke D (1983b) Heterogenous distribution of glutamine synthase among rat liver parenchymal cells in situ and in primary culture. EMBO J 2:567–570

    PubMed  Google Scholar 

  • Gebhardt R, Williams GM (1986) Amino acid transport in adult rat epithelial cells. Cell Biol Toxicol 2, 9–20

    Article  PubMed  Google Scholar 

  • Gebhardt R, Burger HJ, Heini H, Schreiber KL, Mecke D (1988) Alterations of hepatic enzyme levels and of the acinar distribution of glutamine synthetase in response to experimental liver injury in the rat. Hepatology 8:822–830

    PubMed  Google Scholar 

  • Gentile S, Marmo R, Persico M, Bronzino P, Coltorti M (1984) Plasma clearance of nicotinic acid and rifamycin-SV, and their interaction in Gilbert's syndrome: application of a compartmental model. Hepatogastroenterology 31:72–75

    PubMed  Google Scholar 

  • Gentile S, Persico M, Baldini G, Lunazzi GC, Tiribelli C, Sottocasa GL (1985a) The implication of bilitranslocase function in the impaired rifamycin SV metabolism in Gilbert's syndrome. Clin Sci 68:675–680

    PubMed  Google Scholar 

  • Gentile S, Bajema BL, Baldini G, Lunazzi GC, Groothuis GMM, Tiribelli C, Meijer DKF, Sottocasa GL (1985b) Measurement of the association of cholephilic organic anions with different binding proteins. Biochem Pharmacol 34:2439–2444

    Article  PubMed  Google Scholar 

  • Gentile S, Persico M, Tiribelli C (1990) Abnormal hepatic uptake of low doses of sulfobromophthalein in Gilbert's syndrome: the role of reduced affinity of the plasma membrane carrier of organic anions. Hepatology 12:213–217

    PubMed  Google Scholar 

  • Gerok W, Matern S (1981) Pathogenetische Bedeutung der Gallensäuren (Pathogenic significance of bile acids). Klin Wschr 59:575–589

    PubMed  Google Scholar 

  • Gewirtz DA, Randolph JK, Goldman ID (1984) Induction of taurocholate release from isolated rat hepatocytes in suspension by adrenergic agents and vasopressin.: Implications of control of bile salt secretion. Hepatology 4:205–212

    PubMed  Google Scholar 

  • Gilberstadt ML, Bellinger LL, Lindblad S, Duane WC (1991) Liver denervation does not alter the circadian rhythm of bile acid synthesis in rats. Am J Physiol 261 (Gastrointest. Liver Physiol. 24):G799–G802

    PubMed  Google Scholar 

  • Glasinovic JC, Dumont M, Duval M, Erlinger S (1974) Hepatocellular uptake of bile acids: further evidence for a carrier-mediated transport system. Digestion 10:323–324

    Google Scholar 

  • Glasinovic JC, Duval M, Erlinger S (1975) Hepatocellular uptake of taurocholate in the dog. J Clin Invest 55:419–426

    PubMed  Google Scholar 

  • Glass GBJ (1982) Gastrointestinal peptide hormones as modulators of bile secretion. In: Popper H, Schaffner F (eds) Progress In Liver Disease, Vol VII, Grune & Stratton, New York, pp 243–260

    Google Scholar 

  • Glatz JF, Veerkamp JH (1983) A radiochemical procedure for the assay of fatty acid binding by proteins. Anal Biochem 132:89–95

    Article  PubMed  Google Scholar 

  • Glatz JFC, Janssen AM, Baerwaldt CCF, Veerkamp JH (1985) Purification and characterization of fatty acid-binding proteins from rat heart and liver. Biochim Biophys Acta 837:57–66

    PubMed  Google Scholar 

  • Godtfredsen W, Roholt K, Tybring L (1962) Fucidin. A new orally active antibiotic. Lancet 1:928–931

    Article  PubMed  Google Scholar 

  • Godtfredsen WO, Vangedal S (1966) On the metabolism of fusidic acid in man. Acta Chem Scand 20:1599–1607

    PubMed  Google Scholar 

  • Goeser T, Braly LF, Nakata LF, Sosiak A, Novikoff P, Burk RD, Wolkoff AW (1988) Relationship of the rat liver cell plasma membrane organic anion binding protein to the mitochondrial F1-ATPase. Hepatology 8:1254 (Abstract)

    Google Scholar 

  • Goeser T, Nakata R, Braly LF, Sosiak A, Campbell CG, Dermietzel R, Novikoff PM, Stockert RJ, Burk RD, Wolkoff AW (1990) The rat hepatocyte plasma membrane organic anion binding protein is immunologically related to the mitochondrial F1 adenosine triphosphatase β subunit. J Clin Invest 86:220–227

    PubMed  Google Scholar 

  • Goldinger, JM, Khalsa, BD, Hong SK (1984) Photoaffinity labeling of organic anion transport systems in proximal tubule. Am J Physiol 247 (Cell Physiol 16): C217–C227

    PubMed  Google Scholar 

  • Gollan JL, Schmid R (1985) Bilirubin metabolism and hyperbilirubinemic disorders. In: Wright R, Millward-Sadler GH, Alberti KGMM. Karran S (eds) Liver and Biliary Disease, 2nd ed London, Bailliere-Tindall, pp 301–357

    Google Scholar 

  • Gonzalez MC, Sutherland E, Simon FR (1979) Regulation of hepatic transport of bile salts. J Clin Invest 63:684–694

    PubMed  Google Scholar 

  • Gordon JI, Alpers DH, Ockner RK, Strauss AW (1983) The nucleotide sequence of rat liver fatty acid binding protein mRNA. J Biol Chem 258:3356–3363

    PubMed  Google Scholar 

  • Goresky CA (1964) Initial distribution and rate of uptake of sulfobromophthalein in the liver. Am J Physiol 207:13–26

    PubMed  Google Scholar 

  • Goresky CA (1965) The hepatic uptake and excretion of sulfobromophthalein and bilirubin. Can Med Assoc J 92:851–857

    PubMed  Google Scholar 

  • Goresky CA (1983) Kinetic interpretation of hepatic multiple-indicator dilution studies. Am J Physiol 245 (Gastrointest Liver Physiol 8):G1–G12

    PubMed  Google Scholar 

  • Graf J, Haddad R, Häussinger D, Lang F (1988) Cell volume regulation in liver. Renal Physiol Biochem 11:202–220

    PubMed  Google Scholar 

  • Green RP, Cohn SM, Sacchetti JC, Jackson KE, Gordon JI (1992) The mouse intestinal fatty acid binding protein gene: nucleotide sequence, pattern of developmental and regional expression, and proposed structure of its protein product. DNA Cell Biol 11:31–41

    PubMed  Google Scholar 

  • Greger R (1985) Ion transport mechanisms in the thick ascending limb of Henle's loop of mammalian nephron. Physiol Rev 65:760–797

    PubMed  Google Scholar 

  • Gregus Z, Klaassen CD (1982) Role of ligandin as a binding protein and as an enzyme in the biliary excretion of sulfobromophthalein. J Pharmacol Exp Ther 221:242–246

    PubMed  Google Scholar 

  • Gronwall R (1970) Sulfobromophthalein sodium excretion and hepatic storage in Corriedale sheep and Southdown sheep with inherited hepatic dysfunction. Am J Vet Res 31:2131–2133

    PubMed  Google Scholar 

  • Groothuis GMM, Hardonk MJ, Keulemans KPT, Nieuwenhuis P, Meijer DKF (1982) Autoradiographic and kinetic demonstration of acinar heterogeneity of taurocholate transport. Am J Physiol 243 (Gastrointest Liver Physiol 6): G455–G462

    PubMed  Google Scholar 

  • Groothuis GMM, Weitering JG, Keulemans KPT, Hardonk MJ, Mulder D, Meijer DKF (1983) Heterogeneity of rat hepatocytes in bile acid and DBSP transport studied after induction of selective acinar damage by N-hydroxy-2-acetylaminofluoren and carbontetrachloride. Naunyn-Schmiedeberg's Arch Pharmacol 322:310–318

    Article  Google Scholar 

  • Gumucio JJ, Katz ME, Miller DL, Belabaud CP, Greenfield JM, Wagner RM (1979) Bile salt transport after selective damage to acinar zone 3 hepatocytes by bromobenzene in the rat. Toxicol Appl Pharmacol 50:77–85

    Article  PubMed  Google Scholar 

  • Gunter MJ, Kim KS, Magee DF, Ralston H, Ivy AC (1950) The choleretic potencies of some synthetic compounds. J Pharmacol Exp Ther 99:465–478

    PubMed  Google Scholar 

  • Gyurasics A, Varga F, Gregus Z (1991a) Glutathione-dependent biliary excretion of arsenic. Biochem Pharmacol 42:465–468

    Article  PubMed  Google Scholar 

  • Gyurasics A, Varga F, Gregus Z (1991b) Effect of arsenicals on biliary excretion of endogenous glutathione and xenobiotics with glutathione-dependent hepatobiliary transport. Biochem Pharmacol 41:937–944

    Article  PubMed  Google Scholar 

  • Haas M, Forbush B (1987) Photoaffinity labeling of a 150 kDa (Na+K+2Cl) cotransport protein from hog kidney with a bumetanide analogue. Am J Physiol 253 (Cell Physiol 22): C243–C250

    PubMed  Google Scholar 

  • Haas M, McManus TJ (1983) Bumetanide inhibits (Na+K+Cl) cotransport at a chloride site. Am J Physiol 254 (Cell Physiol 14) C235–C240

    Google Scholar 

  • Habig WH, Pabst MJ, Fleischner G, Gatmaitan Z, Arias IM, Jacoby WB (1974a) The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc Natl Acad Sci USA 71:3879–3882

    PubMed  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974b) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  Google Scholar 

  • Haddad P, Graf J (1989) Volume regulatory K+ fluxes in the isolated perfused rat liver. Characterization by ion transport inhibitors. Am J Physiol 257 (Gastrointest Liver Physiol 20): G357–G363

    PubMed  Google Scholar 

  • Haddad P, Thalhammer T, Graf J (1989) Effect of hypertonic stress on liver cell volume, bile flow, and volume-regulatory K+ fluxes. Am J Physiol 256 (Gastrointest Liver Physiol 19): G563–G569

    PubMed  Google Scholar 

  • Haddad P, Beck JS, Boyer JL, Graf J (1991) Role of chloride ions in liver cell volume regulation. Am J Physiol 261 (Gastrointest Liver Physiol 24): G340–G348

    PubMed  Google Scholar 

  • Häussinger D (1989) Glutamine and glutamate transport in perfused liver. In: Petzinger E, Kinne RKH, Sies H (eds) Hepatic transport of organic substances, Springer-Verlag Berlin-Heidelberg-New York, pp 157–166

    Google Scholar 

  • Häussinger D, Gerok W (1983) Hepatocyte heterogeneity in glutamate uptake by isolated perfused rat liver. Eur J Biochem 136:421–425

    Article  PubMed  Google Scholar 

  • Häussinger D, Gerok W (1984) Regulation of hepatic glutamate metabolism. Role of oxoacids in glutamate release from isolated perfused rat liver. Eur J Biochem 143:491–497

    Article  PubMed  Google Scholar 

  • Häussinger D, Lang F (1991) The mutual interaction between cell volume and cell function: a new principle of metabolic regulation. Biochem Cell Biol 69:1–4

    PubMed  Google Scholar 

  • Häussinger D, Stoll B, Stehle T, Gerok W (1989) Hepatocyte heterogeneity in glutamate metabolism and bidirectional transport in perfused rat liver. Eur J Biochem 185:189–195

    Article  PubMed  Google Scholar 

  • Hüssinger D, Lang F, Bauers K, Gerok W (1990a) Interactions between glutamine metabolism and cell volume regulation in perfused rat liver. Eur J Biochem 188:689–695

    Article  PubMed  Google Scholar 

  • Häussinger D, Stehle T, Lang F (1990b) Volume regulation in liver: further characterization by inhibitors and ionic substitution. Hepatology 11:243–254

    PubMed  Google Scholar 

  • Häussinger D, Hallbrucker C, vom Dahl S, Lang F, Gerok H (1990c) Cell swelling inhibits proteolysis in perfused rat liver. Biochem J 272:239–242

    PubMed  Google Scholar 

  • Häussinger D, Lang F, Bauers K, Gerok W (1990d) Control of hepatic nitrogen metabolism and glutathione release by cell volume regulatory mechanisms. Eur J Biochem 193:891–898

    Article  PubMed  Google Scholar 

  • Hagenbuch B, Lübbert H, Stieger B, Meier PJ (1990) Expression of the hepatocyte Na+/bile acid cotransporter in Xenopus laevis oocytes. J Biol Chem 265:5357–5360

    PubMed  Google Scholar 

  • Hagenbuch B, Stieger B, Foguet M, Lübbert H, Meier PJ (1991) Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci USA 88:10629–10633

    PubMed  Google Scholar 

  • Halestrap AP (1976) Transport of pyruvate and lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier. Biochem J 156:193–207

    PubMed  Google Scholar 

  • Hallbrucker C, Lang F, Gerok W, Häussinger D (1992) Cell swelling increases bile flow and taurocholate excretion into bile in isolated perfused rat liver. Biochem J 281:593–595

    PubMed  Google Scholar 

  • Hammaker L, Schmid R (1967) Interference with bile pigment uptake in the liver by flavaspidic acid. Gastroenterology 53:1–7

    Google Scholar 

  • Hansen PE, Thiesen H, Brodersen R (1979) Bilirubin acidity. Titrimetric and 13C-NMR studies. Acta Chem Scand 33:281–293

    Google Scholar 

  • Hardison WGM (1978) Hepatic taurine concentration and dietary taurine as regulators of bile acid conjugation with taurine. Gastroenterology 75:71–75

    PubMed  Google Scholar 

  • Hardison WGM (1982) Changes in parameters of bile acid metabolism with taurine feeding. Clin Res 30:92A

    Google Scholar 

  • Hardison WGM (1983) Regulation of hepatic taurine pool size to bile-acid conjugation in man and animals. In: Sulfur amino acids: biochemical and clinical aspects. Alan R Liss Inc, New York, pp 407–417

    Google Scholar 

  • Hardison WGM, Proffitt JM (1977) Influence of hepatic taurine concentration on bile acid conjugation with taurine. Am J Physiol 232(1) (Endocrinol Metab Gastrointest Physiol 1(1)): E75–E79

    PubMed  Google Scholar 

  • Hardison WGM, Wood CA, Proffitt JH (1977) Quantitation of taurine synthesis in the intact rat and cat liver. Proc Soc Exp Biol Med 155:55–58

    PubMed  Google Scholar 

  • Hardison WGM, Weiner P (1980) Taurine transport by rat hepatocytes in primary culture. Biochim Biophys Acta 598:145–152

    PubMed  Google Scholar 

  • Hardison WGM, Bellentani S, Heasley V, Shellhamer S (1984) Specificity of a Na+-dependent transport site in isolated rat hepatocytes. Am J Physiol 246 (Gastrointest Liver Physiol 9): G477–G483

    PubMed  Google Scholar 

  • Hardison WGM, Lowe PJ, Gosink E (1988) Nature of taurodehydrocholic acid uptake in rat hepatocytes. Am J Physiol 254 (Gastrointest Liver Physiol 17): G269–G274

    PubMed  Google Scholar 

  • Hart LG, Guaino AM, Adamson RH (1969) Effects of phenobarbital on biliary excretion of organic anions in male and female rats. Am J Physiol 217:46–52

    PubMed  Google Scholar 

  • Haslewood GAD (1963) Bile salts. In: Florkin M, Stotz EH (eds) Comprehensive Biochemistry Vol 10, Elsevier Publ Amsterdam, pp 23–31

    Google Scholar 

  • Haslewood GAD (ed) (1967) Bile Salts, Methuen & Co Ltd, London, pp 1–116

    Google Scholar 

  • Hatano S, Hironaka Y, Kuramoto T, Hoshita T (1984) Metabolism of bile acids. XIV Sarcosine-conjugated bile acids. Yakugaku Zasski 105:466–471

    Google Scholar 

  • Hatano S, Yoshida H, Matsunami M, Ide Y, Matsuda K, Yatsunami T, Fuwa T, Kihira K, Kuramoto T, Hoshita T (1991) Absorption, biliary excretion, and metabolism of a new cholelitholytic agent, ursodeoxycholyl-N-carboxymethylglycine and its esters in rats. J Pharmacobio-Dyn 14:561–566

    PubMed  Google Scholar 

  • Haunerland N, Jagschies G, Schulenberg H, Spener F (1984) Occurrence of two fatty-acid-binding proteins in bovine liver cytosol and their binding of fatty acids, cholesterol, and other lipophilic ligands. Hoppe-Seyler's Z Physiol Chem 365:365–376

    PubMed  Google Scholar 

  • Hayes KC (1988) Taurine nutrition. Nutr Res Rev 1:99–113

    Article  Google Scholar 

  • He MX, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–214

    Article  PubMed  Google Scholar 

  • Heimberg M, Goh, EH, Klausner HJ, Soler-Argilaga C, Weinstein I, Wilcox HG (1978) Regulation of hepatic metabolism of free fatty acids: Interrelationship among secretion of very low density lipoproteins, ketogenesis and cholesterogenesis. In: Dietschy JM, Gotto AM, Ontko JA (eds) Disturbances in lipid and lipoprotein metabolism, Williams and Wilkins, Baltimore, pp 251–267

    Google Scholar 

  • Heirwegh KPM, Fevery J, Blanckaert N (1989) Chromatographic analysis and structure determination of biliverdins and bilirubins. J Chromatography 496:1–26

    Google Scholar 

  • Hellman B, Sehelin J, Täljedal IB (1984) Glibenclamide is exeptional among hypoglycaemic sulphonylureas in accumulating progessively in β-cell rich pancreatic islets. Acta Endocrinol 105:385–390

    PubMed  Google Scholar 

  • Helman G, Roth B, Gladke E (1977) Indocyanin-Grün-Kinetik beim Neugeborenen mit transitorischer Hyperbilirubinämie. Klin Wschr 55:451–456

    Article  PubMed  Google Scholar 

  • Hems R, Ross BD, Berry MN, Krebs HA (1966) Gluconeogenesis in perfused rat liver. Biochem J 101:284–296

    PubMed  Google Scholar 

  • Hems R, Stubbs M, Krebs HA (1968) Restricted permeability of rat liver for glutamate and succinate. Biochem J 107:807–815

    Google Scholar 

  • Henderson CJ, Percy-Robb IW, Hayes JD (1986) Purification of bile acid-binding proteins from rat hepatic cytosol. Use of a photoaffinity label to detect novel Y'binders. Biochim Biophys Acta 875:270–285

    PubMed  Google Scholar 

  • Heubi JE, Balistreri WF, Fondacaro JD, Partin JC, Schubert WK (1982) Primary bile acid malabsorption: defective in vitro ileal active bile acid transport. Gastroenterology 83:804–811

    PubMed  Google Scholar 

  • Heuckeroth RO, Birkenmeier EH, Levin MS, Gordon JI (1987) Analysis of the tissue-specific expression, developmental regulation, and linkage relationships of a rodent gene encoding heart fatty acid binding protein. J Biol Chem 262:9709–9717

    PubMed  Google Scholar 

  • Hickman MA, Rogers QR, Morris JG (1991) Taurocholic acid turnover in taurine-depleted and normal cats. J Nutr 121:S185

    Google Scholar 

  • Hoffmann EK (1986) Anion transport systems in the plasma membrane in vertebrate cells. Biochim Biophys Acta 864:1–31

    PubMed  Google Scholar 

  • Hoffmann EK, Hendil KB (1976) The role of amino acids and taurine in isosmotic intracellular regulation in Ehrlich ascites mouse tumour cells. J comp Physiol 108:279–286

    Google Scholar 

  • Hofmann AF (1977) The enterohepatic circulation of bile acids in man. Clin Gastroenterol 6:3–24

    PubMed  Google Scholar 

  • Hofmann AF (1984) Medical treatment of cholesterol gallstones by bile desaturating agents. Hepatology 4:199S–208S

    PubMed  Google Scholar 

  • Hofmann AF (1988) Bile acids. In: Arias JM, Jacoby WB, Popper H, Schachter D, Shafritz DA (eds) The liver: biology and pathobiology, 2nd edn, Raven Press, New York, pp 553–572

    Google Scholar 

  • Hofmann AF, Small DM (1967) Detergent properties of bile salts: correlation with physiologic function. Annu Rev Med 18:333–376

    Article  PubMed  Google Scholar 

  • Hofmann AF, Roda A (1984) Physicochemical properties of bile acids and their relationship to biological properties: an overview of the problem. J Lipid Res 25:1477–1489

    PubMed  Google Scholar 

  • Hofman NE, Iser JH, Smallwood RA (1975) Hepatic bile acid transport: effect of conjugation and position of hydroxyl groups. Am J Physiol 229:298–302

    PubMed  Google Scholar 

  • Holohan PD, Sokol PP, Ross CR (1986) Disulfide and sulfhydryl groups are essential for organic cation transport in renal brush border membranes. In: Alvarado F, Van Os CH (eds) Ion-gradient coupled transport, INSERM Symposium No. 26, Elsevier Science Publishers, Amsterdam, New York, Oxford, pp 291–294

    Google Scholar 

  • Hong SK, Goldinger JM, Song YK, Koschier FJ, Lee SH (1978) Effect of SITS on organic anion transport in the rabbit kidney cortical slice. Am J Physiol 234:F302–F307

    PubMed  Google Scholar 

  • Hong W, Doyle D (1987) cDNA cloning for a bile canalicular domain-specific membrane glycoprotein of rat hepatocytes. Proc Natl Acad Sci USA 84:7962–7966

    PubMed  Google Scholar 

  • Honoré B, Brodersen P (1992) Ionization of tyrosine residues in human serum albumin and in its complexes with bilirubin and laurate. Int J Peptide Prot Res 39:24–28

    Google Scholar 

  • Honscha W, Ottallah M, Schenk A, Schuh K, Petzinger E (1992a) Separation and purification by two-dimensional gel electrophoresis of a 52–54 kDa bumetanide binding protein from rat liver plasma membranes. Eur J Pharmacol Molec Pharmacol Sect 226:215–223

    Article  Google Scholar 

  • Honscha W, Schulz K, Müller D, Petzinger E (1993) Two different mRNA's from rat liver code for the transport of bumetanide and taurocholate in Xenopus laevis oocytes. Eur J Pharmacol Molec Pharmacol Section 246:227–232

    Article  Google Scholar 

  • Horie T, Mizuma T, Kasai S, Awazu S (1988) Conformational change in plasma albumin due to interaction with isolated rat hepatocytes. Am J Physiol 254 (Gastrointest Liver Physiol 17):G465–G470

    PubMed  Google Scholar 

  • Houwen R, Dijkstra M, Kuipers F, Smit EP, Havinga R, Vonk RJ (1990) Two pathways for biliary copper excretion in the rat. Biochem Pharmacol 39:1039–1044.

    Article  PubMed  Google Scholar 

  • Howard LD, Wondergem R (1987) Effects of anisosmotic medium on cell volume, transmembrane potential and intracellular K+ activity in mouse hepatocytes. J Membr Biol 100:53–61

    Article  PubMed  Google Scholar 

  • Hresko RC, Bernier M, Hoffman RD, Flores-Riveros JR, Liao K, Laird DM, Lane ME (1988) Identification of phosphorylated 422(aP2) protein as pp15, the 15-kilodalton target of insulin receptor tyrosine kinase in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 85:8835–8839

    PubMed  Google Scholar 

  • Huber M, Guhlmann A, Jansen PLM, Keppler D (1987) Hereditary defect of hepatobiliary cysteinyl leukotriene elimination in mutant rats with defective hepatic anion excretion. Hepatology 7:224–228

    PubMed  Google Scholar 

  • Hugentobler G, Meier PJ (1986) Multispecific anion exchange in basolateral (sinusoidal) rat liver plasma membrane vesicles. Am J Physiol 251 (Gastrointest. Liver Physiol 14):G656–G664

    PubMed  Google Scholar 

  • Hugentobler G, Fricker G, Boyer JL, Meier PJ (1987) Anion transport in basolateral (sinusoidal) liver plasma membrane vesicles of the little skate (Raja erinacea). Biochem J 247:589–595

    PubMed  Google Scholar 

  • Hunt CR, Ro JHS, Dobson DE, Min HY, Spiegelman BM (1986) Adipocyte P2 gene: Developmental expression and homology of 5'-flanking sequences among fat cell-specific genes. Proc Natl Acad Sci USA 83:3786–3790

    PubMed  Google Scholar 

  • Hunton DB, Bollman JL, Hoffman HN (1961) The plasma removal of indocyanine green and sulfobromophthalein: effect of dosage and blocking agents. J Clin Invest 40:1648–1655

    PubMed  Google Scholar 

  • Huxtable RJ (1982) Taurine: epilepsy, inotropy and eyesight. Trend Pharmacol Sci, January Issue: 21–25

    Google Scholar 

  • Huxtable RJ, Chubb J, Azari J (1980) Physiological and experimental regulation of taurine content in the heart. Fed Proc 39:2685–2690

    PubMed  Google Scholar 

  • Huxtable RJ, Franconi F, Giotti A (eds) (1987) The biology of taurine. New York, London, Plenum Press 404 pp

    Google Scholar 

  • Iga T, Klaassen CD (1979) Hepatic extraction of nonmetabolizable xenobiotics in rats. J Pharmacol Exp Ther 211:690–697

    PubMed  Google Scholar 

  • Iga T, Klaassen CD (1982a) Hepatic extraction of bile acids in rats. Biochem Pharmacol 31:205–209

    Article  PubMed  Google Scholar 

  • Iga T, Klaassen CD (1982b) Uptake of bile acids by isolated rat hepatocytes. Biochem Pharmacol 31:211–216

    Article  PubMed  Google Scholar 

  • Iga T, Eaton DL, Klaassen CD (1979) Uptake of unconjugated bilirubin by isolated rat hepatocytes. Am J Physiol 236 (Cell Physiol 5): C9–C14

    PubMed  Google Scholar 

  • Ikeda M, Uesugi T (1973) Studies on the biliary excretion mechanism of drugs. Biochem Pharmacol 22:2743–2751

    Article  PubMed  Google Scholar 

  • Iles RA, Cohen RD, Rist AH, Baron PG (1977) The mechanism of inhibition by acidosis of gluconeogenesis from lactate in rat liver. Biochem J 164:185–191

    PubMed  Google Scholar 

  • Inoue M, Arias IM (1988) Taurine transport across hepatocyte plasma membranes: analysis in isolated rat liver sinusoidal plasma membrane vesicles. J Biochem (Tokyo) 104:155–158

    PubMed  Google Scholar 

  • Inoue M, Kinne R, Tran T, Arias IM (1982) Taurocholate transport by rat liver sinusoidal membrane vesicles: Evidence of sodium cotransport. Hepatology 2:572–579

    PubMed  Google Scholar 

  • Inoue M, Kinne R, Tran T, Biempica L, Arias IM (1983) Rat liver canalicular membrane vesicles. Isolation and topological characterization. J Biol Chem 258:5183–5188

    PubMed  Google Scholar 

  • Inoue M, Kinne R, Tran T, Arias IM (1984a) Taurocholate transport by rat liver canalicular membrane vesicles. Evidence for the presence of a Na+-dependent transport system. J Clin Invest 73:659–663

    PubMed  Google Scholar 

  • Inoue M, Akerboom TPM, Sies H, Kinne R, Thao T, Arias IM (1984b) Biliary transport of glutathione S-conjugate by rat liver canalicular membrane vesicles. J Biol Chem 259:4998–5002

    PubMed  Google Scholar 

  • Inoue M, Morino Y, Nagase S (1985) Transhepatic transport of taurocholic acid in normal and mutant analbuminemic rats. Biochem Biophys Acta 833:211–216

    PubMed  Google Scholar 

  • Inouye B, Uchinomi Y, Wachi T, Utsumi K (1977) Effect of rifampicin derivatives on the ion compartmentation of biological membranes. J Antibiotics 30:494–499

    Google Scholar 

  • Ishikawa T (1989) ATP/Mg2+-dependent cardiac transport system for glutathione S-conjugates. J Biol Chem 264:17343–17348

    PubMed  Google Scholar 

  • Ishikawa T (1990) ATP-dependent transport of leukotriene C4. Seikagaku (Jap Biochem Soc) 62:267–273

    PubMed  Google Scholar 

  • Ishikawa T, Kobayashi K, Sogame Y, Hayashi KK (1989) Evidence for leukotriene C4 transport mediated by an ATP-dependent glutathione S-conjugate carrier in rat heart and liver plasma membranes. FEBS Lett 259:95–98

    Article  PubMed  Google Scholar 

  • Ishikawa T, Müller M, Klünemann C, Schaub T, Keppler D (1990) ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of ATP-dependent transport system for glutathione S-conjugates. J Biol Chem 265:19279–19286

    PubMed  Google Scholar 

  • Ising W, Ziegler K (1992) Involvement of the canalicular bile acid transporter in the biliary elimination of peptide drugs. In: Bile acids and the hepatobiliary system. From basic science to clinical practice, Falk Symp 68, Abstract 36

    Google Scholar 

  • Jacobsen JG, Smith LH Jr (1963) Comparison of decarboxylation of cysteine sulfinic acid-1-C14 and cysteic acid-1-C14 by human, dog and rat liver and brain. Nature 200:575–577

    PubMed  Google Scholar 

  • Jacobsen JG, Smith LH Jr (1968) Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev 48:424–511

    PubMed  Google Scholar 

  • Jacquemin E, Hagenbuch B, Stieger B, Wolkoff AW, Meier PJ (1991) Expression of the hepatocellular chloride-dependent sulfobromophthalein uptake system in Xenopus laevis oocytes. J Clin Invest 88:2146–2149

    PubMed  Google Scholar 

  • James OFW, Woodhouse KW, Herd B, Cope LH, Wynne HA (1991) The influence of frailty, liver blood flow and size upon hepatic oxidation and conjugation in aged man. In: Kitani K (ed) Liver And Aging — 1990, Excerpta Medica Amsterdam, pp 45–54

    Google Scholar 

  • Janecki J, Seifert A (1967) Chromodiagnostik der Leber: Die Eliminationskurve des Indocyanin-grünfarbstoffes “Wofaverdin” bei Lebergesunden. Dtsch Gesundh Wes 22:106–108

    Google Scholar 

  • Jansen PLM, Peters WH, Lamers WH (1985) Heriditary chronic conjugated hyperbilirubinemia in mutant rats caused by defective hepatic anion transport. Hepatology 5:573–579

    PubMed  Google Scholar 

  • Jansen PLM, Groothuis GMM, Peters WHM, Meijer DFM (1987a) Selective hepatobiliary transport defect for organic anions and neutral steroids in mutant rats with heriditary conjugated hyperbilirubinemia. Hepatology 7:71–76

    PubMed  Google Scholar 

  • Jansen PLM, Peters WHM, Meijer DKF (1987b) Hepatobiliary excretion of organic anions in double-mutant rats with a combination of defective canalicular transport and uridine-5'diphosphate-glucuronosyltransferase deficiency. Gastroenterology 93:1094–1103

    PubMed  Google Scholar 

  • Jessen H, Sheikh MI (1991) Stoichiometric studies of β-alanine transporters in rabbit proximal tubule. Biochem J 277:891–894

    PubMed  Google Scholar 

  • Jirsa M, Raban P (1962) Metabolism of rose bengal. Nature 195:1100–1101

    PubMed  Google Scholar 

  • Jones AL, Hradek GT, Renston RH, Wong KY, Karalangis G, Paumgartner G (1980) Autoradiographic evidence for hepatic lobular concentration gradient of a bile acid derivative. Am J Physiol 238 (Gastrointest Liver Physiol 1):G233–G237

    PubMed  Google Scholar 

  • Jones EA, Carson ER, Berk PD (1986) Quantitation of bilirubin metabolism in vivo: Kinetic studies and mathematical modeling. In: Ostrow JD (ed) Bile pigments and jaundice, New York, Marcel Dekker, pp 439–474

    Google Scholar 

  • Jones RS, Meyers WC (1979) Regulation of hepatic biliary secretion. Ann Rev Physiol 41:67–82

    Article  Google Scholar 

  • Jones TA, Bergfors T, Sedzik J, Unge T (1988) The three dimensional structure of P2 myelin protein. EMBO J 7:1597–1604

    PubMed  Google Scholar 

  • Joppen C, Petzinger E, Frimmer M (1985) Properties of iodipamide uptake by isolated rat hepatocytes. Naunyn-Schmiedeberg's Arch Pharmacol 331:393–397

    Article  Google Scholar 

  • Jorgensen KE, Sheikh MI (1986) Characteristics of uptake of short chain fatty acids by luminal membrane vesicles from rabbit kidney. Biochim Biophys Acta 860:632–640

    PubMed  Google Scholar 

  • Jorgensen PL, Petersen J, Rees WD (1984) Identification of a Na+, K+,Cl-cotransport protein of Mr 34000 from kidney by photolabeling with (3H)bumetanide. The protein is associated with cytosceleton componets. Biochim Biophys Acta 775:105–110

    PubMed  Google Scholar 

  • Josephson BA (1933) Die Dissoziationskonstanten der Gallensäuren. Biochem Z 263:428–443

    Google Scholar 

  • Jungermann K (1987) Regulation of hepatic metabolism and haemodynamics by hormones and autonomic liver nerves. In: Reutter W, Popper H, Arias IM, Heinrich PC, Keppler D, Landmann L (eds) Modulation of liver cell expression, MTP Press Ltd, Lancaster, UK, pp 15–39

    Google Scholar 

  • Jungermann KA, Gardemann A, Beuers U, Ballé C, Sannemann J, Beckh K, Hartmann H (1987) Regulation of liver metabolism by hepatic nerves. Adv Enz Regul 26:63–88

    Article  Google Scholar 

  • Kaikaus RM, Bass NM, Ockner RK (1990) Functions of fatty acid binding proteins. Experientia 46:617–630

    Article  PubMed  Google Scholar 

  • Kamimoto Y, Gatmaitan Z, Hsu J, Arias IM (1989) The function of Gp 170, the multidrug resistance gene product, in rat liver canalicular membrane vesicles. J Biol Chem 265:11693–11698

    Google Scholar 

  • Kamisaka K, Listowsky I, Gatmaitan Z, Arias IM (1975) Circular dichromism analysis of the secondary structure of Z protein and its complexes with bilirubin and other organic anions. Biochim Biophys Acta 393:24–30

    PubMed  Google Scholar 

  • Kanai S, Kitani K (1983) Glycoursodeoxycholate is as effective as tauroursodeoxycholate in preventing the taurocholate-induced cholestasis in the rat. Res Commun Chem Pathol Pharmacol 42:423–430

    PubMed  Google Scholar 

  • Kanner BI, Sharon I (1978) Active transport of L-glutamate by membrane vesicles isolated from rat brain. Biochem 17:3949–3953

    Article  Google Scholar 

  • Kaplowitz N, Aw TY, Ookhtens M (1985) The regulation of hepatic glutathione. Ann Rev Pharmacol Toxicol 25:715–744

    Article  Google Scholar 

  • Kawashima Y, Nakagawa S, Kozuko H (1982) Effects of some hypolipidemic drugs and phthalic acid esters on fatty acid binding protein in rat liver. J Pharm Dyn 5:771–779

    Google Scholar 

  • Kaya K (1992) Chemistry and biochemistry of taurolipids. Prog Lipid Res 31:87–108

    Article  PubMed  Google Scholar 

  • Kellner HM, Christ O, Rupp W, Heptner W (1969) Resorption, Verteilung und Ausscheidung nach Gabe von 14C-markiertem HB 419 am Kaninchen, Ratte und Hund. Arzneim Forsch (Drug Res) 19:1388–1400

    Google Scholar 

  • Kenny MT, Strates B (1981) Metabolism and pharmacokinetics of the antibiotic rifampicin. Drug Metab Rev 12:159–218

    PubMed  Google Scholar 

  • Kenwright S, Levi AJ (1974) Sites of competition in the selective uptake of rifamycin SV, flavaspidic acid, bilirubin, and bromsulphthalein. Gut 15:220–226

    PubMed  Google Scholar 

  • Ketterer B, Carne T, Tipping E (1978) Ligandin and protein A: Intracellular binding proteins. In: Blauer G, Sund H (eds) Transport by proteins, Walter de Gruyter, Berlin, pp 69–94

    Google Scholar 

  • Keuper HJK, Klein RA, Spener F (1985) Spectroscopic investigations on the binding site of bovine hepatic fatty acid binding protein. Evidence for the existence of a single binding site for two fatty acid molecules. Chem Phys Lipid 38:159–173

    Article  Google Scholar 

  • Khalbuss WE, Wondergem R (1991) Involvement of cell calcium and transmembrane potential in control of hepatocyte volume. Hepatology 13:962–969

    Article  PubMed  Google Scholar 

  • Kibe A, Wake C, Kuramoto T, Hoshita T (1980) Effect of dietary taurine on bile acid metabolism in guinea pigs. Lipids 15:224–229

    PubMed  Google Scholar 

  • Kilberg MS (1982) Amino acid transport in isolated rat hepatocytes. J Membr Biol 69:1–12

    Article  PubMed  Google Scholar 

  • Kilberg MS, Gwynn MB (1983) Plasma membrane transport of 2-ketoisocaproate by rat hepatocytes in primary culture. J Biol Chem 258:11524–11527

    PubMed  Google Scholar 

  • Kilberg MS, Christensen HN, Handlogten ME (1979) Cysteine as a system-specific substrate for transport system ASC in rat hepatocytes. Biochem Biophys Res Commun 88:744–751

    Article  PubMed  Google Scholar 

  • Kilberg MS, Handlogten ME, Christensen HN (1980) Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs. J Biol Chem 255:4011–4019

    PubMed  Google Scholar 

  • King PA, Kinne R, Goldstein L (1985) Taurine transport by brush border membrane vesicles isolated from the flounder kidney. J Comp Physiol 155:185–193

    Google Scholar 

  • Kinne RKH (1989) Glutamate-sodium cotransport in the kidney: An example for the plasticity of transport systems. In: Petzinger E, Kinne RKH and Sies H (eds) Hepatic transport of organic substances, Springer Verlag, Berlin-Heidelberg-New York, pp 3–11

    Google Scholar 

  • Kirkpatrick RB, Belsaas RA (1985) Formation and secretion of glycolithocholate-3-sulfate in primary hepatocyte cultures. J Lipid Res 26:1431–1436

    PubMed  Google Scholar 

  • Kitamura T, Jansen P, Hardenbrook C, Kamimoto Y, Gatmaitan Z, Arias IM (1990a) Defective ATP-dependent bile canalicular transport of organic anions in mutant (TR-) rats with conjugated hyperbilirubinemia. Proc Natl Acad Sci USA 87:3557–3561

    PubMed  Google Scholar 

  • Kitamura T, Gatmaitan Z, Arias IM (1990b) Serial quantitative image analysis and confocal microscopy of hepatic uptake, intramolecular distribution and biliary secretion of a fluorescent bile acid analog in rat hepatocyte doublets. Hepatology 12:1358–1364

    PubMed  Google Scholar 

  • Kitani K, Kanai S (1981) Biliary maximum of tauroursodeoxycholate is twice as high as that of taurocholate in the rat. Life Sci 29:269–275

    Article  PubMed  Google Scholar 

  • Kitani K, Kanai S (1982) Effect of ursodeoxycholate on the bile flow in the rat. Life Sci 31:1973–1985

    Article  PubMed  Google Scholar 

  • Kitani K, Kanai S (1983) Interaction between different bile salts in the biliary excretion of the rat. Res Commun Chem Pathol Pharmacol 39:139–152

    PubMed  Google Scholar 

  • Kitani K, Kanai S (1985) Ursodeoxycholate-induced hypercholeresis in taurine-deprived and taurine supplemented rats. Jpn J Physiol 33:443–462

    Google Scholar 

  • Kitani K, Kanai S, Miura R (1978) Hepatic metabolism of sulfobromophthalein (BSP) and indocyanine green (ICG) in aging rats. In: Kitani K (ed) Liver and aging, Elsevier North Holland Amsterdam, pp 145–156

    Google Scholar 

  • Klaassen CD (1975) Hepatic excretory function in the newborn rat. J Pharmacol Exp Ther 184:721–728

    Google Scholar 

  • Klaassen CD (1976) Pharmacokinetics of rose bengal in the rat, rabbit, dog and guinea pig. Toxicol Appl Pharmacol 38:85–100

    Article  PubMed  Google Scholar 

  • Klaassen CD (1978) Development of hepatic excretory function in the newborn rat. In: Kitani K (ed) Liver and aging, Elsevier North Holland Amsterdam, pp 313–323

    Google Scholar 

  • Klaassen CD, Plaa GL (1968) Hepatic disposition of phenol dibromosulphthalein disulfonate and sulfobromphthalein. Am J Physiol 215:971–976

    PubMed  Google Scholar 

  • Klaassen CD, Plaa GL (1969) Plasma disappearance and biliary excretion of indocyanine green in rats, rabbits and dogs. Toxicol Appl Pharmacol 15:374–384

    Article  PubMed  Google Scholar 

  • Klaassen CD, Strom SC (1978) Comparison of biliary excretory function and bile composition in male, female and lactating rats. Drug Metab Dispos 6:120–124

    PubMed  Google Scholar 

  • Klaassen CD, Watkins JB (1984) Mechanism of bile formation, hepatic uptake and biliary excretion. Pharmacol Rev 36:1–67

    PubMed  Google Scholar 

  • Klapdor R (1981) On the kinetics of glycocholate uptake and excretion by the normal and diseased liver in man. Hepato-Gastroenterology 28:189–191

    PubMed  Google Scholar 

  • Klinger W (1982) Biotransformation of drugs and other xenobiotics during postnatal development. Pharmacol Ther 16:377–429

    Article  PubMed  Google Scholar 

  • Knauf, PA, Mann, NA, Kalwas, JE, Spinelli, LJ, Ramjeesingh, M (1987) Interactions of NIP-taurine, NAP-taurine, and Cl- with the human erythrocyte anion exchange system. Am J Physiol 253 (Cell Physiol 22): C652–C661

    PubMed  Google Scholar 

  • Knodell RG, Steele NM (1985) Vasoactive intestinal peptide produce dissociation of bile secretion from bile acid transport in rats. Gastroenterology 88:1671 (Abstract)

    Google Scholar 

  • Knodell RG, Steele NM, Stanley LN (1987) Hepatic bile formation in the rat. Addition of vasoactive intestinal peptide to the equation. Dig Dis Sci 32:1290–1296

    Article  PubMed  Google Scholar 

  • Kobayashi K, Sogane Y, Hayashi K, Nicotera P, Orrhenius S (1988) ATP stimulates the uptake of S-dinitrophenylglutathione by rat liver plasma membrane vesicles. FEBS Lett 240:55–58

    Article  PubMed  Google Scholar 

  • Kobayashi K, Sogane Y, Hara H, Hayashi K (1990) Mechanism of glutathione S-conjugate transport in canalicular and basolateral rat liver plasma membranes. J Biol Chem 265:7737–7741

    PubMed  Google Scholar 

  • Kobayashi K, Komatsu S, Nishi T, Hara H, Hayashi K (1991) ATP-dependent transport for glucuronides in canalicular plasma membrane vesicles. Biochem Biophys Res Commun 176:622–626

    Article  PubMed  Google Scholar 

  • Koch A, Webster B, Lowell S (1981) Cellular uptake of L-lactate in mouse diaphragm. Biophys J 36:775–796

    PubMed  Google Scholar 

  • Koch MR, Khalil FL, Lea MA (1980) Decreased uptake of 14C-labeled dicarboxylic amino acids in rapidly growing hepatomas. Cancer Res 40:4053–4058

    PubMed  Google Scholar 

  • Koepsell H, Korn K, Ferguson J, Menuhr H, Ollig D, Haase W (1984) Reconstitution and partial purification of several Na+ cotransport systems from renal brush border membranes. Properties of the L-glutamate transporter in proteoliposomes. J Biol Chem 259:6548–6558

    PubMed  Google Scholar 

  • Kolb KH, Schulze PE, Speck U, Acksteiner B (1974) Pharmakokinetik von radioaktiv markiertem Glisoxepid beim Tier. Arzneim Forsch (Drug Res) 24:397–403

    Google Scholar 

  • Kondo T, Miyamoto K, Gasa S, Taniguchi N, Kawakami Y (1989) Purification and characterization of glutathione disulfide stimulated Mg2+-ATPase from human erythrocytes. Biochem Biophys Res Commun 162:1–8

    Article  PubMed  Google Scholar 

  • Koschier FJ, Stokols MF, Goldinger JM, Acara M, Hong SK (1980) Effect of DIDS on renal tubular transport. Am J Physiol 238 (Renal Fluid Electrolyte Physiol 7): F99–F106

    PubMed  Google Scholar 

  • Kragh-Hansen U (1988) Evidence for a large and flexible region of human serum albumin possessing high affinity binding sites for salicylate, warfarin and other ligands. Molecular Pharmacol 34:160–171

    Google Scholar 

  • Kramer W, Burckhardt G (1988) Identification of binding proteins for bile salts, β-lactam antibiotics and PAH in rat renal basolateral membranes by photoaffinity labeling. Pflüger's Arch 411: R 103

    Google Scholar 

  • Kramer W, Schneider S (1989) 3-Diazirine-derivatives of bile salts for photoaffinity labeling. J Lipid Res 30:1281–1288

    PubMed  Google Scholar 

  • Kramer W, Bickel U, Buscher H-P, Gerok W, Kurz G (1982) Bile-salt-binding polypeptides in plasma membranes of hepatocytes revealed by photoaffinity labelling. Eur J Biochem 129:13–24

    Article  PubMed  Google Scholar 

  • Kramer W, Burckhardt G, Wilson FA, Kurz G (1983) Bile salt-binding polypeptides in brush-border membrane vesicles from small intestine revealed by photoaffinity labeling J Biol Chem 258:3623–3627

    Google Scholar 

  • Kramer W, Wess G, Schubert G, Bickel M, Girbig F, Gutjahr U, Müllner S, Baringhaus H, Fehnsen A, Glombik H, Schulz S, Petzinger E (1992) Liver specific drug-targeting by coupling to bile acids. J Biol Chem 267:18598–18604

    PubMed  Google Scholar 

  • Kristensen LO, Folke M (1984) Volume-regulatory K+ efflux during uptake of alanine in isolated rat hepatocytes. Biochem J 221:265–268

    PubMed  Google Scholar 

  • Kroker R, Anwer MS, Hegner D (1975) The age dependence of bile acid metabolism in rats. Acta Gerontol 7:539–545

    Google Scholar 

  • Kroker R, Anwer MS, Hegner D (1978a) A compartmental model for hepatic transport of taurocholic acid in isolated perfused rat liver. Naunyn-Schmiedeberg's Arch Pharmacol 303:287–293

    Google Scholar 

  • Kroker R, Anwer MS, Hegner D (1978b) The interaction of rifamycin SV with hepatic transport of taurocholic acid in the perfused rat liver. Naunyn-Schmiedeberg's Arch Pharmacol 302:323–327

    Article  Google Scholar 

  • Kroker R, Anwer AS, Hegner D (1978c) The lack of active bile acid transport in AS-30D hepatoma cells. Naunyn-Schmiedeberg's Arch Pharmacol 303:299–301

    Google Scholar 

  • Kroker R, Hegner D, Anwer MS (1980) Altered hepatobiliary transport of taurocholic acid in aged rats. Mechanism Age Dev 12:367–373

    Article  Google Scholar 

  • Kubin RH, Grodsky GM, Carbone JC (1960) Investigation of rose bengal conjugation. Proc Soc Exp Biol Med 104:650–653

    PubMed  Google Scholar 

  • Kuhn WF, Gewirtz DA (1988) Stimulation of taurocholate and glycocholate efflux from the rat hepatocyte by arginine vasopressin. Am J Physiol 254 (Gastrointest Liver Physiol 17):G732–G740

    PubMed  Google Scholar 

  • Kuhn WF, Heumann DM, Vlahevic ZR, Gewirtz GA (1990) Receptor mediated stimulation of taurocholate efflux from the rat hepatocyte and the ex vivo perfused rat liver. Eur J Pharmacol 175:117–128

    Article  PubMed  Google Scholar 

  • Kuipers F, Vonk RJ (1991) Biliary excretion of organic anions. In: Siegers C-P, Watkins JB (eds) Biliary excretion of drugs and other chemicals. Progress in pharmacology and clinical pharmacology Vol 8/4, Gustav Fischer Stuttgart New York, pp 215–238

    Google Scholar 

  • Kuipers F, Havinga R, Bosschieter H, Toorop GP, Hindriks FR, Vonk RJ (1985) Enterohepatic circulation in the rat. Gastroenterology 88:403–411

    PubMed  Google Scholar 

  • Kuipers F, Derksen JPT, Gerding A, Scherphof GL, Vonk RJ (1987) Biliary lipid secretion in the rat. The uncoupling of biliary cholesterol and phospholipid secretion from bile secretion by sulfated glycolithocholic acid. Biochim Biophys Acta 922:136–144

    PubMed  Google Scholar 

  • Kuipers F, Enserink M, Havinga R, Van der Steen ABM, Hardonk HJ, Fevery J, Vonk RJ (1988) Separate transport systems for biliary excretion of sulfated and unsulfated bile acids in the rat. J Clin Invest 81:1593–1598

    PubMed  Google Scholar 

  • Kuipers F, Enserink M, Havinga R, Van der Steen ABM, Hardonk MJ, Fevery J, Vonk RJ (1989a) Separate transport systems for biliary secretion of sulfated and unsulfated bile acids in the rat. In: Paumgartner G, Stiehl A, Gerok W (eds) Trends in bile acid research, Kluwer Academic Publishers, Lancaster, pp 143–152

    Google Scholar 

  • Kuipers F, Radominska A, Zimniak P, Little JM, Havinga R, Vonk RJ, Lester R (1989b) Defective biliary excretion of bile acid 3-O-glucuronides in rats with heriditary conjugated hyperbilirubinemia. J Lipid Res 30:1835–1846

    PubMed  Google Scholar 

  • Kukongviriyapan V, Stacey NH (1989) Comparison of uptake kinetics in freshly isolated suspensions and short-term primary cultures of rat hepatocytes. J Cell Physiol 140:491–497

    Article  PubMed  Google Scholar 

  • Kukongviriyapan V, Stacey NH (1990) Kinetics of taurocholate efflux from freshly isolated suspensions and primary cultures of rat hepatocytes. Hepatology 11:750–756

    PubMed  Google Scholar 

  • Kukongviriyapan V, Stacey (1991) Chemical-induced interference with hepatocellular transport. Role in cholestasis. Chem-Biol Interact 77:245–261

    Article  PubMed  Google Scholar 

  • Kunst M, Sies H, Akerboom TPM (1989) ATP-simulated uptake of S-(2,4-dinitrophenyl)glutathione by plasma membrane vesicles from rat liver. Biochem Biophys Acta 983:123–125

    PubMed  Google Scholar 

  • Kurisu H, Kamisaka K, Koyo T, Yamasuge S, Igarashi H, Maezawa H, Uesugi T, Tagaya O (1991) Organic anion transport study in mutant rats with autosomal recessive conjugated hyperbilirubinemia. Life Sci 49:1003–1011

    Article  PubMed  Google Scholar 

  • Kurz G, Müller M, Schramm U, Gerok W (1989) Identification and function of bile salt binding polypeptides of hepatocyte membrane. In: Petzinger E, Kinne RKH, Sies H (eds) Hepatic transport of organic substances, Springer-Verlag, Berlin, Heidelberg, pp 267–278

    Google Scholar 

  • Kutz K, Deres M (1984) Effect of cimetidine on the metabolism of cholephilic dyes in Gilbert's syndrome. Eur J Clin Pharmacol 27:227–232

    Article  PubMed  Google Scholar 

  • LaBelle EF, Singh SV, Srivastava SK, Awasthi YC (1986) Dinitrophenol glutathione efflux from human erythrocytes is primary active ATP-dependent transport. Biochem J 238:443–449

    PubMed  Google Scholar 

  • Lake JR, Van Dyke RW, Scharschmidt BF (1987) Effects of Na+ replacement and amiloride on ursodeoxycholic acid stimulated choleresis and biliary bicarbonate secretion. Am J Physiol 252 (Gastrointest Liver Physiol 15): G163–G169

    PubMed  Google Scholar 

  • Lake JE, Renner EL, Scharschmidt BF, Cragoe EJ, Hagey LR, Lambert KJ, Gurantz D, Hofmann AF (1988) Inhibition of Na+/H+ exchange in the rat is associated with decreased ursodeoxycholate hypercholeresis, decreased secretion of unconjugated ursodeoxycholate, and increased ursocholate glucuronidation. Gastroenterol 95:454–463

    Google Scholar 

  • Lang F, Stehle T, Häussinger D (1989) Water, K+, H+, lactate and glucose fluxes during cell volume regulation in perfused rat liver. Pflügers Arch 413:209–216

    Article  Google Scholar 

  • Lang F, Völkl H, Häussinger D (1990) General principles in cell volume regulation. In: Beyenbach KW (ed) Cell volume regulation, Comp Physiol, Vol 4, Karger Basel, pp 1–25

    Google Scholar 

  • Lang F, Volkl H, Woll E, Häussinger D (1991) Mechanisms of cell volume regulation in kidney and liver. In: Koide H, Endou H, Kurokawa K (eds) Cellular and molecular biology of the kidney. Karger, Basel, pp 237–245 (Contributions to nephrology, vol 95)

    Google Scholar 

  • Laperche Y, Oudea MC, Lostanlen D (1977) Toxic effects of indocyanine green on rat liver mitochondria. Toxicol Appl Pharmacol 41:377–387

    Article  PubMed  Google Scholar 

  • Laperche Y, Graillot C, Arondel J, Berthelot P (1979) Uptake of rifampicin by isolated rat liver cells. Interaction with sulfobromophthalein uptake and evidence for separate carriers. Biochem Pharmacol 28:2065–2069

    Article  PubMed  Google Scholar 

  • Laperche Y, Preaux AM, Berthelot P (1981) Two systems are involved in the sulfobromophthalein uptake by rat liver cells: one is shared with bile salts. Biochem Pharmacol 30:1333–1336

    Article  PubMed  Google Scholar 

  • Larrauri A, Castell JV, Garrido G, Berenguer J, Gomez-Lechón MY (1992) S-adenosyl-L-methionine reverses the cholestatic effect of ethinylestradiol in rat hepatocytes by increasing its catabolism. Cell Biol Toxicol 8:13–26

    Article  PubMed  Google Scholar 

  • Lauterberg BH, Adams JD, Mitchell JR (1984) Hepatic glutathione homeostasis in the rat: efflux accounts for glutathione turnover. Hepatology 4:586–590

    PubMed  Google Scholar 

  • Lebsanft J, Luippold G, Schwarz LR (1986) Uptake of taurocholate by isolated γ-glutamyltranspeptidase positive, putatively preneoplastic hepatocytes from 2-acetylaminofluorene treated rats. Carcinogenesis 7:1925–1926

    PubMed  Google Scholar 

  • Leevy CM, Stein SW, Cherrick GR, Davidson CS (1959) Indocyanine green clearance: a test of liver excretory function. Clin Res 7:290

    Google Scholar 

  • Leevy CM, Bender J, Silverberg M, Naylor J (1963) Physiology of dye extraction by the liver: comparative studies on sulfobromophthalein and indocyanine green. Ann NY Acad Sci 111:161–175

    PubMed  Google Scholar 

  • Leevy CM, Smith F, Longueville J, Paumgartner G, Howard MM (1967) Indocyanine green clearance as a test for hepatic function. Evaluation by dichromatic ear densitometry. J Amer Med Assoc 200:148–152

    Article  Google Scholar 

  • Leevy CM, Popper H, Sherlock S (1978) Functional evaluation of the liver. In: Leevy CM, Popper H, Sherlock S (eds) Diseases of the liver and biliary tract. Standardization of nomenclature and diagnostic criteria, and diagnostic methodology, chap XIII, Year Book Medical, Chicago, pp 111–151

    Google Scholar 

  • Leszczynska A (1981) Effect of reduced glutathione (GSH) on pharmacokinetics and distribution of rifamycin SV in rats. Biochem Pharmacol 30:71–76

    Article  PubMed  Google Scholar 

  • Leuschner U, Fischer H, Kurtz W, Güldütuna S, Hübner K, Hellstern A, Gatzen M, Leuschner M (1989) Ursodeoxycholic acid in primary biliary cirrhosis: results of a controlled double-blind trial. Gastroenterology 97:1268–1274

    PubMed  Google Scholar 

  • Levi AJ, Gatmaitan Z, Arias IM (1969) Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulfobromophthalein, and other anions. J Clin Invest 48:2156–2167

    PubMed  Google Scholar 

  • Levi AJ, Gatmaitan Z, Arias IM (1970) Deficiency of hepatic organic anion-binding protein, impaired organic anion uptake by liver and “physiologic” jaundice in newborn monkeys. New Engl J Med 2843:1136–1139

    Google Scholar 

  • Levine WG (1981) Biliary excretion of drugs and other xenobiotics. Prog Drug Res 25:361–420

    PubMed  Google Scholar 

  • Levy D, Cheng, S (1980) Photoaffinity labeling of anion transport components in hepatocyte plasma membranes. Ann NY Acad Sci 346:232–243

    PubMed  Google Scholar 

  • Levy D, Von Dippe P, Amoui M, Stolz A, Stellwagen R, Alves C (1991) The sodium-dependent bile acid transporter is a bifunctional protein that expresses carcinogen epoxide hydrolase activity. Hepatology 14:136A

    Google Scholar 

  • Levy D, Amoui M, Stellwagen R, Stolz A, Von Dippe P (1992) Transfection of microsonal expoxide hydrolase cDNA into cos-7 cells results in the expression of Na+ independent bile acid transport. XII International Conference on Bile Acids. FALK Symposium No 68. Bile acids and the hepatobiliary system. From Basic Science to Clinical Practice. Basel 12.–14.10.1992 Abstract 39

    Google Scholar 

  • Leyhausen G, Müller WE (1981) Liver cytosol binding may not be responsible for hepatic uptake of biliary contrast agents. Arch Int Pharmacodyn Ther 252:4–16

    PubMed  Google Scholar 

  • Li E, Demmer LA, Sweetser DA, Ong DE, Gordon JI (1986) Rat cellular retinol-binding protein II: Use of a cloned cDNA to define its primary structure, tissue-specific expression, and developmental regulation. Proc Natl Acad Sci USA 83:5779–5783

    PubMed  Google Scholar 

  • Lillienau J, Borgström B (1991a) Bacterial deconjugation and enterohepatic circulation of norursocholic acid conjugates in rats. Am J Physiol 261 (Gastrointest Liver Physiol 24): G1065–G1071

    PubMed  Google Scholar 

  • Lillienau J, Borgström B (1991b) Enterohepatic circulation in the rat of norursocholic acids and their effects on biliary flow and lipid secretion. Am J Physiol 261 (Gastrointest Liver Physiol 24): G1057–G1064

    PubMed  Google Scholar 

  • Lillienau J, Hagey LR, Borgström B (1991) Hepatic and ileal transport and effect on biliary secretion of norursocholic acid and its conjugates in rats. Am J Physiol 261 (Gastrointest Liver Physiol 24): G1057–G1064

    PubMed  Google Scholar 

  • Lindstedt S (1957) The turnover of cholic acid in man. Acta Physiol Scand 40:1–8

    Google Scholar 

  • Lindros KO, Pentillä KE (1985) Digitonin-collagenase perfusion for efficient separation of periportal and perivenous hepatocytes. Biochem J 228:757–760

    PubMed  Google Scholar 

  • Little JM, Zimniak P, Radominska A, Lester R (1987) Hyodeoxycholate-6-O-glucuronide cannot be quantitated with 3α-hydroxysteroid dehydrogenase. J Lipid Res 28:1370–1372

    PubMed  Google Scholar 

  • Litwack G, Ketterer B, Arias IM (1971) Ligandin: A hepatic protein which binds steroids, carcinogens and a number of exogenous anions. Nature 234:466–467

    Article  PubMed  Google Scholar 

  • Liu QR, López-Corcuera B, Nelson H, Mandiyan S, Nelson N (1992) Cloning and expression of a cDNA encoding the transporter of taurine and β-alanine in mouse brain. Proc Natl Acad Sci USA 89:12145–12149

    PubMed  Google Scholar 

  • Lücke H, Stange G, Kinne R, Murer H (1978) Taurocholate sodium cotransport by brush-border membrane vesicles isolated from rat ileum. Biochem J 174:951–958

    PubMed  Google Scholar 

  • Lund E, Boberg KM, Byström S, Ölund J, Carlström K, Björkhem I (1991) Formation of novel C21-bile acids from cholesterol in the rat. J Biol Chem 266:4929–4937

    PubMed  Google Scholar 

  • Lunazzi GL, Tiribelli C, Gazzin B, Sottocasa GL (1982) Further studies on bilitranslocase, a plasma membrane protein involved in hepatic organic anion uptake. Biochim Biophys Acta 685:117–122

    PubMed  Google Scholar 

  • MacLeod RJ, Hamilton JR (1990) Regulatory volume increase in mammalian jejunal villus cells is due to bumetanide-sensitive NaKCl2 cotransport. Am J Physiol 258 (Gastrointest Liver Physiol 21): G665–G674

    PubMed  Google Scholar 

  • Magnusson I, Einarsson B, Angelin R, Bergström K, Thulin L (1989) Effects of somatostatin on hepatic bile formation. Gastroenterology 96:206–212

    PubMed  Google Scholar 

  • Mahadevan S, Sauer F (1974) Effect of trypsin, phospholipases, and membrane-impermeable reagents on the uptake of palmitic acid by isolated rat liver cells. Arch Biochem Biophys 164:185–193

    Article  PubMed  Google Scholar 

  • Makowske M, Christensen HN (1982a) Contrast in transport systems for anionic amino acids in hepatocytes and in a hepatoma cell line HTC. J Biol Chem 257:5663–5670

    PubMed  Google Scholar 

  • Makowske M, Christensen HN (1982b) Hepatic transport system interconverted by protonation from service for neutral to service for anionic amino acids. J Biol Chem 257:14635–12638

    PubMed  Google Scholar 

  • Mandel LJ (1981) Stoichiometry and coupling of active transport to oxygen metabolism in epithelial tissues. Am J Physiol 240 (Renal Fluid Electrolyte Physiol 9): F357–F371

    PubMed  Google Scholar 

  • Mannervik B, Danielson KH (1988) Glutathione transferase — structure and catalytic activity. CRC Critical Reviews in Biochemistry 23:283–337

    PubMed  Google Scholar 

  • Mannervik B, Jensson H (1982) Binary combinations of four proteins subunits with different catalytic specificities explain the relationship between six basic glutathione-S-transferases in rat liver cytosol. J Biol Chem 257:9909–9912

    PubMed  Google Scholar 

  • Mannervik B, Ålin B, Guthenberg C, Jensson H, Tahir MK, Warholm M, Jöernvall H (1985) Identification of three classes of cytosolic glutathione transferases common to several mammalian species. Correlation between structural data and enzymatic properties. Proc Natl Acad Sci USA 82:7202–7206

    PubMed  Google Scholar 

  • Marchegiano P, Carubbi F, Tiribelli C, Amarri S, Stebel M, Lunazzi GC, Levy D, Bellentani S (1992) Transport of sulfobromophthalein and taurocholate in HepG2 cell line in relation to the expression of membrane carrier protein. Biochem Biophys Res Commun 183:1203–1208

    Article  PubMed  Google Scholar 

  • Marcus SN, Schteingart CD, Marquez ML, Hofmann AF, Xia Y, Steinbach JH, Ton-Nu H-T, Lillienau J, Angelotti MA, Schmassmann A (1991) Active absorption of conjugated bile acids in vivo. Kinetic parameters and molecular specificity of the ileal transport system in the rat. Gastroenterology 100:212–221

    PubMed  Google Scholar 

  • Margolis RN, Taylor SI, Seminara D, Hubbard AL (1988) Identification of pp120, an endogenous substrate for the hepatocyte insulin receptor tyrosine kinase, as an integral membrane glycoprotein of the bile canalicular domain. Proc Natl Acad Sci USA 85:7256–7259

    PubMed  Google Scholar 

  • Margolis RN, Schell MJ, Taylor SI, Hubbard AL (1990) Hepatocyte plasma membrane ecto-ATPase (pp120/HA4) is a substrate for tyrosine kinase activity of the insulin receptor. Biochem Biophys Res Commun 166:562–566

    Article  PubMed  Google Scholar 

  • Marin JJG, Serrano MA, El-Mir MY, Eleno N, Boyd CAR (1990) Bile acid transport by basal membrane cells vesicles of human term placental trophoblast. Gastroenterology 99:1431–1438

    PubMed  Google Scholar 

  • Marinovic Y, Glasinovic J-C, Semelle B, Boivieux J-F, Erlinger S (1977) Facilitation of hepatic uptake of phenol 3,6-dibromphthalein disulfonate by taurocholate. Am J Physiol 232 (Endocrinol Metab Gastrointest Physiol 1): E560–E564

    PubMed  Google Scholar 

  • Martin JF, Mikulecky N, Blaschke FF, Waggoner JG, Vergalla J, Berk PD (1975) Differences between plasma indocyanine green disappearance rate of normal men and women. Proc Soc Exp Biol Med 150:612–617

    PubMed  Google Scholar 

  • Matarese V, Bernlohr DA (1988) Purification of murine adipocyte lipid-binding protein. Characterization as a fatty acid and retinoic acid-binding protein. J Biol Chem 263:14544–14551

    PubMed  Google Scholar 

  • Matarese V, Stone RL, Waggoner DW, Bernlohr DA (1989) Intracellular fatty acid trafficking and the role of cytosolic lipid binding proteins. Prog Lipid Res 28:245–272

    Article  PubMed  Google Scholar 

  • Matern H, Lappas N, Matern S (1991) Isolation and characterization of hyodeoxycholic acid UDP-glucuronyltransferase from human liver. Eur J Biochem 200:393–400

    Article  PubMed  Google Scholar 

  • McCaughan GW, Wickson JE, Creswick PF, Gorell MD (1990) Identification of the bile canalicular cell surface molecule Gp 110 as the ectopeptidase dipeptidyl peptidase IV: an analysis by tissue distribution, purification and N-terminal amino acid sequence. Hepatology 11:534–544

    PubMed  Google Scholar 

  • McDougall AC, Rose JA, Grahame-Smith DG (1975) Penetration of 14C-labelled rifampicin into primate peripheral nerves. Experientia 31:1068–1069

    PubMed  Google Scholar 

  • Medzihradszky KF, Gibson BW, Kaur S, Yu Z, Medzihradszky D, Burlingame AL, Bass NM (1992) The primary structure of fatty acid binding protein from nurse shark liver. Structural and evolutionary relationship to the mammalian fatty-acid-binding protein family. Eur J Biochem 203:327–339

    Article  PubMed  Google Scholar 

  • Meier PJ, Meier-Abt AS, Barrett C, Boyer JL (1984) Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier. J Biol Chem 259:10614–10622

    PubMed  Google Scholar 

  • Meier PJ (1987) Transport processes at the canalicular surface of rat hepatocytes. In: Reutter W, Popper H, Arias IM, Heinrich PC, Keppler D, Landmann L (eds) Trends in bile acid research, Kluwer Academic Publishers, Dordrecht, pp 127–142

    Google Scholar 

  • Meier PJ (1988) Transport polarity of hepatocytes. Sem Liver Dis 8:293–307

    Google Scholar 

  • Meier PJ (1989) The bile salt secretory polarity of hepatocytes. J Hepatol 9:124–129

    Article  PubMed  Google Scholar 

  • Meier PJ (1991) Biliary excretion of bile acids. In: Siegers C-P, Watkins JB (eds) Biliary excretion of drugs and other chemicals. Gustav Fischer Verlag, Stuttgart, New York, pp 159–182 (Progress in pharmacology and clinical pharmacology Vol 8/4)

    Google Scholar 

  • Meier PJ, Knickelbein R, Moseley RH, Dobbins JW, Boyer JL (1985) Evidence for carrier-mediated chloride/bicarbonate exchange in canalicular rat liver plasma membrane vesicles. J Clin Invest 75:1256–1263

    PubMed  Google Scholar 

  • Meier PJ, Valantinas J, Hugentobler G, Rahm I (1987a) Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles. Am J Physiol 253 (Gastrointest Liver Physiol 16): G461–G468

    PubMed  Google Scholar 

  • Meier PJ, Meier-Abt ASt, Boyer JL (1987b) Properties of the canalicular bile acid transport system in rat liver. Biochem J 242:465–469

    PubMed  Google Scholar 

  • Meijer DKF (1987) Current concepts on hepatic transport of drugs. J Hepatol 4:259–268

    Article  PubMed  Google Scholar 

  • Meijer DKF, Vonk RJ, Scholtens EJ, Levine WG (1976) The influence of dehydrocholate on hepatic uptake and biliary excretion of 3H-taurocholate and 3H-ouabain. Drug Metab Dis 4:1–7

    Google Scholar 

  • Meijer DKF, Vonk RJ, Keulemans K, Weitering JG (1977) Hepatic uptake and biliary excretion of dibromosulphthalein. Albumin dependence, influence of phenobarbital and nafenopin pretreatment and the role of Y and Z protein. J Pharmacol Exp Ther 202:8–21

    PubMed  Google Scholar 

  • Meijer DKF, Weitering JG, Bajama BL, Vermeer GA (1983a) Formation of a metabolite of dibromosulfophthalein (DBSP) in man. Eur J Clin Pharmacol 24:703–709

    Article  PubMed  Google Scholar 

  • Meijer DKF, Weitering JG, Vermeer GA (1983b) Pharmacokinetics of biliary excretion in man. V. Dibromosulfophthalein. Eur J Clin Pharmacol 24:549–556

    Article  PubMed  Google Scholar 

  • Meijer DKF, Blom A, Weitering JG, Hornsveld R (1984) Pharmakokinetics of the hepatic transport of organic anions. Influence of extra-and intracellular binding on uptake storage of dibromosulfophthalein and interaction with indocyanine green. J Pharmacokin Biopharm 12:43–65

    Article  Google Scholar 

  • Meijer DKF, Mol WEM, Müller M, Kurz G (1990) Carrier-mediated transport in the hepatic distribution and elimination of drugs, with special reference to the category of organic cations. J Pharmacokin Biopharm 18:35–70

    Article  Google Scholar 

  • Meijer DKF, Groothuis GMM (1991) Hepatic transport of drugs and proteins. In: McIntyre N, Benhamou JP, Bircher J, Rizetto M, Rodes J (eds) Oxford textbook of clinica hepatology, vol 1. Oxford University Press, pp 40–78

    Google Scholar 

  • Mesa VA, DeGroote JD, Fevery J (1990) Increase in the relative amount of bilirubin diconjugates in phthaleins and indocyanine green. J Hepatol 10:35–40

    Article  PubMed  Google Scholar 

  • Metcalfe HK, Monson JO, Welch SG, Cohen RD (1986) Inhibition of lactate removal by ketone bodies in rat liver. Evidence for a quantitatively important role of the plasma membrane lactate transporter in lactate metabolism. J Clin Invest 78:743–747

    PubMed  Google Scholar 

  • Metcalfe HK, Monson JP, Cohen RD, Padgham C (1988) Enhanced carrier-mediated lactate entry into isolated hepatocytes from starved and diabetic rats. J Biol Chem 263:19505–19509

    PubMed  Google Scholar 

  • Meuwissen JATP (1975) Binding proteins and hepatic uptake and transport of bilirubin. Digestion 12:276

    Google Scholar 

  • Meuwissen JATP, Ketterer B, Heirwegh KPM (1977) Role of soluble binding proteins in overall hepatic transport of bilirubin. In: Berk PD, Berlin NI (eds) Chemistry and physiology of bile pigmens. Fogarty International Center Proc No 35, Natl Inst Health Bethesda pp 323–337

    Google Scholar 

  • Mia AS, Gronwell RR, Cornelius CE (1970) Unconjugated and conjugated bilirubin transport in normal and mutant Corriedale sheep with Dubin-Johnson syndrome. Proc Soc Exp Biol Med 135:33–37

    PubMed  Google Scholar 

  • Miccio M, Lunazzi GC, Gazzin B, Sottocasa GL (1990) Reconstitution of sulfobromophthalein transport in erythrocyte membranes induced by bilitranslocase. Biochim Biophys Acta 1023:140–142

    PubMed  Google Scholar 

  • Mills CO, Iqbal S, Elias E (1986) Synthesis and biliary excretion of tyrosine-conjugated bile salts in wistar rats. Biochim Biophys Acta 876:667–676

    PubMed  Google Scholar 

  • Min AD, Johansen KL, Campbell CG, Wolkoff AW (1991a) Role of chloride and intracellular pH on the activity of the rat hepatocyte organic anion transporter. J Clin Invest 87:1496–1502

    PubMed  Google Scholar 

  • Min AD, Goeser T, Lin R, Campbell CG, Novikoff PM, Wolkoff AW (1991b) Organic anion transport in HepG2 cells: absence of the high-affinity, chloride dependent transporter. Hepatology 14:1217–1223

    Article  PubMed  Google Scholar 

  • Minder E, Paumgartner G (1979) Disparate Na+-requirement of taurocholate and indocyanine green uptake by isolated hepatocytes. Experientia 35:888–890

    Article  PubMed  Google Scholar 

  • Mishkin S, Stein L, Gatmaitan Z, Arias IM (1972) The binding of fatty acids to cytoplasmic proteins: binding to Z protein in liver and other tissues of the rat. Biochem Biophys Res Commun 47:997–1003

    Article  PubMed  Google Scholar 

  • Møller J, Sheikh MI (1983) Renal organic anion transport system: pharmacological, physiological and biochemical aspects. Pharmacol Rev 34:315–358

    Google Scholar 

  • Monson JP, Smith JA, Cohen RD, Iles RA (1982) Evidence for a lactate transporter in the plasma membrane of the rat hepatocyte. Clin Sci 62:411–420

    PubMed  Google Scholar 

  • Moroi Y, Matuura R, Hisadome T (1985) Bilirubin in aqueous solution. Absorption spectrum, aqueous solubility, and dissociation constants. Bull Chem Soc Jpn 58:1426–1431

    Google Scholar 

  • Moroi Y, Kitagawa M, Itoh H (1992) Aqueous solubility and acidity constants of cholic, deoxycholic, chenodeoxycholic, and ursodeoxycholic acids. J Lipid Res 33:49–53

    PubMed  Google Scholar 

  • Moseley RH, Ballatori N, Smith DJ, Boyer JL (1987) Ursodeoxycholate stimulates Na+-H+ exchange in rat liver basolateral plasma membrane vesicles. J Clin Invest 80:684–690

    PubMed  Google Scholar 

  • Müller M, Ishikawa T, Berger U, Klünemann C, Lucka L, Schreyer A, Kannich C, Reutter W, Kurz G, Keppler D (1991) ATP-dependent transport of taurocholate across the hepatocyte canalicular membrane mediated by a 110-kDa glycoprotein binding ATP and bile salts. J Biol Chem 266:18920–18926

    PubMed  Google Scholar 

  • Müller N, Petzinger E (1988) Hepatocellular uptake of aflatoxin B1 by nonionic diffusion. Inhibition of bile acid transport by interference with membrane lipids. Biochim Biophys Acta 938:334–344

    PubMed  Google Scholar 

  • Müller WE (1978) The binding of intravenous and oral biliary contrast agents to human and bovine serum albumin. Naunyn-Schmiedeberg's Arch Pharmacol 302:227–233

    Article  Google Scholar 

  • Müller WE, Stillbauer AE (1980) Liver slice uptake of intravenous and oral biliary contrast media. Arch Inter Pharmacodyn Ther 246:187–204

    Google Scholar 

  • Muraca M, De Groote J, Fevery J (1983) Sex differences of the hepatic conjugation of bilirubin determine its maximal biliary excretion in non-anaesthetized male and female rats. Clin Sci 64:85–90

    PubMed  Google Scholar 

  • Murer H, Burckhardt G (1983) Membrane transport of organic anions across epithelia of mammalian small intestine and kidney proximal tubule. Rev Physiol Biochem Pharmacol 96:1–52

    PubMed  Google Scholar 

  • Myszka DG, Swenson RP (1991) Identification by photoaffinity labeling of fatty acid-binding protein as a potential warfarin receptor in rat liver. J Biol Chem 266:20725–20731

    PubMed  Google Scholar 

  • Nelson PJ, Dean GE, Aronson PS, Rudnick G (1983) Hydrogen ion cotransport by the renal brush border glutamate transporter. Biochem 22:5429–5463

    Google Scholar 

  • Neubert R (1989) Ion pair transport across membranes. Pharmaceut Res 6:743–747

    Article  Google Scholar 

  • Nijssen HMJ (1991) Sinusoidal efflux of organic anions in the liver. Profeschrift (Thesis), Rijksuniversiteit Groningen

    Google Scholar 

  • Njissen HMJ, Pijning T, Meijer DKF, Groothuis GMM (1991) Mechanistic aspects of the uptake and sinusoidal efflux of dibromosulfophthalein in the isolated perfused rat liver. Biochem Pharmacol 42:1997–2002

    Article  PubMed  Google Scholar 

  • Nijssen HMJ, Pijning T, Meijer DKF, Groothuis GMM (1992) Influence of albumin on the net sinusoidal efflux of the organic anion dibromosulfophthalein from rat liver. Hepatology 15: 302–309

    PubMed  Google Scholar 

  • Nishida T, Gatmaitan Z, Che M, Arias IM (1991) Rat liver canalicular membrane vesicles contain an ATP-dependent bile acid transport system. Proc Natl Acad Sci USA 88:6590–6594

    PubMed  Google Scholar 

  • Nord EP, Wright SH, Kippen I, Wright EM (1983) Specificity of the Na+-dependent monocarboxylic acid transport pathway in rabbit renal brush border membranes. J Membr Biol 72:213–221

    Article  PubMed  Google Scholar 

  • Nosslin B (1963) Bromsulfphalein retention and jaundice due to unconjugated bilirubin following treatment with male fern extract. Scand J Clin Lab Invest 15:206–212 (Suppl 69)

    PubMed  Google Scholar 

  • Novak DA, Ryckman F, Suchy FJ (1989) Taurocholate transport by basolateral plasma membrane vesicles isolated from human liver. Hepatology 10:447–453

    PubMed  Google Scholar 

  • Noy N, Donelly T, Zakim D (1986) Physical-chemical model for the entry of water-insoluble compounds into cells. Studies of fatty acid uptake by the liver. Biochem 25:2013–2021

    Article  Google Scholar 

  • Noy N, Donelly TM, Cooper RB, Zakim D (1989) The physical-chemical basis for sex-related differences in uptake of fatty acids by the liver. Biochim Biophys Acta 1003:125–130

    PubMed  Google Scholar 

  • Nyhlin H, Merrick MV, Eastwood MA, Brydon WG (1983) Evaluation of ileal function using 23-seleno-25-homotaurocholate: a γ-labelled conjugated bile acid. Initial clinical assessment. Gastroenterol 84:63–68

    Google Scholar 

  • Ockner RK, Manning JA, Popenhausen RB, Ho WKL (1972) A binding protein for fatty acids in cytosol of intestinal mucosa, liver, myocardium and other tissues. Science (Wash. D.C.) 177:56–58

    Google Scholar 

  • Ockner RK, Burnett DA, Lysenko N, Manning JA (1979) Sex differences in long chain fatty acid utilization and fatty acid binding protein concentration in rat liver. J Clin Invest 64:172–181

    PubMed  Google Scholar 

  • Offner GD, Troxler RF, Brecher P (1986) Characterization of a fatty acid-binding protein from rat heart. J Biol Chem 261:5584–5589

    PubMed  Google Scholar 

  • Offner GD, Brecher P, Sawlivich WB, Costello CE, Troxler RF (1988) Characterization and amino acid sequence of a fatty acid-binding protein from human heart. Biochem J 252:191–198

    PubMed  Google Scholar 

  • O'Grady SM, Palfrey HC, Field M (1987) Characteristics and functions of Na-K-Cl cotransport in epithelial tissues. Am J Physiol 253 (Cell Physiol 22): C177–C192

    PubMed  Google Scholar 

  • Ohkuma S, Tamura J, Kuriyama K, Takino T (1981) Characteristics of taurine transport in freshly isolated rat hepatocytes. Jpn Pharmacol 31:1061–1070

    Google Scholar 

  • Ohkuma S, Kuriyama K (1982) Uptake of cholic acid by freshly isolated rat hepatocytes: presence of a common carrier for bile acid transports. Steroids 39:7–19

    Article  PubMed  Google Scholar 

  • Ohkuma S, Tamura J, Kuriyama K (1983) Characteristics of cholic acid uptake in primary cultured hepatocytes. Steroids 42:205–215

    Article  PubMed  Google Scholar 

  • Ohkuma S, Tamura J, Kuriyama K (1984a) Roles of endogenous and exogenous taurine and glycine in the formation of conjugated bile acids: analysis using freshly isolated and primary cultured rat hepatocytes. Jpn J Pharmacol 35:347–358

    PubMed  Google Scholar 

  • Ohkuma S, Tamura J, Kuriyama K, Mukainaka T (1984b) Characteristics of taurine transport in rat hepatocytes in primary culture. Cell Biochem Funct 2:71–77

    Article  PubMed  Google Scholar 

  • Ohta M, Kitani K (1990) Age-dependent decrease in hepatic uptake of taurocholic acid resembles that for ouabain. Biochem Pharmacol 39:1223–1228

    Article  PubMed  Google Scholar 

  • Okolicsanyi L, Lirussi F, Nassuato G, Orlando R, Bussolon R, Dal Brun G (1980) Influence of rifamycin SV on bile acid metabolism in rats. Naunyn-Schmiedeberg's Arch Pharmacol 313:171–174

    Article  Google Scholar 

  • Okolicsanyi L, Lirussi F, Strazzabosco M, Jemmolo RM, Orlando R, Nassuato G, Muraca M, Crepaldi G (1986) The effect of drugs on bile flow and composition. An overview. Drugs 31:430–448

    PubMed  Google Scholar 

  • Olinger EJ, Malham L (1980) Correlation of the effects of colchicine on bile acid secretion and microtubule depolymerization in isolated rat hepatocytes. Gastroenterol 79:1041 (Abstract)

    Google Scholar 

  • Olivecrona T, Sjövall J (1959) Bile acids in rat portal blood. Bile acids and Steroids 77. Acta Physiol Scand 46:284–290

    PubMed  Google Scholar 

  • O'Maille ERL, Richard TG, Short AH (1967) The influence of conjugation of cholic acid on its uptake and secretion: hepatic extraction of taurocholate and cholate in the dog. J Physiol 189:337–350

    PubMed  Google Scholar 

  • O'Maille ERL, Richards TG, Short AH (1969) Observations on the elimination rates of single injections of taurocholate and cholate in the dog. Q Jl exp Physiol 54:296–310

    Google Scholar 

  • O'Maille ERL, Kozmary SV, Hofmann AF, Gurantz D (1984) Differing effects of norcholate and cholate on bile flow and biliary lipid secretion in the rat. Am J Physiol 246 (Gastrointest Liver Physiol 9): G67–G71

    PubMed  Google Scholar 

  • Ookhtens M, Corvasce C, Hobdy K, Aw TY, Kaplowitz N (1985) Sinusoidal efflux of glutathione in the perfused rat liver. J Clin Invest 75:258–265

    PubMed  Google Scholar 

  • Ookhtens M, Lyon I, Fernandez-Checa J, Kaplowitz N (1988) Inhibition of glutathione efflux in the perfused rat liver and in isolated hepatocytes by organic anions and bilirubin kinetics, sidedness and molecular forms. J Clin Invest 82:608–616

    PubMed  Google Scholar 

  • Oppe TE, Gibbs IE (1959) Sulfobromophthalein excretion in premature infants. Arch Dis Child 34:125–130

    PubMed  Google Scholar 

  • Orzes N, Bellentani S, Aldini R, Simoni P, Ferretti I, Lunazzi GC, Sottocasa GL, Tiribelli C (1985) Sex differences in the hepatic uptake of sulfobromophthalein in the rat. Clin Sci 69:587–593

    PubMed  Google Scholar 

  • Ostrow JD (ed) (1986) Bile pigments and jaundice, New York, Marcel Dekker

    Google Scholar 

  • Ostrow JD, Celic L, Mukerjee P (1988) Molecular and micellar association in the pH-dependent stable and metastable dissolution of unconjugated bilirubin by bile salts. J Lipid Res 29:335–348

    PubMed  Google Scholar 

  • Ottallah M, Honscha W, Wüllner S, Schuh K, Petzinger E (1992) Topological localization of protein disulfide isomerase and of hepatic binding proteins for bumetanide in 2D-gel electrophoresis. Biol Chem Hoppe Seyler 373:880 (Abstract)

    Google Scholar 

  • Oude-Elferink RPJ, De Haan J, Lambert KJ, Hagey LR, Hofmann AF, Jansen PLM (1989a) Selective hepatobiliary transport of nordeoxycholate side chain conjugates in mutant rats with a canalicular transport defect. Hepatology 9:861–865

    PubMed  Google Scholar 

  • Oude-Elferink RPJ, Ottenhoff R, Liefting W, de Haan J, Jansen PLM (1989b) Hepatobiliary transport of glutathione and glutathione conjugate in rats with heriditary hyperbilirubinemia. J Clin Invest 84:476–483

    PubMed  Google Scholar 

  • Palmer KR, Gurantz D, Hofmann AF, Clayton LM, Hagey LR, Cecchetti S (1987) Hypercholeresis induced by norchenodeoxycholate in biliary fistula rodent. Am J Physiol 252:G219–G228

    PubMed  Google Scholar 

  • Palmieri, F, Stipani I, Iacobazzi V (1979) The transport of L-cysteinesulfinate in rat liver mitochondria. Biochim Biophys Acta 555, 536–544

    Google Scholar 

  • Park R, Arieff AI, Leach W, Lazarowitz VC (1982) Treatment of lactic acidosis with dichloroacetate in dogs. J Clin Invest 70:853–862

    PubMed  Google Scholar 

  • Passamonti S, Sottocasa GL (1988) The quinoid form is the molecular requirement for recognition of phthaleins by the organic anion carrier at the sinusoidal plasma membrane level in the liver. Biochim Biophys Acta 943:119–125

    PubMed  Google Scholar 

  • Passamonti S, Sottocasa GL (1989) The role of sulfhydryl groups in sulfobromophthalein transport in rat liver plasma membrane vesicles. Biochim Biophys Acta 979:294–298

    PubMed  Google Scholar 

  • Passamonti S, Sottocasa GL (1990) The sulfhydryl groups responsible for bilitranslocase transport activity respond to the interaction of the carrier with bilirubin and functional analoques. Biochim Biophys Acta 1021:9–12

    PubMed  Google Scholar 

  • Paumgartner G (1975) The handling of indocyanine green by the liver. Schweiz Med Wschr 105, Suppl 17, 1–30

    Google Scholar 

  • Paumgartner G, Reichen J (1974) Different pathways for hepatic uptake of taurocholate and indocyanine green. Gastroenterology 67:818 (Abstract)

    Google Scholar 

  • Paumgartner G, Reichen J (1975) Different pathways for hepatic uptake of taurocholate and indocyanine green. Experientia 31:306–307

    Article  PubMed  Google Scholar 

  • Paumgartner G, Reichen J (1976) Kinetics of hepatic uptake of unconjugated bilirubin. Clin Sci Molec Med 51:169–176

    Google Scholar 

  • Paumgartner G, Longueville J, Leevy CM (1967) Bestimmung der Indocyaninclearance mittels dichromatischer Ohrdensitometrie zur Beurteilung der Leberfunktion. Wien Z Inn Med 48:227–235

    PubMed  Google Scholar 

  • Paumgartner G, Longueville J, Kraines R, Leevy CM (1968) Evidence for an active transport mechanism in hepatic dye uptake. Gastroenterology 54:163 (Abstract)

    Google Scholar 

  • Paumgartner G, Huber J, Grabner G (1969) Kinetik der hepatischen Farbstoffaufnahme von Indocyaningrün. Einfluß von Bilirubin und Natriumglycocholat. Experientia 25:1219–1223

    Article  PubMed  Google Scholar 

  • Paumgartner G, Probst P, Kraines R, Leevy CM (1970) Kinetics of indocyanine green removal from blood. Ann NY Acad Sci 170:134–147

    Google Scholar 

  • Paumgartner G, Herz R, Sauter K, Schwarz HP (1974) Taurocholate excretion and bile formation in the isolated perfused rat liver. Naunyn-Schmiedeberg's Arch Pharmacol 285:165–174

    Article  Google Scholar 

  • Peeters RA, In't Groen MAPM, De Moel MP, Van Moerkerk HTP, Veerkamp JH (1989) The binding affinity of fatty acid-binding proteins from human, pig and rat liver for different fluorescent fatty acids and other ligands. Int J Biochem 21:407–418

    Article  PubMed  Google Scholar 

  • Peinado J, Sies H, Akerboom TPM (1989) Hepatic lipoate uptake. Arch Biochem Biophys 273:389–395

    Article  PubMed  Google Scholar 

  • Pellegrino JM, Roma MG, Mottino AD, Garay EAR (1991) Hepatic handling of photoirradiated bilirubin. A study in isolated perfused wistar rat liver. Biochim Biophys Acta 1074:25–30

    PubMed  Google Scholar 

  • Persico M, Sottocasa GL (1987) Measurement of sulfobromophthalein uptake in isolated rat hepatocytes by a direct photometric method. Biochim Biophys Acta 930:129–134

    Article  PubMed  Google Scholar 

  • Peterson RE, Fujimoto JM (1973) Biliary excretion of morphin-3-glucuronide and morphin-3-ethereal sulfate by different pathways in the rat. J Pharmacol Exp Ther 184:409–418

    PubMed  Google Scholar 

  • Petzinger E (1981) Competitive inhibition of the uptake of demethylphalloin by cholic acid in isolated hepatocytes: Evidence for a transport competition rather than a binding competition. Naunyn-Schmiedeberg's Arch Pharmacol 316:345–349

    Article  Google Scholar 

  • Petzinger E (1984) Die Bedeutung des Gallensäuretransportes für die Aufnahme von Fremdstoffen in Leberparenchymzellen. (On the role of bile acid transport for the uptake of xenobiotics into liver parenchymal cells.) Habilitationsschrift, Justus-Liebig-Universität, Gießen, FB 18.

    Google Scholar 

  • Petzinger E (1989) Uptake of xenobiotics by the bile acid transport system in the liver: relationship between the organic anion transport systems in the kidney and the liver. In: Petzinger E, Kinne RKH, Sies H (eds) Hepatic transport of organic substances, Springer Verlag Berlin-Heidelberg-New York, pp 326–343

    Google Scholar 

  • Petzinger E (1991) Canalicular transport: experimental models, morphology requirements and transport processes. In: Siegers C-P, Watkins III JB (eds) Biliary excretion of drugs and other chemicals, Progress in Pharmacology and Clinical Pharmacology Vol 8/4, Gustav Fischer Verlag Stuttgart-New York, pp 49–87

    Google Scholar 

  • Petzinger E, Frimmer M (1980) Comparative studies on the uptake of 14C-bile acids and 3H-demethylphalloin in isolated rat liver cells. Arch Toxicol 44:127–135.

    Article  PubMed  Google Scholar 

  • Petzinger E, Frimmer, M (1984) Driving forces in hepatocellular uptake of phalloidin and cholate. Biochim Biophys Acta 778:539–548

    PubMed  Google Scholar 

  • Petzinger E, Frimmer M (1988) Comparative investigations on the uptake of phallotoxins, bile acids, bovine lactoperoxidase and horseradish peroxidase into rat hepatocytes in suspension and in cell cultures. Biochim Biophys Acta 937:135–144

    PubMed  Google Scholar 

  • Petzinger E, Fückel D (1992) Evidence for a saturable energy-dependent and carrier-mediated uptake of oral antidiabetics into rat hepatocytes. Eur J Pharmacol 213:381–391

    Article  PubMed  Google Scholar 

  • Petzinger E, Grundmann E, Veil LB, Frimmer M, Fasold H (1978) Inhibitory effects of 4,4′-diisothiocyano stilbene-2,2′-disulfonic acid (DIDS) in the response of isolated hepatocytes to phalloidin. Naunyn-Schmiedeberg's Arch Pharmacol 304:303–307

    Article  Google Scholar 

  • Petzinger E, Ziegler K, Frimmer M (1979) Inhibition of 3H-demethylphalloin uptake in isolated rat hepatocytes under various experimental conditions. Naunyn-Schmiedeberg's Arch Pharmacol 307:275–281

    Article  Google Scholar 

  • Petzinger E, Burckhardt G, Schwenk M, Faulstich H (1982) Lack of intestinal transport of (3H)-demethylphalloin: Comparative studies with phallotoxins and bile acids on isolated small intestinal cells and ileal brush border membrane vesicles. Naunyn-Schmiedeberg's Arch Pharmacol 320:196–200

    Article  Google Scholar 

  • Petzinger E, Joppen C, Frimmer M (1983) Common properties of the hepatocellular uptake of cholate, iodipamide and antamanide as distinct from the uptake of bromosulfophthalein. Naunyn-Schmiedeberg's Arch Pharmacol 322:174–179

    Article  Google Scholar 

  • Petzinger E, Ziegler K, Frimmer M (1987) Occurrence of a multispecific transporter for the hepatocellular accumulation of bile acids and various cyclopeptides. In: Paumgartner G, Stiehl A, Gerok W (eds) Bile acids and the liver, MTP Press Ltd, Lancaster, pp 111–124

    Google Scholar 

  • Petzinger E, Föllmann W, Acker H, Hentschel J, Zierold K, Kinne RKH (1988) Primary liver cell cultures grown on gas permeable membrane as source for the collection of primary bile. In vitro Cell Dev Biol 24:491–499

    PubMed  Google Scholar 

  • Petzinger E, Kinne RKH, Sies H (eds) (1989a) Hepatic transport of organic substances, Springer Verlag Berlin-Heidelberg-New York, pp 435

    Google Scholar 

  • Petzinger E, Müller N, Föllmann W, Deutscher J, Kinne RKH (1989b) Uptake of bumetanide into isolated rat hepatocytes and primary liver cell cultures. Am J Physiol 256:(Gastrointest Liver Physiol 19): G78–G86

    PubMed  Google Scholar 

  • Petzinger E, Honscha W, Schenk A, Föllmann W, Deutscher J, Zierold N, Kinne RKH (1991) Photoaffinity labeling of plasma membrane proteins involved in the transport of loop diuretics into hepatocytes. Eur J Pharmacol Molec Pharmacol Sect 208:53–65

    Article  Google Scholar 

  • Petzinger E, Föllmann W, Blumrich M, Schermuly R, Schulz S, Hahnen J, Feit PW (1993) Interaction of bumetanide derivatives with hepatocellular bile acid uptake. Am J Physiol 265 (Gastrointest Liver Physiol 28):G942–G954

    PubMed  Google Scholar 

  • Pfaff E, Schwenk M, Burr R, Remmer H (1975) Molecular aspects of the interaction of bromosulfophthalein with high-affinity binding sites of bovine serum albumin. Molec Pharmacol 11:144–152

    Google Scholar 

  • Pico GA, Houssier C (1989) Bile salts-bovine serum albumin binding: spectroscopic and thermodynamic studies. Biochim Biophys Acta 999:128–134

    PubMed  Google Scholar 

  • Piller M (1963) Eiweißbindung und Verteilung von Bromsulphalein im Organismus. Schweiz Med Wschr 93:1034–1039

    PubMed  Google Scholar 

  • Plaa GL (1975) The enterohepatic circulation. In: Gilette JR, Mitchell JR (eds) Handbook of experimental pharmacology, Vol 28 Part B, Springer Verlag Berlin Heidelberg, pp 130–149

    Google Scholar 

  • Plomp TA, Battista HJ, Unterdorfer H, Van Ditmarsch WC, Maes RAA (1981) A case of fatal poisoning by rifampicin. Arch Toxicol 48:245–252

    Article  PubMed  Google Scholar 

  • Pond SM, Tozer TN (1984) First-pass elimination. Basic concepts and clinical consequences. Clin Pharmacokinet 9:1–25

    Google Scholar 

  • Pond SM, Davis CKC, Bogoyevitch MA, Gordon RA, Weisiger RA, Bass L (1992) Uptake of palmitate by hepatocyte suspensions: facilitation by albumin? Am J Physiol 262 (Gastrointest Liver Physiol 25): G883–894

    PubMed  Google Scholar 

  • Pooler PA, Duane WC (1988) Effects of bile acid administration on bile acid synthesis and its circadian rhythms in man. Hepatology 8:1140–1146

    PubMed  Google Scholar 

  • Potter BJ, Stump D, Schweieterman W, Sorrentino D, Jacobs N, Berk PD (1987a) Isolation and partial characterization of plasma membrane fatty acid binding proteins from myocardium and adipose tissue and their relationship to analogous proteins in liver and gut. Biochem Biophys Res Commun 148:1370–1376

    Article  PubMed  Google Scholar 

  • Potter BJ, Blades BF, Shephard M, Thung SM, Berk PD (1987b) The kinetics of BSP uptake by rat liver sinusoidal vesicles. Biochim Biophys Acta 898:159–171

    PubMed  Google Scholar 

  • Potter BJ, Sorrentino D, Berk PD (1989) Mechanisms of cellular uptake of free fatty acids. Annu Rev Nutr 9:253–270

    Article  PubMed  Google Scholar 

  • Poupon RR, Poupon RY, Dumont M, Erlinger S (1976) Hepatic storage and biliary transport maximum of taurocholate and taurochenodeoxycholate in the dog. Eur J Clin Invest 6:431–437

    PubMed  Google Scholar 

  • Poupon R, Poupon RE, Calmus Y, Chrétien Y, Ballet F, Darnis F (1987) Is ursodeoxycholic acid an effective treatment for primary biliary cirrhosis? Lancet 1:834–837

    Article  PubMed  Google Scholar 

  • Poupon R, Chrétien Y, Parquet M, Ballet F, Rey C, Infante R (1988) Hepatic transport of bile acids in the isolated perfused rat liver. Structure-kinetic relationship. Biochem Pharmacol 37:209–212

    Article  PubMed  Google Scholar 

  • Poupon RE, Balkau B, Echwège E, Poupon R (1991) A multicenter, controlled trial of ursodiol for the treatment of primary biliary cirrhosis. N Engl J Med 324:1548–1554

    PubMed  Google Scholar 

  • Quintana I, Felipe A, Remesar X, Pastor-Anglada M (1988) Carrier mediated uptake of L-(+)-lactate in plasma membrane vesicles from rat liver. FEBS Lett 235:224–228

    Article  PubMed  Google Scholar 

  • Quistorff B (1985) Gluconeogenesis in periportal and perivenous hepatocytes from rat liver, isolated by a new high-yield digitonin/collagenase perfusion technique. Biochem J 229:221–226

    PubMed  Google Scholar 

  • Rabin B, Nicolosi RJ, Hayes KC (1976) Dietary influence on bile acid conjugation in the cat. J Nutr 106:1241–1246

    PubMed  Google Scholar 

  • Radominska-Pyrek A, Zimniak P, Irshaid YM, Lester R, Tephly TR, Pyrek JSt (1987) Glucuronidation of 6α-hydroxy bile acids by human liver microsomes. J Clin Invest 80:234–241

    PubMed  Google Scholar 

  • Radominska A, Zimniak P, Lester R (1991) The detoxification of bile acids. In: Paumgartner G, Stiehl A, Gerok W (eds) Bile acids as therapeutic agents. From basic science to clinical practice. Kluwer Academic Publishers Dordrecht Boston London, pp 99–109

    Google Scholar 

  • Rechkemmer G (1991) Transport of weak electrolytes. In: Schulz SG, Field M, RA Frizzel (eds) The gastrointestinal system, vol IV. Oxford University Press, chap 15, pp 371–388 (Handbook of physiology, Sect 6)

    Google Scholar 

  • Reeves DS (1987) The pharmacokinetics of fusidic acid. J Antimicrob Chemother 20:467–476

    PubMed  Google Scholar 

  • Reichen J, Berk PD (1979) Isolation of an organic anion binding protein from rat liver plasma membrane fractions by affinity chromatography. Biochem Biophys Res Commun 91:484–489

    Article  PubMed  Google Scholar 

  • Reichen J, Paumgartner G (1974) Kinetics of bile salt transport by the perfused rat liver. Experientia 30:682–683

    Google Scholar 

  • Reichen J, Paumgartner G (1975) Kinetics of taurocholate uptake by the perfused rat liver. Gastroenterol 68:132–136

    Google Scholar 

  • Reichen J, Paumgartner G (1976) Uptake of bile acids by the perfused rat liver. Am J Physiol 231:734–742

    PubMed  Google Scholar 

  • Reichen J, Blitzer B, Berk PD (1981) Binding of unconjugated and conjugated sulfobromophthalein to rat liver plasma membrane fractions in vitro. Biochim Biophys Acta 640:298–312

    PubMed  Google Scholar 

  • Renaud G, Foliot A, Infante G (1978a) Increased uptake of fatty acid by the isolated rat liver after raising the fatty acid binding protein concentration with clofibrate. Biochem Biophys Res Commun 80:327–334

    Article  PubMed  Google Scholar 

  • Renaud G, Foliot A, Infante R (1978b) Inhibitory effect of cholephilic anions on fatty acid uptake by the perfused rat liver. Biochem Pharmacol 27:897–902

    Article  PubMed  Google Scholar 

  • Renner EL, Lake JR, Cragoe EJ, Van Dyke RW, Scharschmidt BF (1988) Ursodeoxycholice acid choleresis: relationship to biliary HCO3 and effects of Na+H+ exchange inhibitors. Am J Physiol 254 (Gastrointest Liver Physiol 17): G231–G241

    Google Scholar 

  • Reubi F, Sackmann W, Plünnecke L (1970) La clearance renale de la rifampicine. J Urol Nephrol 76:829–833

    Google Scholar 

  • Reubsaet FAG, Veerkamp JH, Brückwilder MLP, Trijbels JMF, Monnens LAH (1990) The involvement of fatty acid binding protein in peroxisomal fatty acid oxidation. FEBS Lett 267:229–230

    Article  PubMed  Google Scholar 

  • Reyes H, Levi AJ, Gatmaitan Z, Arias IM (1971) Studies of Y and Z, two hepatic cytoplasmic organic anion-binding proteins: effect of drugs, chemicals, hormones and cholestasis. J Clin Invest 50:2242–2252

    PubMed  Google Scholar 

  • Ribes G, Valette G, Valette JF, Loubatiéres-Mariani MM (1981) Sodium 2-chloropropionate: its effects on experimental hyperlactatemia in the dog. J Pharmacol Exp Ther 216:172–175

    PubMed  Google Scholar 

  • Robertson A, Karp W, Brodersen R (1991) Bilirubin displacing effect of drugs used in neonatology. Acta Paediatr Scand 80:1119–1127

    PubMed  Google Scholar 

  • Roda A, Capelleri G, Aldini R, Roda E, Barbara L (1982) Quantitative aspects of the interaction of bile acids with human serum albumin. J Lipid Res 23:490–495

    PubMed  Google Scholar 

  • Roda A, Hofmann AF, Mysels KJ (1983) The influence of bile salt structure on self association in aqueous solutions. J Biol Chem 258:6362–6370

    PubMed  Google Scholar 

  • Roda E, Parini P, Bazzoli F, Mazella G, Festi D, Aldini R (1992) Advances in the therapy of cholestatic liver disease. Hepato-Gastroenterology 39:Suppl 1, 53–56

    PubMed  Google Scholar 

  • Rollins DE, Freston JW, Woodbury DM (1980) Transport of organic anions into liver cells and bile. Biochem Pharmacol 29:1023–1028

    Article  PubMed  Google Scholar 

  • Rosati G, Schiantarelli P (1970) Biliary excretion of contrast media. Invest Radiol 5:232–243

    PubMed  Google Scholar 

  • Rosenthal SM, White EC (1925) Clinical application of bromsulfphthalein dye test for hepatic function. J Am Med Ass 84:1112–1114

    Google Scholar 

  • Ross BD, Hems R, Krebs HA (1967) The rate of gluconeogenesis from various precursors in the perfused rat liver. Biochem J 102:942–951

    Google Scholar 

  • Rous D, Lack L (1979) Ion requirements for taurocholate transport by ileal brush border membrane vesicles. Life Sci 25:45–52

    Article  PubMed  Google Scholar 

  • Ruetz S, Fricker G, Hugentobler G, Winteralter K, Kurz G, Meier PJ (1987) Isolation and characterization of the putative canalicular bile salt transport system of rat liver. J Biol Chem 262:11324–11330

    PubMed  Google Scholar 

  • Ruetz S, Hugentobler G, Meier PJ (1988) Functional reconstitution of the canalicular bile salt transport system of rat liver. Proc Natl Acad Sci USA 85:6147–6151

    PubMed  Google Scholar 

  • Ruifrok PG, Meijer DKF (1982) Sodium-ion coupled uptake of taurocholate by rat-liver plasma membrane vesicles. Liver 2:28–34

    PubMed  Google Scholar 

  • Russel DW, Setchell KDR (1992) Bile acid biosynthesis. Biochem 31:4737–4749

    Article  Google Scholar 

  • Rutishauser SCB (1983) Uptake and action of a disulphonic stilbene (SITS) in the perfused guinea-pig liver: a comparison with bromsulphthalein. J Physiol 334:505–518

    PubMed  Google Scholar 

  • Sacchettini JC, Said B, Schulz H, Gordon JI (1986) Rat heart fatty acid-binding protein is highly homologous to the murine adipocyte 422 protein and the P2 protein of peripheral nerve myelin. J Biol Chem 261:8218–8223

    PubMed  Google Scholar 

  • Saeter G, Schwarze PE, Nesland JM, Juul N, Pettersen EO, Seglen PO (1988) The polyploidizing growth pattern of normal rat liver is replaced by divisional, diploid growth in hepatocellular nodules and carcinomas. Carcinogenesis 9:939–945

    PubMed  Google Scholar 

  • Saeter G, Schwarze PE, Nesland JM, Seglen PO (1989) Diploid nature of hepatocellular tumors developing from transplanted preneoplastic liver cells. Br J Cancer 59:198–205

    PubMed  Google Scholar 

  • Saiki H, Chan ET, Wong E, Yamamuro W, Ookhtens M, Kaplowitz N (1992) Zonal distribution of cysteine uptake in the perfused rat liver. J Biol Chem 267:192–196

    PubMed  Google Scholar 

  • Sandford CA, Sweiry JH, Jenkinson DH (1992) Properties of a cell-volume sensitive potassium conductance in isolated guinea pig and rat hepatocytes. J Physiol 447:133–148

    PubMed  Google Scholar 

  • Sapirstein LA, Simpson AM (1955) Plasma clearance of rose bengal (tetrabromfluorescein). Am J Physiol 182:337–346

    PubMed  Google Scholar 

  • Saville BA, Gray M, Tam YK (1992) Models of hepatic drug elimination. Drug Metab Rev 24:49–88

    PubMed  Google Scholar 

  • Sawada N, Tsukuda H (1982) Changes in phalloidin sensitivity of hepatocytes of rats during 2-acetyl-aminofluorene carcinogenesis. Tumor Res 17:39–50

    Google Scholar 

  • Sawada N, Tsukuda H (1983) Effects of phenobarbital feeding on the phalloidin sensitivity of rat hepatocytes. Gann 74:35–40

    PubMed  Google Scholar 

  • Sawada N, Furukawa K, Tsukuda H (1982) In vitro measurement of resistance to phalloidin and γ-glutamyltransferase in carcinogen-induced preneoplastic hepatocytes of rats. J Natl Cancer Inst (JNCI) 69:683–685

    Google Scholar 

  • Scallen TJ, Noland BJ, Gavey KL, Bass NM, Ockner RK, Chanderbhan R, Vahouny GV (1985) Sterol carrier protein 2 and fatty acid-binding protein. J Biol Chem 260:4733–4739

    PubMed  Google Scholar 

  • Scharschmidt BF, Lake JR (1989) Hepatocellular bile acid transport and ursodeoxycholic acid hypercholeresis. Digest Dis Sci 34:5S–15S

    Article  Google Scholar 

  • Scharschmidt BF, Stephens JE (1981) Transport of sodium, chloride and taurocholate by cultured rat hepatocytes. Proc Natl Acad Sci USA 78:986–990

    PubMed  Google Scholar 

  • Scharschmidt BF, Waggoner JG, Berk PD (1975) Hepatic organic anion uptake in the rat. J Clin invest 56: 1280–1292

    PubMed  Google Scholar 

  • Schiff ER, Small NC, Dietschy JM (1972) Characterization of the kinetics of the passive and active transport mechanisms for bile acid absorption in the small intestine and colon of the rat. J Clin Invest 51:1351–1362

    PubMed  Google Scholar 

  • Schiff M (1870) Bericht über einige Versuchsreihen, angestellt im physiol. Laboratorium des Instituts zu Florenz. I. Gallenbildung, abhängig von der Aufsaugung der Gallenstoffe. Pflügers Arch Ges Physiol 3:598–613

    Article  Google Scholar 

  • Schmassmann A, Angellotti MA, Ton-Nu HT, Schteingart CD, Marcus SN, Rossi SS, Hofmann AF (1990) Transport, metabolism and effect of chronic feeding of cholylsarcosine, a conjugated bile acid resistant to deconjugation and dehydroxylation. Gastroenterol 98:163–174

    Google Scholar 

  • Schmidt CR, Beazell JM, Atkinson AJ, Ivy AC (1938) The effect of therapeutic agents on the volume and constituents of bile. Am J Dig Dis 5:613–617

    Google Scholar 

  • Schneider EG, Sacktor B (1980) Sodium gradient-dependent L-glutamate transport in renal brush border membrane vesicles. Effect of an intravesicular ≥ extravesicular potassium gradient. J Biol Chem 255:7645–7649

    PubMed  Google Scholar 

  • Schneider EG, Hammerman MR, Sacktor B (1980) Sodium gradient-dependent L-glutamate transport in renal brush border membrane vesicles. Evidence for an electroneutral mechanism. J Biol Chem 255, 7650–7656

    PubMed  Google Scholar 

  • Schneider S, Schramm U, Schreyer A, Buscher H-P, Gerok W, Kurz G (1991) Fluorescent derivatives of bile salts. I. Synthesis and properties of NBD-amino derivatives of bile salts. J Lipid Res 32:1755–1767

    PubMed  Google Scholar 

  • Schramm U, Dietrich A, Schneider S, Buscher H-P, Gerok W, Kurz G (1991) Fluorescent derivatives of bile salts. II. Suitability of NBD-amino derivatives of bile salts for the study of biological transport. J Lipid Res 32:1769–1779

    PubMed  Google Scholar 

  • Schulz S (1993) Zur Nutzbarkeit des multispezifischen Gallensäuretransportsystems für ein Carrier-vermitteltes Drug targeting-Konzept. Universität Gießen, Thesis FB 18

    Google Scholar 

  • Schwab AJ, Goresky CA (1991) Free fatty acid uptake by polyethylene: what can one learn from this? Am J Physiol 261 (Gastrointest Liver Physiol 24): G896–G906

    PubMed  Google Scholar 

  • Schwab AJ, Bracht A, Scholz R (1979) Transport of D-lactate in perfused rat liver. Eur J Biochem 102:537–547

    Article  PubMed  Google Scholar 

  • Schwarz LR, Barth CA (1979) Taurocholate uptake by adult rat hepatocytes in primary culture. Hoppe-Seyler's Z Physiol Chem 360:1117–1120

    PubMed  Google Scholar 

  • Schwarz LR, Watkins JB (1992) Uptake of taurocholate, a vecuronium-like organic cation, ORG 9426, and ouabain into carcinogen-induced diploid and polyploid hepatocytes obtained by centrifugal elutriation. Biochem Pharmacol 43:1195–1201

    Article  PubMed  Google Scholar 

  • Schwarz LR, Burr R, Schwenk M, Pfaff E, Greim H (1975) Uptake of taurocholic acid into isolated rat-liver cells. Eur. J Biochem 55:617–623

    Article  PubMed  Google Scholar 

  • Schwarz LR, Schwenk M, Pfaff E, Greim H (1976) Excretion of taurocholate from isolated hepatocytes. Eur J Biochem 71:369–373

    Article  PubMed  Google Scholar 

  • Schwarz LR, Summer KH, Schwenk M (1979) Transport and metabolism of bromosulfophthalein by isolated rat liver cells. Eur J Biochem 94:617–622

    Article  PubMed  Google Scholar 

  • Schwarz LR, Götz R, Klaassen CD (1980) Uptake of sulfobromophthalein-glutathione conjugate by isolated hepatocytes. Am J Physiol 239 (Cell Physiol 8): C118–C123

    PubMed  Google Scholar 

  • Schwenk M, Schwarz LR (1981) Preincubation accelerates taurocholate uptake into isolated liver cells. Biochim Biophys Acta 646:344–347

    PubMed  Google Scholar 

  • Schwenk M, Burr R, Schwarz LR, Pfaff E (1976) Uptake of bromosulfophthalein by isolated liver cells. Eur J Biochem 64:189–197

    Article  PubMed  Google Scholar 

  • Schwenk M, Hegazy E, Lopez Del Pino V (1983) Kinetics of taurocholate uptake by isolated ileal cells of guinea pig. Eur J Biochem 131:387–391

    Article  PubMed  Google Scholar 

  • Schwenk M (1987) Drug transport in intestine, liver and kidney. Arch Toxicol 60:37–42

    Article  PubMed  Google Scholar 

  • Schwieterman W, Sorrentino D, Potter BJ, Rand J, Kiang CL, Stump D, Berk PD (1988) Uptake of oleate by isolated rat adipocytes is mediated by a 40-kDa plasma membrane fatty acid binding protein closely related to the liver and gut. Proc Natl Acad Sci USA 85:359–363

    PubMed  Google Scholar 

  • Senjo M, Ishibashi T, Imai Y (1985) Purification and characterization of cytosolic liver protein facilitating heme transport into apocytochrome b5 from mitochondria. Evidence for identifying the heme transfer protein as belonging to a group of glutathione-S-transferases. J Biol Chem 260:9191–9196

    PubMed  Google Scholar 

  • Sestoft L, Marshall MO (1986) Hepatic lactate uptake is enhanced by low pH at low lactate concentration in perfused rat liver. Clin Sci 70:19–22

    PubMed  Google Scholar 

  • Sewell RB, Hofman NE, Smallwood RA, Cockbain S (1980) Bile acid structure and bile formation: a comparison of hydroxy and ketobile acids. Am J Physiol 238 (Gastrointest Liver Physiol 1):610–617

    Google Scholar 

  • Sharma R, Gupta S, Singh Sv, Medh RD, Ahmad H, LaBelle FF, Awasthi YC (1990) Purification and characterization of dinitrophenylglutathione ATPase of human erythrocytes and its expression in other tissues. Biochem Biophys Res Commun 171:155–161

    Article  PubMed  Google Scholar 

  • Sherman IA, Fisher MM (1986) Hepatic transport of fluorescent molecules: in vivo studies using intravital TV microscopy. Hepatology 6:444–449

    PubMed  Google Scholar 

  • Shields HM, Bates ML, Bass NM, Best, CJ, Alpers DH, Ockner RK (1986) Light micro-scopic immunocytochemical localization of hepatic and intestinal types of fatty acid-binding proteins in rat small intestine. J Lipid Res 27:549–557

    PubMed  Google Scholar 

  • Ship, SY, Shami Y, Breuer, W, Rothstein A (1977) Synthesis of tritiated 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid (3H2DIDS) and its covalent reaction with sites related to anion transport in human red blood cells. J Membr Biol 33:311–323

    Article  PubMed  Google Scholar 

  • Shotwell MA, Kilberg MS, Oxender DL (1983) The regulation of neutral amino acid transport in mammalian cells. Biochim Biophys Acta 737:267–284

    PubMed  Google Scholar 

  • Shupeck M, Wolkoff AW, Scharschmidt BF, Waggoner JG, Berk PD (1978) Studies of the kinetics of purified conjugated bilirubin-3H in the rat. Am J Gastroenterol 70:259–264

    PubMed  Google Scholar 

  • Sieg A (1991) Bilirubin. In: Siegers CP, Watkins JB (eds) Biliary excretion of drugs and other chemicals, Progress in Pharmacology and Clinical Pharmacology, Vol 8/4, Gustav Fischer Verlag Stuttgart New York, pp 188–199

    Google Scholar 

  • Siegers C-P, Watkins III JB (1991) Biliary Excretion of Drugs and Other Chemicals, Gustav Fischer Verlag Stuttgart-New York

    Google Scholar 

  • Silbernagl S, Foulkes EC, Deetjen P (1975) Renal transport of amino acids. Rev Physiol Biochem Pharmacol 74:105–167

    PubMed  Google Scholar 

  • Silberstein DJ, Bowmer CJ, Yates MS (1987) Pharmacokinetics and biliary excretion of rose bengal in rats with acute and chronic renal failure. J Pharm Pharmacol 39:395–398

    PubMed  Google Scholar 

  • Simion FA, Fleischer B, Fleischer S (1984a) Ionic requirements for taurocholate transport in rat liver plasma membrane vesicles. J Bioenerg Biomembr 16:507–515

    Article  PubMed  Google Scholar 

  • Simion FA, Fleischer B, Fleischer S (1984b) Two distinct mechanisms for taurocholate uptake in subcellular fraction from rat liver. J Biol Chem 259:10814–10822

    PubMed  Google Scholar 

  • Simion FA, Fleischer B, Fleischer S (1984c) Subcellular distribution of bile acids, bile salts and taurocholate binding sites in rat liver. Biochemistry 23:6459–6466

    Article  PubMed  Google Scholar 

  • Simon FR, Sutherland EM, Gonzalez M (1982) Regulation of bile salt transport in rat liver. Evidence that increased maximum bile salt secretory capacity is due to increased cholic acid receptors. J Clin Invest 70:401–411

    PubMed  Google Scholar 

  • Singer SS, Dravis D, Henkels K, Trulzsch DV (1992) Fatty acid binding protein inhibits glycolithocholate sulfation. Biochem Int 27:373–383

    PubMed  Google Scholar 

  • Sippel CJ, Ananthanarayanan M, Suchy FJ (1990) Isolation and characterization of the canalicular membrane bile acid transport protein of rat liver. Am J Physiol 258 (Gastrointest Liver Physiol 21): G728–G737

    PubMed  Google Scholar 

  • Sips HJ, DeGraaf PA, Van Dam K (1982) Transport of L-aspartate and L-glutamate in plasma membrane vesicles from rat liver. Eur J Biochem 122:259–264

    Article  PubMed  Google Scholar 

  • Small DM, Dowling RH, Redinger RN (1972) The enterohepatic circulation of bile salts. Arch Intern Med 130:552–573

    Article  PubMed  Google Scholar 

  • Smith DJ, Grossbard M, Gordon ER, Boyer JL (1987) Taurocholate uptake by isolated skate hepatocytes: effect of albumin. Am J Physiol 252 (Gastrointest Liver Physiol 15):G479–G484

    PubMed  Google Scholar 

  • Smith RL (1966) The biliary excretion and enterohepatic circulation of drugs and other organic compounds. Prog Drug Res 9:299–359

    Google Scholar 

  • Smith RL (1971) Excretion of drugs in bile. In: Brodie BB, Gilette JR (eds) Handbook of Experimental Pharmacology, Part 1, Vol 28 Chapter 19, Springer Verlag Heidelberg Berlin, pp 354–389

    Google Scholar 

  • Sobotka H (1937) Physiological chemistry of the bile. In: Ballière, Tindall, Cox (eds) Baltimore, London, Williams & Wilkins

    Google Scholar 

  • Sokoloff J, Berk R, Lang J, Lasser E (1973) The role of Y and Z hepatic proteins in the excretion of radiographic contrast materials. Radiology 106:519–523

    PubMed  Google Scholar 

  • Soler-Argilaga C, Heimberg M (1976) Comparison of metabolism of free fatty acid by isolated perfused livers from male and female rats. J Lipid Res 17:605–615

    PubMed  Google Scholar 

  • Song C, Beranbaum ER (1974) The role of serum albumin in hepatic excretion of iodipamide. Invest Radiol 9:324–329

    Google Scholar 

  • Sorrentino D, Berk PD (1988) Mechanistic aspects of hepatic bilirubin uptake. Semin Liver Dis 8:119–136

    PubMed  Google Scholar 

  • Sorrentino D, Berk PD (1990) From albumin to the cytoplasm: the hepatic uptake of organic anions. Prog Liver Dis 9:203–224

    PubMed  Google Scholar 

  • Sorrentino D, Licko V, Weisiger RA, Alpini G, Berk PD (1987) Phenobarbital specifically increases the hepatocellular uptake of sulfobromophthalein-glutathione. Biochem Biophys Res Commun 149:921–926

    Article  PubMed  Google Scholar 

  • Sorrentino D, Licko V, Weisiger RA (1988) Sex differences in sulfobromophthalein-glutathione transport by perfused rat liver. Biochem Pharmacol 37:3119–3126

    Article  PubMed  Google Scholar 

  • Sorrentino D, Robinson RB, Kinag CL, Berk PD (1989) At physiological albumin/oleate concentrations oleate uptake by isolated hepatocytes, cardiac myocytes, and adipocytes is a saturable function of the unbound oleate concentration. Uptake kinetics are consistent with the conventional theory. J Clin Invest 84:1325–1333

    PubMed  Google Scholar 

  • Sorrentino D, Potter BJ, Berk PD (1990) From albumin to the cytoplasm: the hepatic uptake of organic anions. In: Popper H, Schaffner F (eds) Progress in liver disease, vol 9, chap 12, Grune & Stratton, New York, pp 203–224

    Google Scholar 

  • Sorrentino D, Van Ness K, Moukabary K, Berk PD (1991) Hepatocellular 22Na+ uptake: effect of oleate. Am J Physiol 261 (Gastrointest Liver Physiol 24):G1024–G1029

    PubMed  Google Scholar 

  • Sorrentino D, Zhou SL, Kokkoton E, Berk PD (1992) Sex differences in hepatic fatty acid uptake reflect greater affinity of the transport system in females. Am J Physiol 263 (Gastrointest Liver Physiol 26):G380–G385

    PubMed  Google Scholar 

  • Sorscher EJ, Fuler CM, Bridges RJ, Tousson A, Marchase RB, Brinkley BR, Frizzel RA, Benos DK (1992) Identification of a membrane protein from T84 cells using antibodies made against a DIDS-binding protein. Am J Physiol 262 (Cell Physiol 31):C136–C147

    PubMed  Google Scholar 

  • Sottocasa GL, Baldini G, Sandri G, Lunazzi GC, Tiribelli C (1982) Reconstitution in vitro of sulfobromophthalein transport by bilitranslocase. Biochim Biophys Acta 685:123–128

    Google Scholar 

  • Sottocasa GL, Lunazzi GC, Tiribelli C (1989) Isolation of bilitranslocase, the anion transporter for liver plasma membrane for bilirubin and other organic anions. Methods Enzymol 174:50–57

    PubMed  Google Scholar 

  • Spector AA, Fletcher JE (1978) Transport of free fatty acids in the circulation. In: Dietschy JM, Gotto AM, Ontko JA (eds) Disturbances in lipid and lipoprotein metabolism; Williams and Wilkins, Baltimore, pp 229–249

    Google Scholar 

  • Spector AA, Steinberg D (1966) Relationship between fatty acid and glucose utilization in Ehrlich ascites tumor cells. J Lipid Res 7:657–663

    PubMed  Google Scholar 

  • Sperber I, Sperber G (1971) Hepatic excretion of radiocontrast agents. In: Knoefel PK (ed) Radiocontrast agents, International Enzyclopedia of Pharmacology and Therapeutics, Sect 76, Vol 1, Chapter 5, Pergamon Press, pp 165–235

    Google Scholar 

  • Stacey NH, Klaassen CD (1981) Uptake of galactose, ouabain and taurocholate into centrilobular and periportal enriched hepatocyte subpopulations. J Pharmacol Exp Ther 216:634–639

    PubMed  Google Scholar 

  • Stasiewcz J, Wormsley KG (1974) Review: Functional control of the biliary tract. Acta Hepato-Gastroenterol 21:450–468

    Google Scholar 

  • Stege TE, Loose LD, DiLuzio NR (1975) Comparative uptake of sulfobromophthalein by isolated Kupffer and parenchymal cells. Proc Soc Exp Biol Med 149:455–461

    PubMed  Google Scholar 

  • Stewart GT (1964) Steroid antibiotics. Pharmacotherapie 2:136–148

    Google Scholar 

  • Stieger B, O'Neill B, Meier PJ (1992) ATP-dependent bile-salt transport in canalicular rat liver plasma-membrane vesicles. Biochem J 284:67–74

    PubMed  Google Scholar 

  • Stiehl A (1974) Bile salt sulfates in cholestasis. Eur J Clin Invest 4:59–63

    PubMed  Google Scholar 

  • Stiehl A, Earnest D, Admirand WH (1975) Sulfation and renal excretion of bile salts in patients with cirrhosis of the liver. Gastroenterology 68:572–577

    PubMed  Google Scholar 

  • Stiehl A, Raedsch R, Rudolph G, Gundert-Remy U, Senn M (1985) Biliary and urinary excretion of sulfated, glucuronidated and tetrahydroxylated bile acids in cirrhotic patients. Hepatology 5:492–495

    PubMed  Google Scholar 

  • Stokols, MF, Koschier, FJ, Goldinger, JM, Hong, SK (1981) Renal transport of NAP-taurine. Am J Physiol 241 (Renal Fluid Electrolyte Physiol 10):F9–F13

    PubMed  Google Scholar 

  • Stoll B, Häussinger D (1989) Functional hepatocyte heterogeneity: vascular oxoglutarate is almost exclusively taken up by perivenous, glutamine synthetase containing hepatocytes. Eur J Biochem 181:709–716

    Article  PubMed  Google Scholar 

  • Stoll B, Häussinger D (1991) Hepatocyte heterogeneity in uptake and metabolism of malate and related dicarboxylates in perfused rat liver. Eur J Biochem 195:121–129

    Article  PubMed  Google Scholar 

  • Stoll B, McNelly S, Buscher H-P, Häussinger D (1991a) Functional hepatocyte heterogeneity in glutamate, aspartate and α-ketoglutarate uptake: a histoautoradiographical study. Hepatology 13:247–253

    Article  PubMed  Google Scholar 

  • Stoll GH, Voges R, Gerok W, Kurz G (1991b) Synthesis of a metabolically stable modified long-chain fatty acid salt and its photolabile derivative. J Lipid Res 32:843–858

    PubMed  Google Scholar 

  • Stolz A, Sugiyama Y, Kuhlenkamp J, Kaplowitz N (1984) Identification and purification of a 36 kDa bile acid binder in human hepatic cytosol. FEBS Lett 177:31–35

    Article  PubMed  Google Scholar 

  • Stolz A, Takikawa H, Sugiyama Y, Kuhlenkamp J, Kaplowitz N (1986) 3α-Hydroxysteroid dehydrogenase activity of the Y' bile acid binders in rat liver cytosol. Identification, kinetics, and physiologic significance. J Clin Invest 79:427–434

    Google Scholar 

  • Stolz A, Takikawa H, Ookhtens M, Kaplowitz N (1989) The role of cytoplasmic proteins in hepatic bile acid transport. Ann Rev Physiol 51:161–176

    Article  Google Scholar 

  • Strange RC (1984) Hepatic bile flow. Physiol Rev 64:1055–1102

    PubMed  Google Scholar 

  • Strange RC, Nimmo IA, Percy-Robb IW (1976) Equilibrium-dialysis studies of the interaction between cholic acid and 100.000 g-supernatant preparations from rat liver. Biochem J 156:427–433

    PubMed  Google Scholar 

  • Stremmel W (1987) Translocation of fatty acids across the basolateral rat liver plasma membrane is driven by an active potential-sensitive sodium-dependent transport system. J Biol Chem 262:6284–6289

    PubMed  Google Scholar 

  • Stremmel W (1988a) Fatty acid uptake by isolated rat heart myocytes represents a carrier-mediated transport process. J Clin Invest 81:844–852

    PubMed  Google Scholar 

  • Stremmel W (1988b) Uptake of fatty acids by jejunal mucosal cells is mediated by a fatty acid binding membrane protein. J Clin Invest 82:2001–2010

    PubMed  Google Scholar 

  • Stremmel W (1989a) Mechanism of hepatic fatty acid uptake. In: Petzinger E, Kinne RKH, Sies H (eds) Hepatic transport of organic substances, Springer-Verlag Berlin, Heidelberg, pp 211–220

    Google Scholar 

  • Stremmel W (1989b) Mechanism of hepatic fatty acid uptake. J Hepatol 9:374–382

    Article  PubMed  Google Scholar 

  • Stremmel W, Berk PD (1986a) Hepatocellular uptake of sulfobromophthalein and bilirubin is selectively inhibited by an antibody to the liver plasma membrane sulfobromophthalein/bilirubin binding protein. J Clin Invest 78:822–826

    PubMed  Google Scholar 

  • Stremmel W, Berk P (1986b) Hepatocellular influx of (14C)oleate reflects membrane transport rather than intracellular metabolism or binding. Proc Natl Acad Sci USA 83:3086–3090

    PubMed  Google Scholar 

  • Stremmel W, Diede HE (1989) Fatty acid uptake by human hepatoma cell lines represents a carrier-mediated uptake process. Biochim Biophys Acta 1013:218–222

    Article  PubMed  Google Scholar 

  • Stremmel W, Diede HE (1990) Cellular uptake of conjugated bilirubin and sulfobromophthalein (BSP) by the human hepatoma cell line HepG2 is mediated by a membrane BSP/bilirubin binding protein. J Hepatol 10:99–104

    Article  PubMed  Google Scholar 

  • Stremmel W, Hofmann AF (1990) Intestinal absorption of unconjugated dihydroxy bile acids: Non-mediation by the carrier system involved in long chain fatty acid absorption. Lipids 25:11–16

    PubMed  Google Scholar 

  • Stremmel W, Theilmann L (1986) Selective inhibition of long-chain fatty acid uptake in short-term cultured rat hepatocytes by an antibody to the rat liver plasma membrane fatty acid binding protein. Biochim Biophys Acta 877:191–197.

    PubMed  Google Scholar 

  • Stremmel W, Kochwa S, Berk, PD (1983a) Studies of oleate binding to rat liver plasma membranes. Biochem Biophys Res Commun 112:88–95

    Article  PubMed  Google Scholar 

  • Stremmel W, Gerber MD, Glezerov V, Thung SN, Kochwa S, Berk PD (1983b) Physicochemical and immunological studies of a sulfobromophthalein-and bilirubin binding protein from rat liver plasma membranes. J Clin Invest 71:1796–1805

    PubMed  Google Scholar 

  • Stremmel W, Lotz G, Strohmeyer G, Berk PD (1985a) Identification, isolation and partial characterization of a fatty acid binding protein from rat jejunal microvillous membranes. J Clin Invest 75:1068–1076

    PubMed  Google Scholar 

  • Stremmel W, Strohmeyer G, Borchard F, Kochwa S, Berk PD (1985b) Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes. Proc Natl Acad Sci USA 82:4–8

    PubMed  Google Scholar 

  • Stremmel W, Strohmeyer G, Berk PD (1986) Hepatocellular uptake of oleate is energy dependent, sodium linked, and inhibited by an antibody to a hepatocyte plasma membrane fatty acid binding protein. Proc Natl Acad Sci USA 83:3584–3588

    PubMed  Google Scholar 

  • Stremmel W, Falbrede J, Diede HE, Elsing C (1989) Cellular influx of sulfobromophthalein by biliary epithelium carcinoma cell cell Sk-Cha-1 reveals criteria of a carrier-mediated uptake mechanism. Biochim Biophys Acta 1014:108–111

    Article  PubMed  Google Scholar 

  • Stremmel W, Diede H-E, Rodilla-Sala E, Vyska E, Schrader M, Fitscher B, Passarella S (1990) The membrane fatty acid-binding protein is not identical to mitochondrial glutamic oxaloacetic transaminase (mGOT). Molec Cell Biochem 98:191–199

    PubMed  Google Scholar 

  • Sturman JA (1990) Taurine: functional neurochemistry, physiology and cardiology. New York, Wiley-Liss

    Google Scholar 

  • Sturman JA, Hepner GW, Hofmann AF, Thomas PJ (1975) Metabolism of (35S)taurine in man. J Nutr 105:1206–1214

    PubMed  Google Scholar 

  • Suchy FJ (1989) Development of bile formation and hepatic excretory function. In: Lebenthal E (ed) Human Gastrointestinal Development, Raven Press, New York, pp 623–647

    Google Scholar 

  • Suchy FJ, Balistreri WF (1982) Uptake of taurocholate by hepatocytes isolated from developing rats. Pediatr Res 16:282–285

    PubMed  Google Scholar 

  • Suchy FJ, Ballistreri WF, Hung J, Miller P, Garfield SA (1983) Intracellular bile acid transport in rat liver as visualized by electron microscope autoradiography using a bile acid analogue. Am J Physiol 245 (Gastrointest Liver Physiol 8): G681–G689

    PubMed  Google Scholar 

  • Suchy FJ, Courchene SM, Blitzer BL (1985) Taurocholate transport by basolateral plasma membrane vesicles isolated from developing rat liver. Am J Physiol 248 (Gastrointest Liver Physiol 11): G648–G654

    PubMed  Google Scholar 

  • Suchy FJ, Bucuvalas JC, Goodrich AL, Moyer MS, Blitzer BL (1986) Taurocholate transport and Na+, K+-ATPase activity in fetal and neonatal rat liver plasma membrane vesicles. Am J Physiol 251 (Gastrointest Liver Physiol 14): G655–G673

    Google Scholar 

  • Suchy FJ, Bucuvalas JC, Novak DA (1987a) Determination of bile formation during development: ontogeny of hepatic bile acid metabolism and transport. Sem Liver Dis 7:77–84

    Google Scholar 

  • Suchy FJ, Balistreri WF, Breslin JS, Dumaswala R, Setchell KDR, Garfield SA (1987b) Absence of an acinar gradient for bile acid uptake in developing rat liver. Pediatr Res 21:417–421

    PubMed  Google Scholar 

  • Suchy FJ, Ananthanarayanan M, Bucuvalas JC (1989) The ontogeny of hepatic bile acid transport. In: Petzinger E, Kinne RKH, Sies H (eds) Hepatic transport of organic substances, Springer Verlag Berlin Heidelberg, pp 257–286

    Google Scholar 

  • Sugiyama Y, Iga T, Awazu S, Hanano M (1978) Studies on ligand binding properties of Z-fraction from rat liver cytosol using 1-anilino-8-naphthalenesulfonate. Chem Pharmacol Bull 26:199–208

    Google Scholar 

  • Sugiyama Y, Iga T, Awazu S, Hanano M (1979) Multiplicity of sulfobromophtalein-binding proteins in Y-fraction from rat liver. J Pharm Dyn 2:193–204

    Google Scholar 

  • Sugiyama Y, Iga T, Awazu S, Hanano M (1980) Binding protein for 1-anilino-8-naphthalene-sulfonate in rat liver cytoplasm. Biochem Pharmacol 29:2063–2069

    Article  PubMed  Google Scholar 

  • Sugiyama Y, Yamada T, Kaplowitz N (1982) Newly identified organic anion-binding proteins in rat liver cytosol. Biochim Biophys Acta 709:342–352

    PubMed  Google Scholar 

  • Sugiyama Y, Yamada T, Kaplowitz N (1983) Newly identified bile acid binders in rat liver cytosol. Purification and comparison with glutathione-S-transferases. J Biol Chem 258:3602–3607

    PubMed  Google Scholar 

  • Summerfield JA, Gullen J, Barnes S, Billing BH (1977) Evidence for renal control of urinary excretion of bile acids and bile acid sulfates in the cholestatic syndrome. Clin Sci 52:51–65

    Google Scholar 

  • Sundelin J, Anundi H, Trägardh L, Erikkson U, Lind P, Ronne H, Peterson PA, Rask L (1985a) The primary structure of rat liver cellular retinol-binding protein. J Biol Chem 260:6488–6493

    PubMed  Google Scholar 

  • Sundelin J, Das SR, Eriksson U, Rask L, Peterson PA (1985b) The primary structure of bovine cellular retinoic acid-binding protein. J Biol Chem 260:6494–6499

    PubMed  Google Scholar 

  • Sundheimer DV, Brendel K (1983) Metabolism of harmol and transport of harmol conjugates in isolated rat hepatocytes. Drug Metab Disp 11:433–440

    Google Scholar 

  • Suzuki M, Kitamura K, Sakamoto Y, Uyemure K (1982) The complete amino acid sequence of human P2 protein. J Neurochem 39:1759–1762

    PubMed  Google Scholar 

  • Sweetser DA, Heuckeroth RO, Gordon JI (1987) The metabolic significance of mammalian fatty-acid-binding proteins: abundant proteins in search of a function. Ann Rev Nutr 7:337–359

    Article  Google Scholar 

  • Täfler M, Ziegler K, Frimmer M (1986) Iodipamide uptake by rat liver plasma membrane vesicles enriched in the sinusoidal fraction: evidence for a carrier-mediated transport dependent on membrane potential. Biochim Biophys Acta 855:157–168

    PubMed  Google Scholar 

  • Takacs A, Auansakul A, Durham S, Vore M (1987) High and low affinity binding of [3H]cholate to rat liver plasma membranes. Biochem Pharmacol 36:2547–2555

    Article  PubMed  Google Scholar 

  • Takada A, Bannai S (1984) Transport of cystine in isolated rat hepatocytes in primary culture. J Biol Chem 259:2441–2445

    PubMed  Google Scholar 

  • Takahashi K, Odani S, Ono, T (1983) Isolation and characterization of the three fractions (DE-I, DE-II, and DE-III) of rat-liver Z-protein and the complete primary structure of DE-II. Eur J Biochem 136:589–601

    Article  PubMed  Google Scholar 

  • Takikawa H, Kaplowitz N (1986) Binding of bile acids, oleic acid, and organic anions by rat and human hepatic Z protein. Arch Biochem Biophys 251:385–392.

    Article  PubMed  Google Scholar 

  • Takikawa H, Kaplowitz N (1988) Comparison of the binding sites of GSH S-transferases of the Ya-and Yb-subunit classes: effect of glutathione on the binding of the bile acids. J Lipid Res 29:279–286

    PubMed  Google Scholar 

  • Takikawa H, Sugiyama Y, Kaplowitz N (1986a) Binding of bile acids by glutathione S-transferases from rat liver. J Lipid Res 27:955–966.

    PubMed  Google Scholar 

  • Takikawa H, Stolz A, Sugimoto M, Sugiyama Y, Kaplowitz N (1986b) Comparison of the affinities of newly identified human bile acid binder and cationic glutathione S-transferase for bile acids. J Lipid Res 27:652–657.

    PubMed  Google Scholar 

  • Takikawa H, Stolz A, Kaplowitz N (1987a) Cyclical oxidation-reduction of the C3 position on bile acids catalyzed by rat hepatic 3α-hydroxysteroid dehydrogenase. I. Studies with the purified enzyme, isolated rat hepatocytes, and inhibition by indomethacin. J Clin Invest 80:852–860.

    PubMed  Google Scholar 

  • Takikawa H, Ookhtens M, Stolz A, Kaplowitz N (1987b) Cyclical oxidation-reduction of the C3 position on bile acids catalyzed by 3α-hydroxysteroid dehydrogenase. II. Studies in the prograde and retrograde single-pass, perfused rat liver and inhibition by indomethacin. J Clin Invest 80:861–866.

    PubMed  Google Scholar 

  • Takikawa H, Stolz A, Sugiyama Y, Yoshida H, Yamanaka M, Kaplowitz N (1990) Relationship between the newly identified bile acid binder and bile acid oxidoreductases in human liver. J Biol Chem 265:2132–2136

    PubMed  Google Scholar 

  • Takikawa H, Sano N, Narita T, Uchida Y, Yamanaka M, Horie T, Mikami T, Tagaya O (1991) Biliary excretion of bile acid conjugates in a hyperbilirubinemic mutant Sprague-Dawley rat. Hepatology 14:353–360

    Article  Google Scholar 

  • Takikawa H, Arai S, Yamanaka M (1992) Binding of bile acids, organic anions, and fatty acids by bovine intestinal Z protein. Arch Biochem Biophys 292:151–155

    Article  PubMed  Google Scholar 

  • Tamarappoo BK, Handlogten ME, Laine RO, Serrano MA, Dugan J, Kilberg MS (1992) Identification of the protein responsible for hepatic system N amino acid transport activity. J Biol Chem 267:2370–2374

    PubMed  Google Scholar 

  • Tarao E, Olinger J, Ostrow JD, Balistreri WF (1982) Impaired bile acid efflux from hepatocytes isolated from livers of rats with cholestasis. Am J Physiol 243:G253–G258

    PubMed  Google Scholar 

  • Tavoloni N, Reed JS, Boyer JI (1982) Effect of chlorpromazine of hepatic clearance and excretion of bile acids by the isolated perfused rat liver. Proc Soc Exp Biol Med 170:486–492

    PubMed  Google Scholar 

  • Tavoloni N, Jones NJT, Berk PD (1985) Postnatal development of bile secretory physiology in the dog. J Pediatr Gastroenterol Nutr 4:256–267

    PubMed  Google Scholar 

  • Taylor PM, Rennie MJ (1987) Perivenous localization of Na+-dependent glutamate transport in perfused rat liver. FEBS Lett 221:370–374

    Article  PubMed  Google Scholar 

  • Tazuma S, Barnhart RL, Reeve LE, Tokumo H, Holzbach RT (1988) Biliary secretion of organic anions in the dog: association with defined lipid particles. Am J Physiol 255:G745–G751

    PubMed  Google Scholar 

  • Thomsen OO (1984) Mechanism and regulation of hepatic bile production. Scand J Gastroenterol 19, Suppl 97, 1–52

    PubMed  Google Scholar 

  • Thomson ABR, Keelan M, Tavernini M, Luethe D, Lam T (1987) Development of active and passive transport of bile acids in rabbit intestine. Mech Age Dev 38:277–286

    Article  Google Scholar 

  • Thurston JH, Hauhart RE, Dirgo JA (1980) Taurine: A role in osmotic regulation of mammalian brain and possible clinical significance. Life Sci 26:1561–1568

    Article  PubMed  Google Scholar 

  • Tipping E, Ketterer B, Christodoulides L, Enderby G (1976) The interaction of haem with ligandin and aminoazo-dye-binding protein A. Biochem J 157:461–467

    PubMed  Google Scholar 

  • Tiribelli C (1992) Determinants in the hepatic uptake of organic anions. J Hepatol 14:385–390

    Article  PubMed  Google Scholar 

  • Tiribelli C, Ostrow JD (1990) New concepts in bilirubin chemistry, transport and metabolism: Report of the international bilirubin workshop, April 6–8, 1989, Trieste, Italy. Hepatology 11:303–313

    PubMed  Google Scholar 

  • Tiribelli C, Panfili E, Sandri E, Frezza M, Sottocasa GL (1976) Liver bromosulfophthalein transport as a carrier mediated process. In: Leevy CM (ed) Diseases of the liver and biliary tract, Karger Basel, p 55–59

    Google Scholar 

  • Tiribelli C, Lunazzi GC, Luciani M, Fanfili E, Gazzin B, Lint G, Sandri G, Sottocasa GL (1978) Isolation of a sulfobromophthalein binding protein from hepatocyte plasma membrane. Biochim Biophys Acta 532:105–112

    PubMed  Google Scholar 

  • Tiribelli C, Meijer DKF, Lunazzi GC, Hardonk MJ, Sottocasa GL (1982) Specific inhibition of the hepatic uptake of dibromosulfophthalein (DBSP) by anti-bilitranslocase antibody. Hepatology 2:749 (abstr)

    Google Scholar 

  • Tiribelli C, Bellentani S, Lunazzi GC, Sottocasa G (1989a) Role and nature of plasma membrane carrier proteins in the hepatic transport of organic anions. J Gastroenterol Hepatol 4:195–205

    Google Scholar 

  • Tiribelli C, Bellentani S, Lunazzi GC, Sottocasa G, Arai S, Yamanaka M (1989b) Binding of bile acids, organic anions, and fatty acids by bovine intestinal Z protein. Arch Biochem Biophys 292:151–155.

    Google Scholar 

  • Tiribelli C, Lunazzi GC, Sottocasa GL (1990) Biochemical and molecular aspects of the hepatic uptake of organic anions. Biochim Biophys Acta 1031:261–275

    PubMed  Google Scholar 

  • Tischler ME, Land JM, Williamson JR (1976) Inhibitors of mitochondrial enzyme and transport systems. In: Altmann PL, Kat DD (eds) Biological handbooks cell biology, chap 50, Fed Am Soc Exp Biol, Bethesda USA, pp 195–207

    Google Scholar 

  • Tokumo H, Aoyama N, Busch N, Mancuso DJ, Holzbach RT (1991) Hepatic extraction of organic anions in the rat depends upon ligand hydrophobicity. Hepatology 13:62–67

    Article  PubMed  Google Scholar 

  • Torres A, Battiston L, Rodriguez J, Tiribelli C (1990) Different hepatic uptake of tetra-(BSP) and di-(DBSP) bromosulfophthalein. Hepatology 12:1002 (Abstract)

    Google Scholar 

  • Tsao SC, Sugiyama Y, Shinmura K, Sawada Y, Nagase S, Iga T, Hanano M (1988) Protein-mediated hepatic uptake of rose bengal in analbuminemic mutant rats (NAR). Albumin is not indispensable to the protein-mediated transport of rose bengal. Drug Metab Dis 16:482–489

    Google Scholar 

  • Turner RJ (1986) b-Amino acid transport across the renal brush-border membrane is coupled to both Na and Cl. J Biol Chem 261:16060–16066

    PubMed  Google Scholar 

  • Ugele B, Locher M, Burger H-J, Gebhardt R (1987) Is there a heterogeneity of liver parenchyma in taurocholate uptake? In: Paumgartner G, Stiehl A, Gerok W (eds) Bile acids and the liver. MTP Press Ltd, Lancaster, pp 153–160

    Google Scholar 

  • Ullrich K, Rumrich G (1988) Contraluminal transport systems in the proximal renal tubule involved in secretion of organic anions. Am J Physiol 254 (Renal Fluid Electrolyte Physiol 23):F453–F462

    PubMed  Google Scholar 

  • Ullrich KJ, Rumrich G, Klöss S, Fasold H (1982) Reabsorption of monocarboxylic acids in the proximal tubule of the rat kidney. Pfluegers Arch 395:212–231

    Article  Google Scholar 

  • Ullrich KJ, Rumrich G, Fritsch G, Klös S (1987) Contraluminal para-aminohippurate (PAH) transport in the proximal tubule of the rat kidney. II. Specificity: Aliphatic dicarboxylic acids. Pflügers Arch 408:38–45

    Article  Google Scholar 

  • Urich VG, Speck U (1991) Biliary excretion of contrast media. In: Siegers CP, Watkins JB (eds) Biliary excretion of drugs and other chemicals. Progr Pharmacol Clin Pharmacol Vol 8/4, Gustav Fischer Verlag Stuttgart New York, pp 307–322

    Google Scholar 

  • Van Bezooijen CFA, Grell T, Knook DL (1976) Bromosulfophthalein uptake by isolated liver parenchymal cells. Biochem Biophys Res Commun 69:354–361

    Article  PubMed  Google Scholar 

  • Van der Sluijs P, Postema B, Meijer DKF (1987) Lactosylation of albumin reduces uptake rate of dibromosulfophthalein in perfused rat liver and dissociation rate from albumin in vitro. Hepatology 7:688–695

    PubMed  Google Scholar 

  • Van Dyke RW, Stephens, JE, Scharschmidt, BF (1982a) Effect of ion substitution on bile acid-dependent and bile acid-independent bile formation by the isolated perfused rat liver. J Clin Invest 70:505–517

    PubMed  Google Scholar 

  • Van Dyke RW, Stephens JE, Scharschmidt BF (1982b) Bile acid transport in cultured hepatocytes. Am J Physiol 243 (Gastrointest Liver Physiol 6):G484–G492

    PubMed  Google Scholar 

  • Van Dyke RW, Gollan JL, Scharschmidt BF (1983) Oxygen consumption by rat liver: effects of taurocholate and sulfobromophthalein transport, glucagon and cation substitution. Am J Physiol 244 (Gastrointest Liver Physiol 7):G523–G531

    PubMed  Google Scholar 

  • Varga F, Fischer E (1978) Age dependent changes in blood supply of the liver and in biliary excretion of eosine in rats. In: Kitani K (ed) Liver and aging, Elsevier North Holland Amsterdam, pp 327-

    Google Scholar 

  • Veerkamp JH, Paulussen RJA (1987) Fatty acid transport in muscle: the role of fatty acid-binding proteins. Biochem Soc Trans 15:331–336

    PubMed  Google Scholar 

  • Veerkamp JH, Peeters RA, Maatman RGHJ (1991) Structural and functional features of different types of cytoplasmic fatty-acid binding proteins. Biochim Biophys Acta 1081:1–24

    PubMed  Google Scholar 

  • Veith CM, Thalhammer T, Felberbauer FX, Graf J (1992) Relationship of hepatic cholate transport to regulation of intracellular pH and potassium. Biochim Biophys Acta 1103:51–61

    PubMed  Google Scholar 

  • Vessey DA, Whitney J, Gollan JL (1983) The role of conjugation reactions in enhancing biliary secretion of bile acids. Biochem J 214:923–927

    PubMed  Google Scholar 

  • Vincent SH, Muller-Eberhard U (1984) A porphyrin-binding protein from rat liver. Hepatology 4:1065 (Abstract)

    Google Scholar 

  • Vincent SH, Holeman B, Muller-Eberhard U (1985a) Purification and characterization of protein Z from rabbit liver cytosol. Biochem Biophys Res Commun 132:575–581

    Article  PubMed  Google Scholar 

  • Vincent SH, Muller-Eberhard U (1985b) A protein of the Z class of liver cytosolic proteins in the rat that preferentially binds heme. J Biol Chem 260:14521–14528

    PubMed  Google Scholar 

  • Vom Dahl S, Hallbrucker C, Lang F, Häussinger D (1991) Regulation of cell volume in the perfused rat liver by hormones. Biochem J 280:105–109

    PubMed  Google Scholar 

  • Von Dippe P, Levy D (1983) Characterization of the bile acid transport system in normal and transformed hepatocytes. J Biol Chem 258:8896–8901

    PubMed  Google Scholar 

  • Von Dippe P, Levy D (1990a) Expression of the bile acid transport protein during liver development and in hepatoma cells. J Biol Chem 265:5942–5945

    PubMed  Google Scholar 

  • Von Dippe P, Levy D (1990b) Reconstitution of the immunopurified 49-kDa sodium-dependent bile acid transport protein derived from hepatocyte sinusoidal plasma membranes. J Biol Chem 265:14812–14816

    PubMed  Google Scholar 

  • Von Dippe P, Drain P, Levy D (1983) Synthesis and transport characteristics of photoaffinity probes for the hepatocyte bile acid transport system. J Biol Chem 258:8890–8895

    PubMed  Google Scholar 

  • Von Dippe P, Ananthanarayanan M, Drain P, Levy D (1986) Purification and reconstitution of a bile acid transport system from hepatocyte sinusoidal membranes. Biochim Biophys Acta 862:352–360

    PubMed  Google Scholar 

  • Von Dippe P, Amoui M, Alves C, Levy D (1993) Sodium-dependent bile acid transport by hepatocytes is mediated by a protein similar to microsomal epoxide hydrolase. Am J Physiol 264 (Gastrointest Liver Physiol 27):G528–G534

    Google Scholar 

  • Vonk RJ, Jekel PA, Meijer DKF, Hardonk MJ (1978) Transport of drugs in isolated hepatocytes. The influence of bile salts. Biochem Pharmacol 27:397–405

    Article  PubMed  Google Scholar 

  • Vonk RJ, Danhof M, Coeraads T, Van Doorn ABD, Keulemans K, Scaf AHJ, Meijer DKF (1979) Influence of bile salts on hepatic transport of dibromosulfophthalein. Am J Physiol 237 (Endocrin Metab Gastrointest Physiol 6):E524–E534

    Google Scholar 

  • Vyska K, Meyer W, Stremmel W, Notohamiprodjo G, Minami K, Machull HJ, Gleichmann U, Meyer H, Körfer R (1991) Fatty acid uptake in normal human myocardium. Circulat Res 69:857–870

    PubMed  Google Scholar 

  • Washizu T, Ikenaga H, Washizu M, Ishida T, Tonoda I, Keneko JJ (1990) Bile acid composition of dog and cat gall-bladder bile. Jpn J Vet Sci 52(2):423–425

    Google Scholar 

  • Watanabe N, Tsukada N, Smith CR, Phillips MJ (1991) Motility of bile canaliculi in the living animal: implications for bile flow. J Cell Biol 113:1069–1080

    Article  PubMed  Google Scholar 

  • Watkins JB, Noda H (1986) Biliary excretion of organic anions in diabetic rats. J Pharmacol Exp Ther 239:467–473

    PubMed  Google Scholar 

  • Watkins JB, Sanders RA (1991) The effects of diabetes on hepatobiliary function. In: Siegers C-P, Watkins JB (eds) Biliary excretion of drugs and other chemicals, Prog Pharmacol Clin Pharmacol Vol 8/4, Gustav Fischer Stuttgart, New York, pp 475–496

    Google Scholar 

  • Weast RC (1988) Dissociation constants of organic acids in aqueous solutions. In: Weast RC (ed) Handbook of chemistry and physics, CRC Press, Boca Raton USA, pp D101–D103

    Google Scholar 

  • Webb JM, Fonda M, Brouwer EA (1962) Metabolism and excretion patterns of fluorescein and certain halogenated fluorescein dyes in rats. J Pharmacol Exp Ther 137:141–147

    PubMed  Google Scholar 

  • Wehrli W, Staehelin M (1975) Rifamycins and other ansamycins. In: Corcoran JW, Hahn FE (eds) Antibiotics Vol III, Mechanism of antimicrobial and antitumor agents. Springer Verlag Heidelberg New York, pp 252–268

    Google Scholar 

  • Weinberg SL, Burckhardt G, Wilson FA (1986) Taurocholate transport by rat intestinal basolateral membrane vesicles. Evidence for the presence of an anion exchange transport system. J Clin Invest 78:44–50

    PubMed  Google Scholar 

  • Weiner IM, Glasser JE, Lack (1964) Renal excretion of bile acids: taurocholic, glycocholic and cholic acids. Am J Physiol 207:964–970

    PubMed  Google Scholar 

  • Weisiger RA (1985) Dissociation from albumin: a potentially rate-limiting step in the clearance of substances by the liver. Proc Natl Acad Sci USA 82:1563–1567

    PubMed  Google Scholar 

  • Weisiger RA, Fitz JG (1988) Sex differences in the electrical potential difference (PD) across the plasma membrane may account for sex differences in the uptake of organic anions and bile acids by the liver. Gastroenterology 94: A605 (Abstract)

    Google Scholar 

  • Weisiger RA, Ma W-L (1987) Uptake of oleate from albumin solutions by rat liver. Failure to detect catalysis of the dissociation of oleate from albumin by an albumin receptor. J Clin Invest 79:1070–1077

    PubMed  Google Scholar 

  • Weisiger RA, Gollan JL, Ockner R (1981) Receptor for albumin on the liver cell surface may mediated uptake of fatty acids and other albumin bound substances. Science Wash DC 211:1048–1051

    Google Scholar 

  • Weisiger RA, Gollan JL, Ockner R (1983) The role of albumin in hepatic uptake processes. In: Popper H, Schaffner F (eds) Progress in liver disease, Grune & Stratton, New York 7:71–85

    Google Scholar 

  • Weisiger RA, Zacks CM, Smith ND, Boyer JL (1984) Effect of albumin binding on extraction of sulfobromophthalein by perfused elasmobranch liver: Evidence for dissociation-limited uptake. Hepatology 4:492–501

    PubMed  Google Scholar 

  • Weisiger RA, Fitz JG, Scharschmidt BF (1987) Hepatic oleate uptake. Electrochemical driving forces. Clin Res 35; 416A

    Google Scholar 

  • Weisiger RA, Fitz JG, Scharschmidt BF (1989a) Hepatic oleate uptake: Electrochemical driving forces in the intact rat liver. J Clin Invest 83:411–420

    PubMed  Google Scholar 

  • Weisiger RA, Pond SM, Bass L (1989b) Albumin enhances unidirectional fluxes of fatty acid across a lipid-water interface: Theory and experiments. Am J Physiol 257:G904–G916

    PubMed  Google Scholar 

  • Welch SG, Metcalfe HK, Monson JP, Cohen RD, Henderson RM, Iles RA (1984) L(+)-Lactate binding to preparations of rat hepatocyte plasma membranes. J Biol Chem 259:15264–15271

    PubMed  Google Scholar 

  • Wennberg RP, Ahlfors CE, Rasmussen F (1979) The pathochemistry of kernicteurs. Early Human Development 3/4:352–372

    Google Scholar 

  • Wettstein M, Vom Dahl S, Lang F, Gerok W, Häussinger D (1990) Cell volume regulatory responses of isolated perfused rat liver. The effect of amino acids. Biol Chem Hoppe-Seyler 371, 493–501

    PubMed  Google Scholar 

  • White MF, Christensen HN (1982) Cationic amino acid transport into cultured animal cells. II. Transport system barely perceptible in ordinary hepatocytes, but active in hepatoma cell lines. J Biol Chem 257:4450–4457

    PubMed  Google Scholar 

  • Wieland T, Nassal M, Kramer W, Fricker G, Bickel U, Kurz G (1984) Identity of hepatic membrane transport systems for bile salts, phalloidin, and antamanide by photoaffinity labeling. Proc Natl Acad Sci USA 81:5232–5236

    PubMed  Google Scholar 

  • Wilson FA (1981) Intestinal transport of bile acids. Am J Physiol 241:G83–G92

    PubMed  Google Scholar 

  • Wilson FA, Burckhardt G, Murer H, Rumrich G, Ullrich KJ (1981) Sodium-coupled taurocholate transport in the proximal convolute of the rat kidney in vivo and in vitro. J Clin Invest 67:1141–1150

    PubMed  Google Scholar 

  • Willson RA, Hart JR, Hall T (1989) Chlorpromazine, administered in vivo and in vitro, inhibits the efflux of bile acids in freshly prepared isolated rat hepatocytes. Pharmacol Toxicol 64:454–458

    PubMed  Google Scholar 

  • Wolff NA, Kinne R, Elger B, Goldstein L (1987) Renal handling of taurine, L-alanine, L-glutamate and D-glucose in opsanus tau: studies on isolated brush border membrane vesicles. J Comp Physiol B 157:573–581

    Article  PubMed  Google Scholar 

  • Wolff NA, Kinne R (1988) Taurine transport by rabbit kidney brush-border membranes: coupling to sodium, chloride and the membrane potential. J Membr Biol 102:131–139

    Article  PubMed  Google Scholar 

  • Wolkoff A (1987) The role of an albumin receptor in hepatic organic anion uptake: The controversy continues. Hepatology 7:777–779

    PubMed  Google Scholar 

  • Wolkoff AW (1989) Studies on the mechanism of organic anion transport by the liver. In: Petzinger E. Kinne RKH, Sies H (eds) Hepatic transport of organic substances, Springer Verlag Berlin, Heidelberg, pp 221–232

    Google Scholar 

  • Wolkoff AW, Chung CT (1980) Identification, purification and partial characterization of an organic anion binding protein from rat liver cell plasma membranes. J Clin Invest 65:1152–1169

    PubMed  Google Scholar 

  • Wolkoff AW, Kelley JN, Waggoner JG, Berk PD, Jacoby W (1978) Hepatic accumulation and intracellular binding of conjugated bilirubin. J Clin Invest 61:142–149

    PubMed  Google Scholar 

  • Wolkoff AW, Sosiak A, Van Renswoude J, Stockert RJ (1983) Immunological localization of an organic anion binding protein (OABP) isolated from rat liver cell plasma membrane. Hepatology 3:875 (Abstract)

    Google Scholar 

  • Wolkoff AW, Sosiak A, Greenblatt HC, Van Renswoude J, Stockert RJ (1985) Immunological studies of an organic anion-binding protein (OABP) isolated from rat liver cell plasma membrane. J Clin Invest 76:454–459

    PubMed  Google Scholar 

  • Wolkoff AW, Burk RD, Sosiak A, Nakata B (1987a) Cloning of a rat liver cell surface membrane organic anion binding protein (OABP). Hepatology 7:1035 (Abstract)

    Google Scholar 

  • Wolkoff AW, Samuelson AC, Johanson KL, Nakata R, Withers DM, Sosiak A (1987b) Influence of chloride on organic anion transport in short-term cultured rat hepatocytes and isolated perfused rat liver. J Clin Invest 79:1259–1268

    PubMed  Google Scholar 

  • Wosilait W (1977) The effect of BSP and rifamycin on the excretion of warfarin in the bile of the rat. Gen Pharmacol 8:349–353

    PubMed  Google Scholar 

  • Wright CE, Tallan HH, Yin YY (1986) Taurine biological update. Ann Rev Biochem 55:427–453

    Article  PubMed  Google Scholar 

  • Wright EM (1985) Transport of carboxylic acids by renal membrane vesicles. Ann Rev Physiol 47:127–141

    Article  Google Scholar 

  • Yachi K, Sugiyama Y, Iga T, Ikeda Y, Toda G, Hanano M (1987) Comparison of bile acid binding to sinusoidal and bile canalicular membranes isolated from rat liver. Biochim Biophys Acta 901:15–22

    PubMed  Google Scholar 

  • Yamanaka M (1992) Binding of bile acids, organic anions, and fatty acids by bovine intestinal Z protein. Arch Biochem Biophys 292:151–155.

    Article  PubMed  Google Scholar 

  • Yamazaki M, Suzuki H, Sugiyama Y, Iga T, Hanano M (1992) Uptake of organic anions in isolated rat hepatocytes. A classification in terms of ATP dependency. J Hepatol 14:41–47

    Article  PubMed  Google Scholar 

  • Yoon YB, Hagey LR, Hofmann AF, Gurantz D, Michelotti EL, Steinbach JH (1986) Effect of side-chain shortening on the physiological properties of bile acids: Hepatic transport and effect on biliary secretion of 23-nor-ursodeoxycholate in rodents. Gastroenterol 90:837–852

    Google Scholar 

  • Zelikovic I, Stejskal-Lorenz E, Lohstroh P, Budreau A, Chesney RW (1989) Anion dependence of taurine transport by rat renal brush-border membrane vesicles. Am J Physiol 256:F646–F655

    PubMed  Google Scholar 

  • Ziegler DM (1985) Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Ann Rev Biochem 54:305–329

    PubMed  Google Scholar 

  • Ziegler K (1985) Further characterization of 3-isothiocyanatobenzamido [3H]cholate binding to hepatocytes. Correlation with bile acid transport inhibition and protection by substrates and inhibitors. Biochim Biophys Acta 819:37–44

    PubMed  Google Scholar 

  • Ziegler K (1989) Identification of carrier proteins in hepatocytes by (photo)affinity labels derived from foreign cyclopeptides. In: Petzinger E, Kinne RKH, Sies H (eds) Hepatic transport of organic substances, Springer Verlag, Berlin, Heidelberg, pp 317–326

    Google Scholar 

  • Ziegler K (1991) Hepatocellular transport of cyclic and linear peptides. In: Bock KW, Gerok W, Matern S, Schmid R (eds) Hepatic metabolism and disposition of endo-and xenobiotics. Kluwer Academic Publishers Dordrecht, pp. 287–302

    Google Scholar 

  • Ziegler K, Elsner RH (1992) Functional molecular mass of the 14C-azidobenzamidotaurocholic acid binding protein in hepatocellular bile acid transport systems. Biochim Biophys Acta 1103:229–232

    PubMed  Google Scholar 

  • Ziegler K, Stünkel W (1992) Tissue-selective action of pravastatin is due to hepatocellular uptake via a sodium-independent bile acid transporter. Biochim Biophys Acta 1139:203–209

    PubMed  Google Scholar 

  • Ziegler K, Petzinger E, Frimmer M (1980) Decreased phalloidin reponse, phallotoxin uptake and bile acid transport in hepatocytes prepared from Wistar rats treated chronically with diethylnitrosamine. Naunyn-Schmiedeberg's Arch Pharmacol 310:245–347

    Article  Google Scholar 

  • Ziegler K, Frimmer M, Möller W, Fasold H (1982a) Affinity labels for membrane components involved in the uptake of bile acids and of phallotoxins by hepatocytes. Development of covalently binding derivatives of bile acids and compounds related to cholecystographic agents. Naunyn-Schmiedeberg's Arch Pharmacol 319:249–253

    Article  Google Scholar 

  • Ziegler K, Frimmer M, Möller W, Fasold H (1982b) Chemical modification of membrane proteins by brominated taurodehydrocholate in isolated hepatocytes. Naunyn-Schmiedeberg's Arch Pharmacol 319:254–261

    Article  Google Scholar 

  • Ziegler K, Frimmer M, Fasold H (1984a) Further characterization of membrane proteins involved in the transport of organic anions in hepatocytes. Comparison of two different affinity labels: 4,4′-diisothiocyano-1,2-diphenylethane-2,2′-disulfonic acid and brominated taurodehydrocholic acid. Biochim Biophys Acta 769:117–129

    PubMed  Google Scholar 

  • Ziegler K, Frimmer M, Müllner S, Fasold H (1984b) 3-Isothiocyanatobenzamido (3H) cholate, a new affinity label for hepatocellular membrane proteins responsible for the uptake of both bile acids and phalloidin. Biochim Biophys Acta 773:11–22

    PubMed  Google Scholar 

  • Ziegler K, Polzin G, Frimmer M (1988a) Hepatocellular uptake of cyclosporin by simple diffusion. Biochim Biophys Acta 938:44–50

    PubMed  Google Scholar 

  • Ziegler K, Frimmer M, Kessler H, Haupt A (1988b) Azidobenzamido-008, a new photosensitive substrate for the multispecific bile acid transporter of hepatocytes. Biochim Biophys Acta 945:263–272

    PubMed  Google Scholar 

  • Ziegler K, Frimmer M, Müllner S, Fasold H (1989) Bile acid binding proteins in hepatocellular membranes of newborn and adult rats. Identification of transport proteins with azidobenzamidotaurocholate ([14C]ABATC). Biochim Biophys Acta 980:161–168

    PubMed  Google Scholar 

  • Zimmerli B, Valantinas J, Meier PJ (1989a) Multispecificity of Na+-dependent taurocholate uptake in basolateral (sinusoidal) rat liver plasma membrane vesicles. J Pharmacol Exp Ther 250:301–308

    PubMed  Google Scholar 

  • Zimmerli B, Bocesterli UA, Meier PJ (1989b) Evidence for basolateral Na+/dicarboxylate cotransport and dicarboxylate/bile acid exchange in rat hepatocytes. Hepatology 9:594 (Abstract)

    PubMed  Google Scholar 

  • Zimmerman WB, Byun E, McKinney TD, Sokol PP (1991) Sulfhydryl groups are essential for organic cation exchange in rabbit renal basolateral membrane vesicles. J Biol Chem 266:5459–5463

    PubMed  Google Scholar 

  • Zimniak P, Little JM, Radominska A, Oleberg DG, Anwer MS, Lester R (1991a) Taurine-conjugated bile acids act as Ca++ ionophores. Biochem 30:8598–8604

    Article  Google Scholar 

  • Zimniak P, Radominska A, Lester R (1991b) Phase I and II biotransformation of bile acids. In: Bock KW, Gerok W, Matern S, Schmid R (eds) Hepatic metabolism and disposition of endo-and xenobiotics, Kluwer Academic Publishers, Dordrecht, pp 183–192

    Google Scholar 

  • Zimniak P, Ziller SA, Panfil I, Radominska A, Wolters H, Kuipers F, Sharma R, Saxena M, Moslen MT, Vore M, Vonk R, Awasthi YC, Lester R (1992) Identification of an aniontransport ATPase that catalyzes glutathione conjugate-dependent ATP hydrolysis in canalicular plasma membranes from normal rats and rats with conjugated hyperbilirubinemia (GY mutant). Arch Biochem Biophys 292:534–538

    Article  PubMed  Google Scholar 

  • Ziyadeh FN, Feldmann GM, Booz GW, Kleinzeller A (1988) Taurine and cell volume maintenance in the shark rectal gland: cellular fluxes and kinetics. Biochim Biophys Acta 943:43–52

    PubMed  Google Scholar 

  • Zouboulis-Vafiadis I, Dumont M, Erlinger S (1982) Conjugation is rate limiting in hepatic transport of ursodeoxycholate in the rat. Am J Physiol 243 (Gastrointest Liver Physiol 6):G208–G213

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Petzinger, E. (1994). Transport of organic anions in the liver. An update on bile acid, fatty acid, monocarboxylate, anionic amino acid, cholephilic organic anion, and anionic drug transport. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 123. Reviews of Physiology, Biochemistry and Pharmacology, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0030903

Download citation

  • DOI: https://doi.org/10.1007/BFb0030903

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57536-8

  • Online ISBN: 978-3-540-48217-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics