Skip to main content
Log in

Cell and receptor type-specific alterations in markers of GABA neurotransmission in the prefrontal cortex of subjects with schizophrenia

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Impairments in cognitive control, such as those involved in working memory, are associated with dysfunction of the dorsolateral prefrontal cortex (DLPFC) in individuals with schizophrenia. This dysfunction appears to result, at least in part, from abnormalities in GABA-mediated neurotransmission. In this paper, we review recent findings indicating that the altered DLPFC circuitry in subjects with schizophrenia reflects changes in the expression of genes that encode selective presynaptic and postsynaptic components of GABA neurotransmission. Specifically, using a combination of methods, we found that subjects with schizophrenia exhibited expression deficits in GABA-related transcripts encoding presynaptic regulators of GABA neurotransmission, neuropeptide markers of specific subpopulations of GAB A neurons, and certain subunits of the GABAA receptor. In particular, alterations in the expression of the neuropeptide somatostatin suggested that GABA neurotransmission is impaired in the Martinotti subset of GABA neurons that target the dendrites of pyramidal cells. In contrast, none of the GABA-related transcripts assessed to date were altered in the DLPFC of monkeys chronically exposed to antipsychotic medications, suggesting that the effects observed in the human studies reflect the disease process and not its treatment. In concert with previous findings, these data suggest that working memory dysfunction in schizophrenia may be attributable to altered GABA neurotransmission in specific DLPFC microcircuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akbarian S and HS Huang (2006) Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders.Brain Res. Rev. 52, 293–304.

    Article  PubMed  CAS  Google Scholar 

  • Akbarian S, JJ Kim, SG Potkin, JO Hagman, A Tafazzoli, WE Bunney Jr and EG Jones (1995) Gene expression for glutamic acid decarboxylase is reduced without loss of neurons inprefrontal cortex of schizophrenics.Arch. Gen. Psychiatry 52, 258–266.

    PubMed  CAS  Google Scholar 

  • Andreasen NC, R Rezai, R Alliger, VW Swayze II, M Flaum, P Kirchner, G Cohen and DS O’Leary (1992) Hypofrontality in neuroleptic-naive patients and in patients with chronic schizophrenia: assessment with xenon 133 single-photon emission computed tomography and the Tower of London.Arch. Gen. Psychiatry 49, 943–958.

    PubMed  CAS  Google Scholar 

  • Asada H, Y Kawamura, K Maruyama, H Kume, R Ding, FY Ji, N Kanbara, H Kuzume, M Sanbo, T Yagi and K Obata (1996) Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures.Biochem. Biophys. Res. Comm. 229, 891–895.

    Article  PubMed  CAS  Google Scholar 

  • Asada H, Y Kawamura, K Maruyama, H Kume, R Ding, N Kanbara, H Kuzume, M Sanbo, T Yagi and K Obata (1997) Cleft palate and decreased brain γ-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase.Proc. Natl. Acad. Sci. USA 94, 6496–6499.

    Article  PubMed  CAS  Google Scholar 

  • Baddeley A (1992) Working memory.Science 255, 556–559.

    Article  PubMed  CAS  Google Scholar 

  • Barch DM (2006) What can research on schizophrenia tell us about the cognitive neuroscience of working memory?Neuroscience 139, 73–84.

    Article  PubMed  CAS  Google Scholar 

  • Barch DM, YI Sheline, JG Csernansky and AZ Snyder (2003) Working memory and prefrontal cortex dysfunction: specificity to schizophrenia compared with major depression.Biol. Psychiatry 53, 376–384.

    Article  PubMed  Google Scholar 

  • Battaglioli G, H Liu and DL Martin (2003) Kinetic differences between the isoforms of glutamate decarboxylase: implications for the regulation of GABA synthesis.J. Neurochem. 86, 879–887.

    Article  PubMed  CAS  Google Scholar 

  • Bayer SA and J Altman (1990) Development of layer I and the subplate in the rat neocortex.Exp. Neurol. 107, 48–62.

    Article  PubMed  CAS  Google Scholar 

  • Beasley CL, ZJ Zhang, I Patten and GP Reynolds (2002) Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins.Biol. Psychiatry 52, 708–715.

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, SL Vincent, A Marie and Y Khan (1996) Up-regulation of GABA-A receptor binding on neurons of the prefrontal cortex in schizophrenic subjects.Neuroscience 75, 1021–1031.

    Article  PubMed  CAS  Google Scholar 

  • Benes FM, MS Todtenkopf, P Logiotatos and M Williams (2000) Glutamate decarboxylase(65)-immunoreactive terminals in cingulate and prefrontal cortices of schizophrenic and bipolar brain.J. Chem. Neuroanat. 20, 259–269.

    Article  PubMed  CAS  Google Scholar 

  • Bird ED, EGS Spokes and LL Iversen (1979) Increased dopamine concentration in limbic areas of brain from patients dying with schizophrenia.Brain 102, 347–360.

    Article  PubMed  CAS  Google Scholar 

  • Brown AS (2006) Prenatal infection as a risk factor for schizophrenia.Schizophr. Bull. 32, 200–202.

    Article  PubMed  Google Scholar 

  • Buchsbaum M (1990) The frontal lobes, basal ganglia and temporal lobes as sites for schizophrenia.Schizophr. Bull. 16, 379–389.

    PubMed  CAS  Google Scholar 

  • Callicott JH, VS Mattay, BA Verchinski, S Marenco, MF Egan and DR Weinberger (2003) Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down.Am. J. Psychiatry 160, 2209–2215.

    Article  PubMed  Google Scholar 

  • Cannon TD, DC Glahn, J Kim, TG Van Erp, K Karlsgodt, MS Cohen, KH Nuechterlein, S Bava and D Shirinyan (2005) Dorsolateral prefrontal cortex activity during maintenance and manipulation of information in working memory in patients with schizophrenia.Arch. Gen. Psychiatry 62, 1071–1080.

    Article  PubMed  Google Scholar 

  • Carter CS, W Perlstein, R Ganguli, J Brar, M Mintun and JD Cohen (1998) Functional hypofrontality and working memory dysfunction in schizophrenia.Am. J. Psychiatry 155, 1285–1287.

    PubMed  CAS  Google Scholar 

  • Chun JJM and CJ Shatz (1989) Interstitial cells of the adult neocortical white matter are the remnant of the early generated subplate neuron population.J. Comp. Neurol. 282, 555–569.

    Article  PubMed  CAS  Google Scholar 

  • Condé F, JS Lund, DM Jacobowitz, KG Baimbridge and DA Lewis (1994) Local circuit neurons immunoreactive for calretinin, calbindin D-28k, or parvalbumin in monkey prefrontal cortex: distribution and morphology.J. Comp. Neurol. 341, 95–116.

    Article  PubMed  Google Scholar 

  • Cosway R, M Byrne, R Clafferty, A Hodges, E Grant, SS Abukmeil, SM Lawrie, P Miller and EC Johnstone (2000) Neuropsychological change in young people at high risk for schizophrenia: results from the first two neuropsychological assessments of the Edinburgh High Risk Study.Psychol. Med. 30, 1111–1121.

    Article  PubMed  CAS  Google Scholar 

  • Cotter D, S Landau, C Beasley, R Stevenson, G Chana, L MacMillan and I Everall (2002) The density and spatial distribution of GABAergic neurons, labelled using calcium binding proteins, in the anterior cingulate cortex in major depressive disorder, bipolar disorder, and schizophrenia.Biol. Psychiatry 51, 377–386.

    Article  PubMed  CAS  Google Scholar 

  • Davidson M, A Reichenberg, J Rabinowitz, M Weiser, Z Kaplan and M Mark (1999) Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents.Am. J. Psychiatry 156, 1328–1335.

    PubMed  CAS  Google Scholar 

  • DeFelipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex.J. Chem. Neuroanat. 14, 1–19.

    Article  PubMed  CAS  Google Scholar 

  • DeLima AD and JH Morrison (1989) Ultrastructural analysis of somatostatin-immunoreactive neurons and synapses in the temporal and occipital cortex of the macaque monkey.J. Comp. Neurol. 283, 212–227.

    Article  CAS  Google Scholar 

  • Egan MF, TE Goldberg, T Gscheidle, M Weirich, R Rawlings, TM Hyde, L Bigelow and DR Weinberger (2001) Relative risk for cognitive impairments in siblings of patients with schizophrenia.Biol. Psychiatry 50, 98–107.

    Article  PubMed  CAS  Google Scholar 

  • Eggan SM, T Hashimoto and DA Lewis (2008) Reduced cortical cannabinoid 1 receptor mRNA and protein expression in schizophrenia.Arch. Gen. Psychiatry 65, 772–784.

    Article  PubMed  Google Scholar 

  • Elvevåg B and TE Goldberg (2000) Cognitive impairment in schizophrenia is the core of the disorder.Crit. Rev. Neurobiol. 14, 1–21.

    PubMed  Google Scholar 

  • Farrant M and Z Nusser (2005) Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors.Nat. Rev. Neurosci. 6, 215–229.

    Article  PubMed  CAS  Google Scholar 

  • Foldy C, SY Lee, J Szabadics, A Neu and I Soltesz (2007) Cell type-specific gating of perisomatic inhibition by cholecystokinin.Nat. Neurosci. 10, 1128–1130.

    Article  PubMed  CAS  Google Scholar 

  • Freund TF and I Katona (2007) Perisomatic inhibition.Neuron 56, 33–42.

    Article  PubMed  CAS  Google Scholar 

  • Fritschy JM and H Mohler (1995) GABAA-receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits.J. Comp. Neurol. 359, 154–194.

    Article  PubMed  CAS  Google Scholar 

  • Gabbott PLA and SJ Bacon (1996) Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions.J. Comp. Neurol. 364, 609–636.

    Article  PubMed  CAS  Google Scholar 

  • Gibson JR, M Beierlein and BW Connors (1999) Two networks of electrically coupled inhibitory neurons in neocortex.Nature 402, 75–79. Gold JM (2004) Cognitive deficits as treatment targets in schizophrenia.Schizophr. Res. 72, 21-28.

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory, In:Handbook of Physiology (Plum F and V Mountcastle, Eds.) (American Physiological Society:Bethesda, MD), pp 373–417.

    Google Scholar 

  • Goldman-Rakic PS (1999) The physiology approach: functional architecture of working memory and disordered cognition in schizophrenia.Biol. Psychiatry 46, 650–661.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Burgos G and DA Lewis (2008) GAB A neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia.Schizophr. Bull. 34, 944–961.

    Article  PubMed  Google Scholar 

  • Gorba T and P Wahle (1999) Expression of trkB and trkC but not BDNF mRNA in neurochemically identified interneurons in rat visual cortexin vivo and in organotypic cultures.Eur. J. Neurosci. 11, 1179–1190.

    Article  PubMed  CAS  Google Scholar 

  • Green MF (1996) What are the functional consequences of neurocognitive deficits in schizophrenia?Am. J. Psychiatry 153, 321–330.

    PubMed  CAS  Google Scholar 

  • Green MF (1998)Schizophrenia From a Neurocognitive Perspective: Probing the Impenetrable Darkness (Allyn and Bacon:Boston, MA).

    Google Scholar 

  • Guidotti A, J Auta, JM Davis, VD Gerevini, Y Dwivedi, DR Grayson, F Impagnatiello, G Pandey, C Pesold, R Sharma, D Uzunov and E Costa (2000) Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder.Arch. Gen. Psychiatry 57, 1061–1069.

    Article  PubMed  CAS  Google Scholar 

  • Gur RC and RE Gur (1995) Hypofrontality in schizophrenia: RIP?Lancet 345, 1383–1384.

    Article  PubMed  CAS  Google Scholar 

  • Hanada S, T Mita, N Nishino and C Tanaka (1987) [3H] Muscimol binding sites increased in autopsied brains of chronic schizophrenics.Life Sci. 40, 239–266.

    Article  Google Scholar 

  • Harvey PD, E Howanitz, M Parrella, L White, M Davidson, RC Mohs, J Hoblyn and KL Davis (1998) Symptoms, cognitive functioning, and adaptive skills in geriatric patients with lifelong schizophrenia: a comparison across treatment sites.Am. J. Psychiatry 155, 1080–1086.

    PubMed  CAS  Google Scholar 

  • Hashimoto T, DW Volk, SM Eggan, K Mirnics, JN Pierri, Z Sun, AR Sampson and DA Lewis (2003) Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia.J. Neurosci. 23, 6315–6326.

    PubMed  CAS  Google Scholar 

  • Hashimoto T, SE Bergen, QL Nguyen, B Xu, LM Monteggia, JN Pierri, Z Sun, AR Sampson and DA Lewis (2005) Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia.J. Neurosci. 25, 372–383.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, D Arion, T Unger, JG Maldonado-Aviles, HM Morris, DW Volk, K Mirnics and DA Lewis (2008) Alterations in GABA-related transcriptome in the dorsolateral prefrontal cortex of subjects with schizophrenia.Mol. Psychiatry 13, 147–161.

    Article  PubMed  CAS  Google Scholar 

  • Hendry SHC, EG Jones and PC Emson (1984) Morphology, distribution, and synaptic relations of somatostatin-and neuropeptide Y-immunoreactive neurons in rat and monkey neocortex.J. Neurosci. 4, 2497–2517.

    PubMed  CAS  Google Scholar 

  • Hendry SHC, MM Huntsman, A Viñuela, H Mohler, AL de Blas and EG Jones (1994) GABAA receptor subunit immunoreactivity in primate visual cortex: distribution in macaques and humans and regulation by visual input in adulthood.J. Neurosci. 14, 2383–2401.

    PubMed  CAS  Google Scholar 

  • Huntsman MM, BV Tran, SG Potkin, WE Bunney and EG Jones (1998) Altered ratios of alternatively spliced long and short γ2 subunit mRNAs of the γ-amino butyrate type A receptor in prefrontal cortex of schizophrenics.Proc. Natl. Acad. Sci. USA 95, 15066–15071.

    Article  PubMed  CAS  Google Scholar 

  • Hyman SE and WS Fenton (2003) Medicine. What are the right targets for psychopharmacology?Science 299, 350–351.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa M, K Mizukami, M Iwakiri and T Asada (2005) Immunohistochemical and immunoblot analysis of γ-aminobutyric acid B receptor in the prefrontal cortex of subjects with schizophrenia and bipolar disorder.Neurosci. Lett. 383, 272–277.

    Article  PubMed  CAS  Google Scholar 

  • Karson MA, KC Whittington and BE Alger (2008) Cholecystokinin inhibits endocannabinoid-sensitive hippocampal IPSPs and stimulates others.Neuropharmacology 54, 117–128.

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y (1995) Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/ m of rat frontal cortex.J. Neurosci. 15, 2638–2655.

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y and S Kondo (2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex.J. Neurocytol. 31, 277–287.

    Article  PubMed  Google Scholar 

  • Kawaguchi Y and Y Kubota (1993) Correlation of physiological subgroupings of nonpyramidal cells with parvalbuminand calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex.J. Neurophysiol. 70, 387–396.

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y and Y Kubota (1996) Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex.J. Neurosci. 16, 2701–2715.

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y and Y Kubota (1997) GABAergic cell subtypes and their synaptic connections in rat frontal cortex.Cereb. Cortex 7, 476–486.

    Article  PubMed  CAS  Google Scholar 

  • Keefe RS, CE Eesley and MP Poe (2005) Defining a cognitive function decrement in schizophrenia.Biol. Psychiatry 57, 688–691.

    Article  PubMed  Google Scholar 

  • Kostovic I and P Rakic (1980) Cytology and the time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon.J. Neurocytol. 9, 219–242.

    Article  PubMed  CAS  Google Scholar 

  • Kralic JE, ER Korpi, TK O’Buckley, GE Homanics and AL Morrow (2002) Molecular and pharmacological characterization of GABAA receptor alpha1 subunit knockout mice.J. Pharmacol. Exp. Ther. 302, 1037–1045.

    Article  PubMed  CAS  Google Scholar 

  • Krimer LS, AV Zaitsev, G Czanner, S Kroner, G Gonzalez-Burgos, NV Povysheva, S Iyengar, G Barrionuevo and DA Lewis (2005) Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2–3 of monkey dorsolateral prefrontal cortex.J. Neurophysiol. 94, 3009–3022.

    Article  PubMed  Google Scholar 

  • Kubota Y, R Hattori and Y Yui (1994) Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex.Brain Res. 649, 159–173.

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA and P Levitt (2002) Schizophrenia as a disorder of neurodevelopment.Annu. Rev. Neurosci. 25, 409–432.

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, T Hashimoto and DW Volk (2005) Cortical inhibitory neurons and schizophrenia.Nat. Rev. Neurosci. 6, 312–324.

    Article  PubMed  CAS  Google Scholar 

  • Lisman JE, JT Coyle, RW Green, DC Javitt, FM Benes, S Heckers and AA Grace (2008) Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia.Trends Neurosci. 31, 234–242.

    Article  PubMed  CAS  Google Scholar 

  • Lund JS and DA Lewis (1993) Local circuit neurons of developing and mature macaque prefrontal cortex: Golgi and immunocytochemical characteristics.J. Comp. Neurol. 328, 282–312.

    Article  PubMed  CAS  Google Scholar 

  • Luskin MB and CJ Shatz (1985) Studies of the earliest generated cells of the cat’s visual cortex: cogeneration of the subplate and marginal zones.J. Neurosci. 5, 1062–1075.

    PubMed  CAS  Google Scholar 

  • Ma Y, H Hu, AS Berrebi, PH Mathers and A Agmon (2006) Distinct subtypes of somatostatin-containing neocortical interneurons revealed in transgenic mice.J. Neurosci. 26, 5069–5082.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald AW III, CS Carter, JG Kerns, S Ursu, DM Barch, AJ Holmes, VA Stenger and JD Cohen (2005) Specificity of prefrontal dysfunction and context processing deficits to schizophrenia in never-medicated patients with first-episode psychosis.Am. J. Psychiatry 162, 475–484.

    Article  PubMed  Google Scholar 

  • Mangan PS, C Sun, M Carpenter, HP Goodkin, W Sieghart and J Kapur (2005) Cultured hippocampal pyramidal neurons express two kinds of GABAA receptors.Mol. Pharmacol. 67, 775–788.

    Article  PubMed  CAS  Google Scholar 

  • Manoach DS (2003) Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings.Schizophr. Res. 60, 285–298.

    Article  PubMed  Google Scholar 

  • Markram H, M Toledo-Rodriguez, Y Wang, A Gupta, G Silberberg and C Wu (2004) Interneurons of the neocortical inhibitory system.Nat. Rev. Neurosci. 5, 793–807.

    Article  PubMed  CAS  Google Scholar 

  • Mason GF, DL Martin, SB Martin, D Manor, NR Sibson, A Patel, DL Rothman and KL Behar (2001) Decrease in GAB A synthesis rate in rat cortex following GABA-transaminase inhibition correlates with the decrease in GAD(67) protein.Brain Res. 914, 81–91.

    Article  PubMed  CAS  Google Scholar 

  • McBain CJ and A Fisahn (2001) Interneurons unbound.Nat. Rev. Neurosci. 2, 11–23.

    Article  PubMed  CAS  Google Scholar 

  • Melchitzky DS, SR Sesack and DA Lewis (1999) Parvalbuminimmunoreactive axon terminals in macaque monkey and human prefrontal cortex: laminar, regional and target specificity of Type I and Type II synapses.J. Comp. Neurol. 408, 11–22.

    Article  PubMed  CAS  Google Scholar 

  • Melchitzky DS, SM Eggan and DA Lewis (2005) Synaptic targets of calretinin-containing axon terminals in macaque monkey prefrontal cortex.Neuroscience 130, 185–195.

    Article  PubMed  CAS  Google Scholar 

  • Miller EK and JD Cohen (2001) An integrative theory of prefrontal cortex function.Annu. Rev. Neurosci. 24, 167–202

    Article  PubMed  CAS  Google Scholar 

  • Mirnics K, FA Middleton, A Marquez, DA Lewis and P Levitt (2000) Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex.Neuron 28, 53–67.

    Article  PubMed  CAS  Google Scholar 

  • Morris HM, T Hashimoto and DA Lewis (2008) Alterations in somatostatin mRNA expression in the dorsolateral prefrontal cortex of subjects with schizophrenia or schizoaffective disorder.Cereb. Cortex 18, 1575–1587.

    Article  PubMed  Google Scholar 

  • Nusser Z, W Sieghart and P Somogyi (1998) Segregation of different GABAA receptors to synaptic and extrasynaptic membranes of cerebellar granule cells.J. Neurosci. 18, 1693–1703.

    PubMed  CAS  Google Scholar 

  • Ohnuma T, SJ Augood, H Arai, PJ McKenna and PC Emson (1999) Measurement of GABAergic parameters in the prefrontal cortex in schizophrenia: focus on GABA content, GABAA receptor α-1 subunit messenger RNA and human GABA transporter-1 (HGAT-1) messenger RNA expression.Neuroscience 93, 441–448.

    Article  PubMed  CAS  Google Scholar 

  • Patel AB, RA de Graaf, DL Martin, G Battaglioli and KL Behar (2006) Evidence that GAD65 mediates increased GABA synthesis during intense neuronal activityin vivo.J. Neurochem. 97, 385–396.

    Article  PubMed  CAS  Google Scholar 

  • Perlstein WM, CS Carter, DC Noll and JD Cohen(2001) Relation of prefrontal cortex dysfunction to working memory and symptoms in schizophrenia.Am. J. Psychiatry 158, 1105–1113.

    Article  PubMed  CAS  Google Scholar 

  • Petryshen TL, FA Middleton, AR Tahl, GN Rockwell, S Purcell, KA Aldinger, A Kirby, CP Morley, L McGann, KL Gentile, SG Waggoner, HM Medeiros, C Carvalho, A Macedo, M Albus, W Maier, M Trixler, P Eichhammer, SG Schwab, DB Wildenauer, MH Azevedo, MT Pato, CN Pato, MJ Daly and P Sklar (2005) Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia.Mol. Psychiatry 10, 1074–1088.

    Article  PubMed  CAS  Google Scholar 

  • Pierri JN, AS Chaudry, T-U Woo and DA Lewis (1999) Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects.Am. J. Psychiatry 156, 1709–1719.

    PubMed  CAS  Google Scholar 

  • Ponomarev I, R Maiya, MT Harnett, GL Schafer, AE Ryabinin, YA Blednov, H Morikawa, SL Boehm, GE Homanics, AE Berman, KH Lodowski, SE Bergeson and RA Harris (2006) Transcriptional signatures of cellular plasticity in mice lacking the α1 subunit of GABAA receptors.J. Neurosci. 26, 5673–5683.

    Article  PubMed  CAS  Google Scholar 

  • Rao SG, GV Williams and PS Goldman-Rakic (2000) Destruction and creation of spatial tuning by disinhibition: GABAA blockade of prefrontal cortical neurons engaged by working memory.J. Neurosci. 20, 485–494.

    PubMed  CAS  Google Scholar 

  • Reyes A, R Lujar, BN Rozov, P Somogyi and B Sakman (1998) Target-cell-specific facilitation and depression in neocortical circuits.Nat. Neurosci. 1, 279–285.

    Article  PubMed  CAS  Google Scholar 

  • Sawaguchi T, M Matsumura and K Kubota (1989) Delayed response deficits produced by local injection of bicuculline into the dorsolateral prefrontal cortex in Japanese macaque monkeys.Exp. Brain Res. 75, 457–469.

    Article  PubMed  CAS  Google Scholar 

  • Saykin AJ, DL Shtasel, RE Gur, DB Kester, LH Mozley, P Stafiniak and RC Gur (1994) Neuropsychological deficits in neuroleptic naive patients with first-episode schizophrenia.Arch. Gen. Psychiatry 51, 124–131.

    PubMed  CAS  Google Scholar 

  • Silberberg G and H Markram (2007) Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells.Neuron 53, 735–746.

    Article  PubMed  CAS  Google Scholar 

  • Silver H and P Feldman (2005) Evidence for sustained attention and working memory in schizophrenia sharing a common mechanism.J. Neuropsychiatry Clin. Neurosci. 17, 391–398.

    PubMed  Google Scholar 

  • Silver H, P Feldman, W Bilker and RC Gur (2003) Working memory deficit as a core neuropsychological dysfunction in schizophrenia.Am. J. Psychiatry 160, 1809–1816.

    Article  PubMed  Google Scholar 

  • Simpson MDC, P Slater, JFW Deakin, MC Royston and WJ Skan (1989) Reduced GABA uptake sites in the temporal lobe in schizophrenia.Neurosci. Lett. 107, 211–215.

    Article  PubMed  CAS  Google Scholar 

  • Sitskoorn MM, A Aleman, SJ Ebisch, MC Appels and RS Kahn (2004) Cognitive deficits in relatives of patients with schizophrenia: a meta-analysis.Schizophr. Res. 71, 285–295.

    Article  PubMed  Google Scholar 

  • Smith EE and J Jonides (1999) Storage and executive processes in the frontal lobes.Science 283, 1657–1661.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P and T Klausberger (2005) Defined types of cortical interneurone structure space and spike timing in the hippocampus.J. Physiol. 562, 9–26.

    Article  PubMed  CAS  Google Scholar 

  • Straub RE, BK Lipska, MF Egan, TE Goldberg, JH Callicott, MB Mayhew, RK Vakkalanka, BS Kolachana, JE Kleinman and DR Weinberger (2007) Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression.Mol. Psychiatry 12, 854–869.

    Article  PubMed  CAS  Google Scholar 

  • Tan HY, WC Choo, CS Fones and MW Chee (2005) fMRI study of maintenance and manipulation processes within working memory in first-episode schizophrenia.Am. J. Psychiatry 162, 1849–1858.

    Article  PubMed  Google Scholar 

  • Taylor SF (1996) Cerebral blood flow activation and functional lesions in schizophrenia.Schizophr. Res. 19, 129–140.

    Article  PubMed  CAS  Google Scholar 

  • Torrey EF, BM Barci, MJ Webster, JJ Bartko, JH Meador-Woodruff and MB Knable (2005) Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains.Biol. Psychiatry 57, 252–260.

    Article  PubMed  CAS  Google Scholar 

  • Van Snellenberg JX, IJ Torres and AE Thornton (2006) Functional neuroimaging of working memory in schizophrenia: task performance as a moderating variable.Neuropsychology 20, 497–510.

    Article  PubMed  Google Scholar 

  • Vawter MP, JM Crook, TM Hyde, JE Kleinman, DR Weinberger, KG Becker and WJ Freed (2002) Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study.Schizophr. Res. 58, 11–20.

    Article  PubMed  Google Scholar 

  • Volk DW, MC Austin, JN Pierri, AR Sampson and DA Lewis (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical γ-aminobutyric acid neurons in subjects with schizophrenia.Arch. Gen. Psychiatry 57, 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Volk DW, MC Austin, JN Pierri, AR Sampson and DA Lewis (2001) G AB A transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons.Am. J. Psychiatry 158, 256–265.

    Article  PubMed  CAS  Google Scholar 

  • Volk DW, JN Pierri, J-M Fritschy, S Auh, AR Sampson and DA Lewis (2002) Reciprocal alterations in pre- and postsynaptic inhibitory markers at chandelier cell inputs to pyramidal neurons in schizophrenia.Cereb. Cortex 12, 1063–1070.

    Article  PubMed  Google Scholar 

  • Wang XJ, J Tegner, C Constantinidis and PS Goldman-Rakic (2004) Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory.Proc. Natl. Acad. Sci. USA 101, 1368–1373.

    Article  PubMed  CAS  Google Scholar 

  • Wei W, N Zhang, Z Peng, CR Houser and I Mody (2003) Perisynaptic localization of delta subunit-containing GABAA receptors and their activation by GABA spillover in the mouse dentate gyrus.J. Neurosci. 23, 10650–10661.

    PubMed  CAS  Google Scholar 

  • Weickert CS, DL Ligons, T Romanczyk, G Ungaro, TM Hyde, MM Herman, DR Weinberger and JE Kleinman (2005) Reductions in neurotrophin receptor mRNAs in the prefrontal cortex of patients with schizophrenia.Mol. Psychiatry 10, 637–650.

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR, KF Berman and RF Zec (1986) Physiologic dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence.Arch. Gen. Psychiatry 43, 114–124.

    PubMed  CAS  Google Scholar 

  • Weinberger DR, KF Berman and BP Illowsky (1988) Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia: III. Anew cohort and evidence for a monoaminergic mechanism.Arch. Gen. Psychiatry 45, 609–615.

    PubMed  CAS  Google Scholar 

  • Weinberger DR, MF Egan, A Bertolino, JH Callicott, VS Mattay, BK Lipska, KF Berman and TE Goldberg (2001) Prefrontal neurons and the genetics of schizophrenia.Biol. Psychiatry 50, 825–844.

    Article  PubMed  CAS  Google Scholar 

  • Williams SM, PS Goldman-Rakic and C Leranth (1992) The synaptology of parvalbumin-immunoreactive neurons in primate prefrontal cortex.J. Comp. Neurol. 320, 353–369.

    Article  PubMed  CAS  Google Scholar 

  • Wonders CP and SA Anderson (2006) The origin and specification of cortical interneurons.Nat. Rev. Neurosci. 7, 687–696.

    Article  PubMed  CAS  Google Scholar 

  • Woo T-U, JL Miller and DA Lewis (1997) Schizophrenia and the parvalbumin-containing class of cortical local circuit neurons.Am. J. Psychiatry 154, 1013–1015.

    PubMed  CAS  Google Scholar 

  • Zaitsev AV, G Gonzalez-Burgos, NV Povysheva, S Kroner, DA Lewis and LS Krimer (2005) Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex.Cereb. Cortex 15, 1178–1186.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, D.A., Hashimoto, T. & Morris, H.M. Cell and receptor type-specific alterations in markers of GABA neurotransmission in the prefrontal cortex of subjects with schizophrenia. neurotox res 14, 237–248 (2008). https://doi.org/10.1007/BF03033813

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03033813

Keywords

Navigation