Skip to main content
Log in

Glucan-Based Macrophage Stimulators

A Review of their Anti-Infective Potential

  • Review Article
  • Research Perspective
  • Published:
Clinical Immunotherapeutics Aims and scope Submit manuscript

Summary

Sepsis and sepsis syndrome are significant causes of morbidity and mortality in critically ill surgical patients. Despite technological and therapeutic advances in critical care, sepsis continues to be a pivotal factor in 20 to 50% of deaths in surgical intensive care units. It is clear that alternative approaches to the prevention and/or treatment of sepsis must be found.

Preclinical data indicate that macrophage activation with (1 →3)-β-D-glucans will ameliorate sequelae associated with Gram-negative septicaemia. We and others have translated these preclinical observations to the clinical setting and have shown that macrophage activation with (1→3)-β-D-glucans will significantly reduce septic morbidity and mortality in trauma and/or high-risk surgical patients. The precise mechanism(s) by which (1→3)-β-D-glucans prevent or ameliorate infections have not been fully elucidated. However, recent data suggest the anti-infective efficacy of (1→3)-β-D-glucans is attributable, in part, to macrophage activation induced by binding of (1→3)-β-D-glucan to a specific receptor followed by modulation of macrophage pro-inflammatory cytokine expression.

This article reviews the anti-infective potential of (1→3)-β-D-glucans in the prevention of sepsis and septic sequelae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bone RC. Gram-negative sepsis. Background, clinical features and intervention. Chest 1991; 100: 802–8

    Article  PubMed  CAS  Google Scholar 

  2. Welbourn CR, Young Y. Endotoxin, septic shock and acute lung injury: neutrophils, macrophages and inflammatory mediators. Br J Surg 1992; 79: 998–1003

    Article  PubMed  CAS  Google Scholar 

  3. Ertel W, Morrison MH, Wang P, et al. The complex pattern of cytokines in sepsis. Association between prostaglandins, cachectin and interleukins. Ann Surg 1991; 214: 141–8

    Article  PubMed  CAS  Google Scholar 

  4. Seatter SC, Bennet T, Li MH, et al. Macrophage endotoxin tolerance: tumor necrosis factor and interleukin-1 regulation by lipopolysaccharide pretreatment. Arch Surg 1994; 129: 1263–70

    Article  PubMed  CAS  Google Scholar 

  5. Ayala A, Perrin MM, Wang P, et al. Sepsis induces an early increased spontaneous release of hepatocellular stimulatory factor (interleukin-6) by Kupffer cells in both endotoxin tolerant and intolerant mice. J Surg Res 1992; 52: 635–41

    Article  PubMed  CAS  Google Scholar 

  6. Ayala A, Perrin MM, Kidala JM, et al. Polymicrobial sepsis selectively activates peritoneal but not alveolar macrophages to release inflammatory mediators (interleukin-1 and -6) and tumor necrosis factor. Circ Shock 1992; 36: 191–9

    PubMed  CAS  Google Scholar 

  7. Natanson C, Hoffman WD, Suffredini AF, et al. Selected treatment strategies for septic shock based on proposed mechanisms of pathogenesis. Ann Intern Med 1994; 120: 771–83

    PubMed  CAS  Google Scholar 

  8. McCloskey RV, Straube RC, Sanders C, et al. Treatment of septic shock with human monoclonal antibody HA-1A. A randomized, double-blind, placebo-controlled trial. CHESS Trial Study Group [see comments]. Ann Intern Med 1994; 121: 1–5

    PubMed  CAS  Google Scholar 

  9. Zanetti G, Glauser MP, Baumgartner JD. Anti-endotoxin antibodies and other inhibitors of endotoxin. New Horizons 1993; 1: 110–9

    PubMed  CAS  Google Scholar 

  10. Fisher Jr CJ, Dhainaut JF, Opal SM, et al. Recombinant human interleukin 1 receptor antagonist in the treatment of patients with sepsis syndrome. Results from a randomized, double-blind, placebo-controlled trial. Phase III rhIL-1ra Sepsis Syndrome Study Group. JAMA 1994; 271: 1836–43

    Article  PubMed  Google Scholar 

  11. Dries DJ, Jurkovick GJ, Maier RV, et al. Effect of interferon gamma on infection-related death in patients with severe injuries: a randomized, double-blind, placebo-controlled trial. Arch Surg 1994; 129: 1031–41

    Article  PubMed  CAS  Google Scholar 

  12. Browder W, Williams D, Pretus H, et al. Beneficial effect of enhanced macrophage function in the trauma patient. Ann Surg 1990; 211: 605–13

    PubMed  CAS  Google Scholar 

  13. Babineau TJ, Marcello P, Swails W, et al. Randomized phase I/II trial of a macrophage-specific immunomodulator (PGG-glucan) in high-risk surgical patients. Ann Surg 1994; 220: 601–9

    Article  PubMed  CAS  Google Scholar 

  14. Babineau TJ, Hackford A, Kenler A, et al. A phase II multicenter, double-blind, randomized, placebo-controlled study of three dosages of an immunomodulator (pgg-glucan) in high-risk surgical patients. Arch Surg 1994; 129: 1204–10

    Article  PubMed  CAS  Google Scholar 

  15. Williams DL, Browder IW, DiLuzio NR. Immunotherapeutic modification of Escherichia coli-induced experimental peritonitis and bacteremia by glucan. Surgery 1983; 93: 448–54

    PubMed  CAS  Google Scholar 

  16. Browder W, Williams D, Sherwood E, et al. Synergistic effect of nonspecific immunostimulation and antibiotics in experimental peritonitis. Surgery 1987; 102: 206–14

    PubMed  CAS  Google Scholar 

  17. Moore JN, Cook JA, Morris DD, et al. Endotoxin-induced procoagulant activity, eicosanoid synthesis, and tumor necrosis factor production by rat peritoneal macrophages: effect of endotoxin tolerance and glucan. Circ Shock 1990; 31: 281–95

    PubMed  CAS  Google Scholar 

  18. Sherwood ER, Williams DL, McNamee RB, et al. Enhancement of interleukin-1 and interleukin-2 production by soluble glucan. Int J Immunopharmacol 1987; 9: 261–7

    Article  PubMed  CAS  Google Scholar 

  19. Rasmussen LT, Seljelid R. Dynamics of blood components and peritoneal fluid during treatment of murine E. coli sepsis with beta-1,3-D-polyglucose derivatives. I. Cells. Scand J Immunol 1990; 32: 321–31

    Article  PubMed  CAS  Google Scholar 

  20. Hoffman OA, Olson EJ, Limper AH. Fungal β-glucans modulate macrophage release of tumor necrosis factor-α in response to bacterial lipopolysaccharide. Immunol Lett 1993; 37: 19–25

    Article  PubMed  CAS  Google Scholar 

  21. Pretus HA, Browder IW, Lucore P, et al. Macrophage activation decreases macrophage prostaglandin E2 release in experimental trauma. J Trauma 1989; 29: 1152–7

    Article  PubMed  CAS  Google Scholar 

  22. Williams DL, McNamee RB, Jones EL, et al. A method for the solubilization of a (1–3)-β-D-glucan isolated from Saccharomyces cerevisiae. Carbohydr Res 1991; 219: 203–13

    Article  PubMed  CAS  Google Scholar 

  23. Marchessault RH, Deslandes Y. Fine structure of (1→3)-D-glucans: curdlan and paramylon. Carbohydr Res 1979; 75: 231–42

    Article  CAS  Google Scholar 

  24. Deslandes Y, Marchessault RH, Sarko A. Triple-helical structure of (1→3)-D-glucan. Macromolecules 1980; 13: 1466–71

    Article  CAS  Google Scholar 

  25. Bluhm TL, Deslandes Y, Marchessault RH, et al. Solid-state and solution conformation of scleroglucan. Carbohydr Res 1982; 100: 117–30

    Article  CAS  Google Scholar 

  26. Williams DL, Sherwood ER, Browder IW, et al. Effect of glucan on neutrophil dynamics and immune function in Escherichia coli peritonitis. J Surg Res 1988; 44: 54–61

    Article  PubMed  CAS  Google Scholar 

  27. Pretus HA, Ensley HE, McNamee RB, et al. Isolation, physicochemical characterization and preclinical efficacy evaluation of soluble scleroglucan. J Pharmacol Exp Ther 1991; 257(1): 500–10

    PubMed  CAS  Google Scholar 

  28. Mansell PWA, Ichinose H, Reed RJ, et al. Macrophage-mediated destruction of human malignant cells in vivo. J Natl Cancer Inst 1975; 54(3): 571–80

    PubMed  CAS  Google Scholar 

  29. Williams DL, Sherwood ER, McNamee RB, et al. Therapeutic efficacy of glucan in a murine model of hepatic metastatic disease. Hepatology 1985; 5: 198–206

    Article  PubMed  CAS  Google Scholar 

  30. Cook JA, Dougherty WJ, Holt TM. Enhanced sensitivity to endotoxin induced by the RE stimulant, glucan. Circ Shock 1980; 7: 225–38

    PubMed  CAS  Google Scholar 

  31. Bowers GJ, Patchen ML, MacVittie TJ, et al. A comparative evaluation of particulate and soluble glucan in an endotoxin model. Int J Immunopharmacol 1986; 8: 313–21

    Article  PubMed  CAS  Google Scholar 

  32. Rasmussen LT, Fandrem J, Seljelid R. Dynamics of blood components and peritoneal fluid during treatment of murine E. coli sepsis with beta-1,3-D-polyglucose derivatives. II. Interleukin 1, tumour necrosis factor, prostaglandin E2, and leukotriene B4. Scand J Immunol 1990; 32: 333–40

    Article  PubMed  CAS  Google Scholar 

  33. Doita M, Rasmussen LT, Seljelid R, et al. Effect of soluble aminated beta-1,3-D-polyglucose on human monocytes: stimulation of cytokine and prostaglandin E2 production but not antigen-presenting function. J Leukoc Biol 1991; 49: 342–51

    PubMed  CAS  Google Scholar 

  34. Williams DL, Pretus HA, McNamee RB, et al. Development of a water-soluble, sulfated (1–3)-β-D-glucan biological response modifier derived from Saccharomyces cerevisiae. Carbohydr Res 1992; 235: 247–57

    Article  PubMed  CAS  Google Scholar 

  35. Williams DL, Pretus HA, McNamee RB, et al. Development, physicochemical characterization and preclinical efficacy evaluation of a water soluble glucan sulfate derived from Saccharomyces cerevisiae. Immunopharmacology 1991; 22: 139–56

    Article  PubMed  CAS  Google Scholar 

  36. Felippe J, Silva M, Maciel FM, et al. Infection prevention in patients with severe multiple trauma with the immunomodulator beta 1–3 polyglucose (glucan). Surg Gynecol Obstet 1993; 177: 383–8

    Google Scholar 

  37. Faist E, Mewes A, Baker CC, et al. Prostaglandin E2 (PGE2) dependent suppression of interleukin alpha (IL-2) production in patients with major trauma. J Trauma 1987; 27: 837–48

    Article  PubMed  CAS  Google Scholar 

  38. Antrum RM, Solomkin JS. Monocyte dysfunction in severe trauma: evidence for the role of C5a in deactivation. Surgery 1986; 100: 29–37

    PubMed  CAS  Google Scholar 

  39. Fife D, Kraus J. Infection as a contributory cause of death in patients hospitalized for motor vehicle trauma. Am J Surg 1988; 155: 278–82

    Article  PubMed  CAS  Google Scholar 

  40. Salmi LR, Williams JI, Waxweiler RJ. Measuring the impact of trauma care on survival: rates of preventable death, effectiveness, and efficacy. J Clin Epidemiol 1990; 43: 399–403

    Article  PubMed  CAS  Google Scholar 

  41. Czop JK, Austen KF. Properties of glycans that activate the human alternative complement pathway and interact with the human monocyte beta-glucan receptor. J Immunol 1985; 135: 3388–93

    PubMed  CAS  Google Scholar 

  42. Czop JK, Austen KF. Generation of leukotrienes by human monocytes upon stimulation of their beta-glucan receptor during phagocytosis. Proc Natl Acad Sci USA 1985; 82: 2751–5

    Article  PubMed  CAS  Google Scholar 

  43. Czop JK, Austen KF. Beta-glucan inhibitable receptor on human monocytes: its identity with the phagocytic receptor for particulate activators of the alternative complement pathway. J Immunol 1985; 134: 2588–93

    PubMed  CAS  Google Scholar 

  44. Goldman R. Induction of a beta-1,3-D-glucan receptor in P388D1 cells treated with retinoic acid or 1,25-dihydroxyvitamin D3. Immunology 1988; 63: 319–24

    PubMed  CAS  Google Scholar 

  45. Czop JK, Kay J. Isolation and characterization of β-glucan receptors on human mononuclear phagocytes. J Exp Med 1991; 173: 1511–20

    Article  PubMed  CAS  Google Scholar 

  46. Leibovici J, Stark Y, Eldar T, et al. Mechanism of the inhibitory effect of levan on experimental tumors. Recent Results Cancer Res 1980; 75: 173–9

    Article  PubMed  CAS  Google Scholar 

  47. Williams JD, Topley N, Alobaidi HM, et al. Activation of human polymorphonuclear leucocytes by particulate zymosan is related to both its major carbohydrate components: glucan and mannan. Immunology 1986; 58: 117–24

    PubMed  CAS  Google Scholar 

  48. Janusz MJ, Austen KF, Czop JK. Isolation of a yeast heptaglucoside for monocyte phagocytic β-glucan receptors. FASEB J 1989; 3: 6421

    Google Scholar 

  49. Christ WJ, Asano O, Robidoux ALC, et al. E5531, a pure endotoxin antagonist of high potency. Science 1995; 268: 80–3

    Article  PubMed  CAS  Google Scholar 

  50. Sherwood ER, Williams DL, Di Luzio NR. Glucan stimulates production of antitumor cytolytic/cytostatic factor(s) by macrophages. J Biol Response Mod 1986; 5: 504–26

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, D.L., Mueller, A. & Browder, W. Glucan-Based Macrophage Stimulators. Clin. Immunother. 5, 392–399 (1996). https://doi.org/10.1007/BF03259335

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03259335

Keywords

Navigation