Skip to main content
Log in

Drugs of abuse and immediate-early genes in the forebrain

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A diverse array of chemical agents have been self administered by humans to alter the psychological state. Such drugs of abuse include both stimulants and depressants of the central nervous system. However, some commonalties must underlie the neurobiological actions of these drugs, since the desire to take the drugs often crosses from one drug to another. Studies have emphasized a role of the ventral striatum, especially the nucleus accumbens, in the actions of all drugs of abuse, although more recent studies have implicated larger regions of the forebrain. Induction of immediate-early genes has been studied extensively as a marker for activation of neurons in the central nervous system. In this review, we survey the literature reporting activation of immediate-early gene expression in the forebrain, in response to administration of drugs of abuse. All drugs of abuse activate immediate-early gene expression in the striatum, although each drug induces a particular neuroanatomical signature of activation. Most drugs of abuse activate immediate-early gene expression in several additional forebrain regions, including portions of the extended amygdala, cerebral cortex, lateral septum, and midline/intralaminar thalamic nuclei, although regional variations are found depending on the particular drug administered. Common neuropharmacological mechanisms responsible for activation of immediate-early gene expression in the forebrain involve dopaminergic and glutamatergic systems. Speculations on the biological significance and clinical relevance of immediate-early gene expression in response to drugs of abuse are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alburges M. E., Narang N., and Wamsley J. K. (1993) Alterations in the dopaminergic receptor system after chronic administration of cocaine.Synapse 14, 314–323.

    PubMed  CAS  Google Scholar 

  • Alexander M. J., Miller M. A., Dorsa D. M., Bullock B. P., R. H. Melloni J., Dobner P. R., and Leeman S. E. (1989) Distribution of neurotensin/neuromedin N mRNA in rat forebrain: Unexpected abundance in hippocampus and subiculum.Proc. Natl. Acad. Sci. USA 86, 5202–5206.

    PubMed  CAS  Google Scholar 

  • Alexander S. P. H. and Peters J. A. (1997) 1997 receptor and ion channel nomenclature supplement.Trends Pharmacol. Sci. 18 (Suppl), 1–84.

    Google Scholar 

  • Alheid G. F., Olmos J. S. de, and Beltramino C. A. (1995) Amygdala and extended amygdala, inThe Rat Nervous System (Paxinos G. ed.) pp. 495–578.

  • Altman J. and Bayer S. A. (1995)Atlas of Prenatal Rat Brain Development. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Anderson K. D. and Reiner A. (1990) Extensive cooccurrence of substance P and dynorphin in striatal projection neurons: an evolutionarily conserved feature of basal ganglia organization.J. Comp. Neurol. 295, 339–369.

    PubMed  CAS  Google Scholar 

  • Asin K. E., Nikkel A. L., and Wirtshafter D. (1994) Repeated D1 receptor agonist treatment blocks cocaine-induced locomotor activity and c-fos expression.Brain Res. 637, 342–344.

    PubMed  CAS  Google Scholar 

  • Asin K.E., Wirtshafter D., and Nikkel A. (1996) Amphetamine induces Fos-like immunoreactivity in the striatum of primates.Brain Res. 719, 138–142.

    PubMed  CAS  Google Scholar 

  • Baimbridge K. G., Celio M. R., and Rogers J. H. (1992) Calcium-binding proteins in the nervous system.Trends Neurosci. 15, 303–308.

    PubMed  CAS  Google Scholar 

  • Baraban S. C., Stornetta R. L., and Guyenet P. G. (1995) Effects of morphine and morphine withdrawal on adrenergic neurons of the rat rostral ventrolateral medulla.Brain Res. 676, 245–257.

    PubMed  CAS  Google Scholar 

  • Barker E. L., Kimmel H. L., and Blakely R. D. (1994) Chimeric human and rat serotonin transporters reveal domains involved in recognition of transporter ligands.Mol. Pharmacol. 46, 799–807.

    PubMed  CAS  Google Scholar 

  • Baum M. J. and Everitt B. J. (1992) Increased expression ofc-fos in the medial preoptic area after mating in male rats: Role of afferent inputs from the medial amygdala and midbrain central tegmental field.Neuroscience 50, 627–646.

    PubMed  CAS  Google Scholar 

  • Baum M. J. and Wersinger S. R. (1993) Equivalent levels of mating-induced neural c-fos immunore-activity in castrated male rats given androgen, estrogen, or no steroid replacement.Biol. Reprod. 48, 1341–1347.

    PubMed  CAS  Google Scholar 

  • Beckmann A. M., Matsumoto I., and Wilce P. A. (1995) Immediate early gene expression during morphine withdrawal.,Neuropharmacology 34, 1183–1189.

    PubMed  CAS  Google Scholar 

  • Berendse H. W. and Groenewegen H. J. (1990) Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum.J. Comp. Neurol. 299, 187–228.

    PubMed  CAS  Google Scholar 

  • Berendse H. W., Galais-de Graaf Y., and Groenewegen H. J. (1992) Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat.J. Comp. Neurol. 316, 314–347.

    PubMed  CAS  Google Scholar 

  • Berretta S., Robertson H. A., and Graybiel A. M. (1992) Dopamine and glutamate agonists stimulate neuron-specific expression of fos-like protein in the striatum.J. Neurophys. 68, 767–777.

    CAS  Google Scholar 

  • Bhat R. V., Cole A. J., and Baraban J. M. (1992) Chronic cocaine treatment suppresses basal expression ofzif268 in rat forebrain:In situ hybridization studies.J. Pharm. Exp. Ther. 263, 343–349.

    CAS  Google Scholar 

  • Bhat R. V. and Baraban J. M. (1993) Activation of transcription factor genes in striatum by cocaine: Role of both serotonin and dopamine systems.J. Pharm. Exp. Ther. 267, 496–505.

    CAS  Google Scholar 

  • Bischoff S., Heinrich M., Sonntag J. M., and Krauss J. (1986) The D-1 dopamine receptor antagonist SCH 23390 also interacts potently with brain serotonin (5-HT2) receptors.Eur. J. Pharmacol. 129, 367–370.

    PubMed  CAS  Google Scholar 

  • Bjelke B., Stromberg I., O'Connor W. T., Andbjer B., Agnati L. F., and Fuxe K. (1994) Evidence for volume transmission in the dopamine denervated neostriatum of the rat after a unilateral nigral 6-OHDA microinjection. Studies with systemic D-amphetamine treatment.Brain Res. 662, 11–24.

    PubMed  CAS  Google Scholar 

  • Bradberry C. W., Nobiletti J. B., Elsworth J. D., Murphy B., Jatlow P., and Roth R. H. (1993) Cocaine and cocaethylene: microdialysis comparison of brain drug levels and effects on dopamine and serotonin.J. Neurochem. 60, 1429–1435.

    PubMed  CAS  Google Scholar 

  • Brown E. E., Robertson G. S., and Fibiger H. C. (1992) Evidence for conditional neuronal activation following exposure to a cocaine-paired environment: role of forebrain limbic structures.J. Neurosci. 12, 4112–4121.

    PubMed  CAS  Google Scholar 

  • Burgunder J. M. and Young W. S. (1989) Distribution, projection and dopaminergic regulation of the neurokinin B mRNA-containing neurons of the rat caudate-putamen.Neuroscience 32, 323–335.

    PubMed  CAS  Google Scholar 

  • Butcher S. P., Fairbrother I. S., Kelly J. S., and Arbuthnott G. W. (1988) Amphetamine-induced dopamine release in the rat striatum: an in vivo microdialysis study.J. Neurochem. 50, 346–355.

    PubMed  CAS  Google Scholar 

  • Cadoni C., Pinna A., Russi G., Consolo S., and Chiara G. D. (1995) Role of vesicular dopamine in thein vivo stimulation of striatal dopamine transmission by amphetamine: evidence from microdialysis and fos immunohistochemistry.Neuroscience 65, 1027–1039.

    PubMed  CAS  Google Scholar 

  • Caine S. B., Heinrichs S. C., Coffin V. L., and Koob G. F. (1995) Effects of the dopamine D-1 antagonist SCH 23390 microinjected into the accumbens, amygdala or striatum on cocaine self-administration in the rat.Brain Res. 692, 47–56.

    PubMed  CAS  Google Scholar 

  • Castner S. A. and Becker J. B. (1996) Sex differences in the effect of amphetamine on immediate early gene expression in the rat dorsal striatum.Brain Res. 712, 245–257.

    PubMed  CAS  Google Scholar 

  • Ceccatelli S., Vilar M. J., Goldstein M., and Hokfelt T. (1989) Expression of c-Fos immunoreactivity in transmitter-characterized neurons after stress.Proc. Natl. Acad. Sci. USA 86, 9569–9573.

    PubMed  CAS  Google Scholar 

  • Cenci M. A., Campbell K., Wictorin K., and Bjorklund A. (1992) Striatal c-fos induction by cocaine or apomorphine occurs preferentially in output neurons projecting to the substantia nigra in the rat.Eur. J. Neurosci. 4, 376–380.

    PubMed  Google Scholar 

  • Cenci M. A. and Bjorklund A. (1994) Transection of corticostriatal afferents abolishes the hyperexpression of Fos and counteracts the development of rotational overcompensation induced by intrastriatal dopamine-rich grafts when challenged with amphetamine.Brain Res 665, 167–174.

    PubMed  CAS  Google Scholar 

  • Chang S. L., Squinto S. P., and Harlan R. E. (1988) Morphine activation of c-Fos expression in rat brain.Biochem. Biophys. Res. Comm. 157, 698–704.

    PubMed  CAS  Google Scholar 

  • Chang S. L. and Harlan R. E. (1990) The fos proto-oncogene protein: regulation by morphine in the rat hypothalamus.Life Sciences 46, 1825–1832.

    PubMed  CAS  Google Scholar 

  • Chang S. L., Patel N. A., and Romero A. A. (1995) Activation and desensitization of Fos immunoreactivity in the rat brain following ethanol administration.Brain Res. 679, 89–98.

    PubMed  CAS  Google Scholar 

  • Chen J., Paredes W., J. Li D. S., Lowinson J., and Gardner E. L. (1990) δ9 produces a naloxone-blockable enhancement of presynaptic basal dopamine efflux in nucleus accumbens of freely moving rats.Psychopharmacology 102, 156–162.

    PubMed  CAS  Google Scholar 

  • Chen J., Nye H. E., Kelz M. B., Hiroi N., Nakabeppu Y., Hope B. T., and Nestler E. J. (1995) Regulation of ΔFosB and FosB-like proteins by electroconvulsive seizure and cocaine treatments.Mol. Pharmacol. 48, 880–889.

    PubMed  CAS  Google Scholar 

  • Chen Q. and Reiner A. (1996) Cellular distribution of the NMDA receptor NR2A/2B subunits in the rat striatum.Brain Res. 743, 346–352.

    PubMed  CAS  Google Scholar 

  • Chesselet M.-F. and Delfs J. M. (1996) Basal ganglia and movement disorders: an update.Trends Neurosci. 19, 417–422.

    PubMed  CAS  Google Scholar 

  • Chieng B., Keay K. A., and Christie M. J. (1995) Increased fos-like immunoreactivity in the periaqueductal gray of anaesthetised rats during opiate withdrawal.Neurosci. Lett. 183, 79–82.

    PubMed  CAS  Google Scholar 

  • Clark M., Post R. M., Weiss S. R. B., and Nakajima, T. (1992) Expression of c-fos mRNA in acute and kindled cocaine seizures in rats.Brain Res. 582, 101–106.

    PubMed  CAS  Google Scholar 

  • Clegg D. A., O'Hara B. F., Heller H. C., and Kilduff T. S. (1995) Nicotine administration differentially affects gene expression in the maternal and fetal circadian clock.Dev. Brain Res. 84, 46–54.

    CAS  Google Scholar 

  • Cole R. L., Konradi C., Douglass J., and Hyman S. E. (1995) Neuronal adaptation to amphetamine and dopamine: molecular mechanisms of prodynorphin gene regulation in rat striatum.Neuron 14, 813–823.

    PubMed  CAS  Google Scholar 

  • Couceyro P., Pollock K. M., Drews K., and Douglas J. (1994) Cocaine differentially regulates activator protein-1 mRNA levels and DNA-binding complexes in the rat striatum and cerebellum.Mol. Pharm. 46, 667–676.

    CAS  Google Scholar 

  • Couceyro P. and Douglass J. (1995) Precipitated morphine withdrawal stimulates multiple activator protein-1 signaling pathways in rat brain.Mol. Pharmacology 47, 29–39.

    CAS  Google Scholar 

  • Crawford C. A., McDougall S. A., Bolanos C. A., Hall S., and Berger S. P. (1995) The effects of the kappa agonist U-50,488 on cocaine-induced conditioned and unconditioned behaviors and Fos immunoreactivity.Psychopharmacology 120, 392–399.

    PubMed  CAS  Google Scholar 

  • Curran E. J., Akil H. and Watson S. J. (1996) Psychomotor stimulant- and opiate-induced c-fos mRNA expression patterns in the rat forebrain: Comparisons between acute drug treatment and a drug challenge in sensitized animals.Neurochem. Res. 21, 1425–1435.

    PubMed  CAS  Google Scholar 

  • D'Souza D. N., Harlan R. E., and Garcia M. M. (1997) Sexual dimorphism in the response to competitive and non-competitive NMDA receptor antagonists and morphine on c-Fos induction in the rat brain.Abst. Soc. Neurosci.

  • Dalia A. and Wallace L. J. (1995) Amphetamine induction of c-fos in the nucleus accumbens is not inhibited by glutamate antagonists.Brain Res. 694, 299–307.

    PubMed  CAS  Google Scholar 

  • Dani J. A. and Heinemann S. (1996) Molecular and cellular aspects of nicotine abuse.Neuron 16, 905–908.

    PubMed  CAS  Google Scholar 

  • Daunais J. B., Roberts D. C. S., and McGinty J. F. (1993) Cocaine self-administration increases preprodynorphin, but notc-fos, mRNA in rat striatum.NeuroReport 4, 543–546.

    PubMed  CAS  Google Scholar 

  • Daunais J. B. and McGinty J. F. (1994) Acute and chronic cocaine administration differentially alters striatal opioid and nuclear transcription factor mRNAs.Synapse 18, 35–45.

    PubMed  CAS  Google Scholar 

  • Daunais J. B. and McGinty J. F. (1995) Cocaine binges differentially alter striatal preprodynorphin andzif268 mRNAs.Mol. Brain Res. 29, 201–210.

    PubMed  CAS  Google Scholar 

  • Daunais J. B., Roberts D. C. S. and McGinty J. F. (1995) Short-term cocaine self administration alters striatal gene expression.Brain Res. Bull. 1995, 523–527.

    Google Scholar 

  • Daunais J. B. and McGinty J. F. (1996) The effects of D1 or D2 dopamine receptor blockade onzif/268 and preprodynorphin gene expression in rat forebrain following a short-term cocaine binge.Mol. Brain Res. 35, 237–248.

    PubMed  CAS  Google Scholar 

  • Dave J. R., Tabakoff B., and Hoffman P. L. (1990) Ethanol withdrawal seizures produce increased c-fos mRNA in mouse brain.Mol. Pharmacol. 37, 367–371.

    PubMed  CAS  Google Scholar 

  • Deacon T. W., Pakzaban P., and Isacson O. (1994) The lateral ganglionic eminence is the origin of cells committed to striatal phenotypes: neural transplantation and developmental evidence.Brain Res. 668, 211–219.

    PubMed  Google Scholar 

  • Dean R. A., Harper E. T., Dumaual N., Stoeckel D. A., and Bosron W. F. (1992) Effects of ethanol on cocaine metabolism: formation of cocaethylene and norcocaethylene.Toxicol. Appl. Pharmacol. 117, 1–8.

    PubMed  CAS  Google Scholar 

  • Di Chiara G. and Imperato A. (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats.J. Pharmacol. Exp. Ther. 244, 1067–1080.

    PubMed  Google Scholar 

  • Douglass J., McKinzie A. A., and Couceyro P. (1995) PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine.J. Neurosci. 15, 2471–2481.

    PubMed  CAS  Google Scholar 

  • Drago J., Gerfen C. R., Westphal H., and Steiner H. (1996) D1 dopamine receptor-deficient mouse: cocaine-induced regulation of immediate-early gene and substance P expression in the striatum.Neuroscience 74, 813–823.

    PubMed  CAS  Google Scholar 

  • Dragunow M., Logan B., and Laverty R. (1991) 3,4-Methlenedioxymethamphetamine induces Foslike proteins in rat basal ganglia: reversal with MK 801.Eur. J. Pharmacol. 206, 255–258.

    PubMed  CAS  Google Scholar 

  • Ennulat D. J., Babb S. M., and Cohen B. M. (1994) Persistent reduction of immediate early gene mRNA in rat forebrain following single or multiple doses of cocaine.Mol. Brain Res. 26, 106–112.

    PubMed  CAS  Google Scholar 

  • Erdtsieck-Ernste E. B. H. W., Feenstra M. G. P., Botterblom M. H. A., Uum H. F. M. V., Sluiter A. A., and Heinsbroek R. P. W. (1995) C-Fos expression in the rat brain after pharmacological stimulation of the rat “mediodorsal” thalamus by means of microdialysis.Neuroscience 66, 115–131.

    PubMed  CAS  Google Scholar 

  • Erskine M. S. (1993) Mating-induced increases in fos protein in preoptic area and medial amygdala of cycling female rats.Brain Res. Bull. 32, 447–451.

    PubMed  CAS  Google Scholar 

  • Ferre S., Euler G. V., Johansson B., Fredholm B. B., and Fuxe K. (1991) Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes.Proc. Natl. Acad. Sci. USA 88, 7238–7241.

    PubMed  CAS  Google Scholar 

  • Ferre S., O'Connor W. T., Snaprud P., Ungerstedt U., and Fuxe K. (1994) Antagonistic interactions between adenosine A2A receptors and dopamine D2 receptors in the ventral striatopallidal system. Implications for the treatment of schizophrenia.Neuroscience 63, 765–773.

    PubMed  CAS  Google Scholar 

  • Fink J. S., Weaver D. R., Rivkees S. A., Peterfreund R. A., Pollack A. E., Adler E. M., and Reppert S. M. (1992) Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum.Mol. Brain Res. 14, 186–195.

    PubMed  CAS  Google Scholar 

  • Flanagan-Cato L. M. and McEwen B. S. (1995) Pattern of fos and jun expression in the female rat forebrain after sexual behavior.Brain Res. 673 53–60.

    PubMed  CAS  Google Scholar 

  • Fosnaugh J. S., Bhat R. V., Yamagata K., Worley P. F., and Baraban J. M. (1995) Activation ofarc, a putative “effector” immediate early gene, by cocaine in rat brain.J. Neurochem. 64, 2377–2380.

    PubMed  CAS  Google Scholar 

  • Frankel P. S., Harlan R. E., and Garcia. M. M. (1997) Alterations in c-Fos response in the caudateputamen and thalamus following morphine administration in post-dependent rats.Abst. Soc. Neurosci.

  • Fu L. and Beckstead R. M. (1992) Cortical stimulation induces fos expression in striatal neurons.Neuroscience 46, 329–334.

    PubMed  CAS  Google Scholar 

  • Garcia M. M. and Harlan R. E. (1993) Chronic morphine increases calbindin D28k in rat striatum via NMDA receptor activation.NeuroReport 5, 65–68.

    PubMed  CAS  Google Scholar 

  • Garcia M. M., Brown H. E., and Harlan R. E. (1995) Alterations in immediate-early gene proteins in the rat forebrain induced by acute morphine injection.Brain Res. 692, 23–40.

    PubMed  CAS  Google Scholar 

  • Garcia M. M. and Harlan. R. E. (1996) Morphine induces c-fos expression in rat forebrain through glutamate receptor-dependent and-independent mechanisms.Abst. Intern. Narcotics Res. Fdn.

  • Garcia M. M., Guillot M., and Harlan R. E. (1997) Neurochemical characterization of cortical and striatal neurons expressing c-Fos protein after acute morphine administration.Abst. Soc. Neurosci.

  • Gerfen C. R. (1984) The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems.Nature 311, 461–464.

    PubMed  CAS  Google Scholar 

  • Gerfen C. R. (1985) The neostriatal mosaic: I. Compartmental organization of projections from the striatum to the substantia nigra in the rat.J. Comp. Neurol. 236, 454–476.

    PubMed  CAS  Google Scholar 

  • Gerfen C. R. (1992a) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia.Ann. Rev. Neurosci. 15, 285–320.

    PubMed  CAS  Google Scholar 

  • Gerfen C. R. (1992b) The neostriatal mosaic: multiple levels of compartmental organization.Trends Neurosci 15, 133–139.

    PubMed  CAS  Google Scholar 

  • Gerfen C. R. and Young W. S. (1988) Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: an in situ hybridization histochemistry and fluorescent retrograde tracing study.Brain Res. 460, 161–167.

    PubMed  CAS  Google Scholar 

  • Gerfen C. R., Engber T. M., Mahan L. C., Susel Z., Chase T. N., Jr., F. J. M., and Sibley D. R. (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons.Science 250, 1429–1432.

    PubMed  CAS  Google Scholar 

  • Giros B. and Caron M. G. (1993) Molecular characterization of the dopamine transporter.Trends Pharmacol. Sci. 14, 43–49.

    PubMed  CAS  Google Scholar 

  • Glass M. and Dragunow M. (1995) Induction of the Krox 24 transcription factor in striosomes by a cannabinoid agonist.NeuroReport 6, 241–244.

    PubMed  CAS  Google Scholar 

  • Graybiel A. M. (1990) Neurotransmitters and neuromodulators in the basal ganglia.Trends, Neurosci. 13, 244–254.

    CAS  Google Scholar 

  • Graybiel A. M., Moratalla R., and Robertson H. A. (1990) Amphetamine and cocaine induce drugspecific activation of the c-fos gene in striosome-matric compartments and limbic subdivisions of the striatum.Proc. Natl. Acad. Sci. USA 87, 6912–6916.

    PubMed  CAS  Google Scholar 

  • Gysling K. and Wang R. Y. (1983) Morphine-induced activation of A10 dopaminergic neurons in the rat.Brain Res. 277, 119–127.

    PubMed  CAS  Google Scholar 

  • Halliday G., Harding A., and Paxinos G. (1995) Serotonin and tachykinin systems, inThe Rat Nervous System, 2nd ed. (Paxinos G. ed.) 929–974.

  • Harlan R. E., Shivers B. D., Romano G. J., Howells R. D., and Pfaff D. W. (1987) Localization of preproenkephalin mRNA in the rat brain and spinal cord by in situ hybridization.J. Comp. Neurol. 258, 159–184.

    PubMed  CAS  Google Scholar 

  • Harlan R. E., Garcia M. M., and Krause J. E. (1989) Cellular localization of substance P- and neurokinin A-encoding preprotachykinin mRNa in the female rat brain.J. Comp. Neurol. 287, 179–212.

    PubMed  CAS  Google Scholar 

  • Harlan R. E. and Garcia M. M. (1995) Charting of Jun family member proteins in the rat forebrain and midbrain: Immunocytochemical evidence for a new Jun-related antigen.Brain Res. 692, 1–22.

    PubMed  CAS  Google Scholar 

  • Hayward M. D., Duman R. S., and Nestler E. J. (1990) Induction of the c-fos proto-oncogene during opiate withdrawal in the locus ceruleus and other regions of rat brain.Brain Res. 525, 256–266.

    PubMed  CAS  Google Scholar 

  • Heilig M., Engel J. A., and Soderpalm B., (1993) C-fos antisense in the nucleus accumbens blocks the locomotor stimulant action of cocaine.Eur. J. Pharmacology 236, 339–340.

    CAS  Google Scholar 

  • Heimer L., Zahm D. S., and Alheid G. F. (1995) Basal ganglia, inThe Rat Nervous System, 2nd ed. (Paxinos G. ed.) 579–628.

  • Heimer L., Harlan R. E., Alheid G. F., Garcia M., and Olmos J. D. (1997a) Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders.Neuroscience 76, 957–1006.

    PubMed  CAS  Google Scholar 

  • Heimer L., Alheid G., Olmos J. d., Groenewegen H., Haber S., Harlan R. E., and Zahm S. (1997b) The accumbens: beyond the core-shell dichotomy.J. Neuropsychiatry, in press.

  • Helton T. E., Daunais J. B. and McGinty J. F. (1993) Convulsant doses of cocaine alter immediate early gene and opioid peptide expression in rat limbic forebrain.Mol. Brain Res. 20, 285–288.

    PubMed  CAS  Google Scholar 

  • Herdegen T., Kovary K., Buhl A., Bravo R., Zimmermann M., and Gass P. (1995) Basal expression of the inducible transcription factors c-Jun, JunB, JunD, c-Fos, FosB, and Krox-24 in the adult rat brain.J. Comp. Neurol. 354, 39–56.

    PubMed  CAS  Google Scholar 

  • Hollmann M. and Heinemann S. (1994) Cloned glutamate receptors.Annu. Rev. Neurosci. 17, 31–108.

    PubMed  CAS  Google Scholar 

  • Hooper M. L., Chiasson B. J., and Robertson H. A. (1994) Infusion into the brain of an antisense oligonucleotide to the immediate-early genec-fos suppresses production of fos and produces a behavioral effect.Neuroscience 63, 917–924.

    PubMed  CAS  Google Scholar 

  • Hope B., Kosofsky B., Hyman S. E., and Nestler E. J. (1992) Regulation of immediate early gene expression and AP-1 binding in the rat nucleus accumbens by chronic cocaine.Proc. Natl. Acad. Sci. USA 89, 5764–5768.

    PubMed  CAS  Google Scholar 

  • Hope B. T., Nye H. E., Kelz M. B., Self D. W., Iadarola M. J., Nakabeppu Y., Duman R. S., and Nestler E. J. (1994) Induction of a long-lasting AP-1 complex composed of altered Fos-like proteins in brain by chronic cocaine and other chronic treatments.Neuron 13, 1235–1244.

    PubMed  CAS  Google Scholar 

  • Hughes P. and Dragunow M. (1995) Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system.Pharmacol. Rev. 47, 133–178.

    PubMed  CAS  Google Scholar 

  • Hurd Y.L. and Herkenham M. (1992) Influence of a single injection of cocaine, amphetamine, or GBR 12909 on mRNA expression of striatal neuropeptides.Mol. Brain Res. 16, 97–104.

    PubMed  CAS  Google Scholar 

  • Hurd Y. L. and Herkenham M. (1993) Molecular alterations in the neostriatum of human cocaine addicts.Synapse 13, 357–369.

    PubMed  CAS  Google Scholar 

  • Hyman S. E. (1996) Addiction to cocaine and amphetamine.Neuron 16, 901–904.

    PubMed  CAS  Google Scholar 

  • Iadarola M. J., Chuang E. J., Yeung C.-L., Hoo Y., Silverthron M., Gu J. and Draisci G. (1993) Induction and suppression of proto-oncogenes in rat striatum after single or multiple treatments with cocaine or GBR-12909.NIDA Res. Monogr. 125, 181–211.

    PubMed  CAS  Google Scholar 

  • Imperato A., Mulas A., and Di Chiara G. (1986) Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats.Eur. J. Pharm. 132, 337–338.

    CAS  Google Scholar 

  • Jaber M., Cador M., Dumartin B., Normand E., Stinus L., and Bloch B. (1995) Acute and chronic amphetamine treatments differentially regulate neuropeptide messenger RNA levels and Fos immunoreactivity in rat striatal neurons.Neuroscience 65, 1041–1050.

    PubMed  CAS  Google Scholar 

  • Jayanthi L. D., Prasad P. D., Ramamoorthy S., Mahesh V. B., Leibach F. H., and Ganapathy V. (1993) Sodium-and chloride-dependent, cocaine-sensitive, high-affinity binding of nisoxetine to the human placental norepinephrine transporter.Biochemistry 32, 12178–12185.

    PubMed  CAS  Google Scholar 

  • Johansson B., Svenningsson P., Aden U., Lindstrom K., and Fredholm B. B. (1992) Evidence that the increase in striatal c-fos following acute high-dose caffeine is not due to direct interaction with striatal adenosine receptors.Acta. Physiol. Scand. 146, 539–541.

    PubMed  CAS  Google Scholar 

  • Johansson B., Herrera-Marschitz M., Svenningson P., and Fredholm B. B. (1993) Caffeine-induced expression of the proto-oncogene c-fos in rat striatum is increased after dopamine denervation.Acta Physiol. Scand. 149, 527–529.

    PubMed  CAS  Google Scholar 

  • Johansson B., Lindstrom K., and Fredholm B. B. (1994) Differences in the regional and cellular localization of c-fos messenger RNA induced by amphetamine, cocaine and caffeine in the rat.Neuroscience 59, 837–849.

    PubMed  CAS  Google Scholar 

  • Kalivas P. W. (1995) Interactions between dopamine and excitatory amino acids in behavioral sensitization to psychostimulants.Drug Alcohol Depend. 37, 95–100.

    PubMed  CAS  Google Scholar 

  • Kawaguchi Y., Wislon C. J., Augood S. J., and Emson P. C. (1995) Striatal interneurons: chemical, physiological and morphological characterization.Trends Neurosci. 18, 527–535.

    PubMed  CAS  Google Scholar 

  • Kiba H. and Jayaraman A. (1994) Nicotine induced c-fos expression in the striatum is mediated mostly by dopaminergic D1 receptor and is dependent on NMDA stimulation.Mol. Brain Res. 23, 1–13.

    PubMed  CAS  Google Scholar 

  • Kilty J. E., Lorang D., and Amara S. G. (1991) Cloning and expression of a cocaine-sensitive rat dopamine transporter.Science 254, 578–579.

    PubMed  CAS  Google Scholar 

  • Kleven M.S., Perry B.D., Woolverton W.L., and Seiden L.S. Effects of repeated injections of cocaine on D1 and D2 dopamine receptors in rat brain.Brain Res. 532, 265–270.

  • Kollack-Walker S., and Newman S. W. (1995) Mating and agonistic behavior produce different patterns of fos immunolabeling in the male Syrian hamster brain.Neuroscience 66, 721–736.

    PubMed  CAS  Google Scholar 

  • Konradi C., Cole R. L., Heckers S., and Hyman S. E. (1994) Amphetamine regulates gene expression in rat striatum via transcription factor CREB.J. Neuroscience 14, 5623–5634.

    CAS  Google Scholar 

  • Konradi C., Leveque J.-C., and Hyman S. E. (1996) Amphetamine and dopamine-induced immediate early gene expression in striatal neurons depends on postsynaptic NMDA receptors and calcium.J. Neuroscience 16, 4231–4239.

    CAS  Google Scholar 

  • Koob G. F. (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways.Trends Pharmacol. Sci. 13, 177–184.

    PubMed  CAS  Google Scholar 

  • Koob G. F. (1996) Drug addiction: the yin and yang of hedonic homeostasis.Neuron 16, 893–896.

    PubMed  CAS  Google Scholar 

  • Kosofsky B. E., Genova L. M., and Hyman S. E. (1995a) Postnatal age defines specificity of immediate-early gene induction by cocaine in developing rat brain.J. Comp. Neurol. 351, 27–40.

    PubMed  CAS  Google Scholar 

  • Kosofsky B. E., Genova L. M., and Hyman S. E. (1995b) Substance P phenotype defines specificity of c-fos induction by cocaine in developing rat striatum.J. Comp. Neurol. 1995, 41–50.

    Google Scholar 

  • Kuczenski R., Segal D. S., Cho A. K., and Melega W. (1995) Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the steroisomers of amphetamine and methamphetamine.J. Neurosci. 15, 1308–1317.

    PubMed  CAS  Google Scholar 

  • Labandeira-Garcia J. L., Tobio J. P., and Guerra M. J. (1994) Comparison between normal developing striatum and developing striatal grafts using drug-induced fos expression and neuron-specific enolase immunohistochemistry.Neuroscience 60, 399–415.

    PubMed  CAS  Google Scholar 

  • Labarca R., Gajardo M. I., Sequel M., Silva H., Jerez S., Ruiz A., and Bustos G. (1995) Effects of D-amphetamine administration on the release of endogenous excitatory amino acids in the rat nucleus accumbens.Prog. Neuropsychopharmacol Biol. Psychiatry 19, 467–473.

    PubMed  CAS  Google Scholar 

  • Le F., Wilce P., Cassady I., Hume D., and Shanley B. (1990) Acute administration of ethanol suppresses pentylenetetrazole-induced c-fos expression in rat brain.Neurosci. Lett. 120, 271–274.

    PubMed  CAS  Google Scholar 

  • Le F., Wilce P. A., Hume D. A., and Shanley B. C. (1992) Involvement of γ-aminobutyric acid andN-methyl-D-aspartate receptors in the inhibitory effect of ethanol on pentylenetetrazole-induced c-fos expression in rat brain.J. Neurochem. 59, 1309–1315.

    PubMed  CAS  Google Scholar 

  • Le Moine C., Normand E., Guitteny A. F., Fouque B., Teoule R., and Bloch B. (1990) Dopamine receptor gene expression by enkephalin neurons in rat forebrain.Proc. Natl. Acad. Sci. USA 87, 230–234.

    PubMed  Google Scholar 

  • Liu F.-C., Dunnett S. B., Robertson H. A., and Graybiel A. M. (1991) Intrastriatal grafts derived from fetal striatal primordia. III. Induction of modular patterns of Fos-like immunoreactivity by cocaine.Exp. Brain Res. 85, 501–506.

    PubMed  CAS  Google Scholar 

  • Liu J., Nickolenko J. and Sharp F. R. (1994) Morphine induces c-fos andjunB in striatum and nucleus accumbens via D1 and N-methyl-D-aspartate receptors.Proc. Natl. Acad. Sci. USA 91, 8537–8541.

    PubMed  CAS  Google Scholar 

  • Lucas L. R., Hurley D. L., Krause J. E., and Harlan R. E. (1992) Localization of the tachykinin neurokinin-B precursor peptide in the rat brain by immunocytochemistry andin situ hybridization.Neuroscience 51, 317–345.

    PubMed  CAS  Google Scholar 

  • Mailleux P., Verslype M., Predu'homme X., and Vanderhaeghen J.-J. (1994) Activation of multiple transcription factor genes by tetrahydrocannabinol in rat forebrain.NeuroReport 5, 1265–1268.

    PubMed  CAS  Google Scholar 

  • Mailleux P., Zhang F., and Vanderhaeghen J.-J. (1992) The dopamine D1 receptor antagonist SCH-23390 decreases the mRNA levels of the transcription factor zif268 (krox24) in adult rat intact striatum—an in situ hybridization study.Neurosci. Lett. 147, 182–184.

    PubMed  CAS  Google Scholar 

  • Mansour A., Khachaturian H., Lewis M. F., Akil H., and Watson S. J. (1987) Autoradiographic differentiation of mu, delta, and kappa opioid receptors in the rat forebrain and midbrain.J. Neurosci. 7, 2445–2464.

    PubMed  CAS  Google Scholar 

  • Matta S. G., Foster C. A., and Sharp B. M. (1993) Nicotine stimulates the expression of cFos protein in the parvocellular paraventricular nucleus and brainstem catecholaminergic regions.Endocrinology 132, 2149–2156.

    PubMed  CAS  Google Scholar 

  • McGeorge A. J., and Faull R. L. M. (1989) The organization of the projection from the cerebral cortex to the striatum in the rat.Neuroscience 29, 503–537.

    PubMed  CAS  Google Scholar 

  • McGregor A. and Roberts D. C. S. (1993) Dopaminergic antagonism within the nucleus accumbens or the amygdala produces differential effects on intravenous cocaine self-administration under fixed and progressive ratio schedules or reinforcement.Brain Res. 624, 245–252.

    PubMed  CAS  Google Scholar 

  • Merchant K. M., Hanson G. R., and Dorsa D. M. (1994) Induction of neurotensin andc-fos mRNA in distinct subregions of rat neostriatum after acute methamphetamine: comparison with acute haloperidol.J. Pharm. Exp. Ther. 269, 806–812.

    CAS  Google Scholar 

  • Middleton F. A. and Strick P. L. (1996) New concepts regarding the organization of basal ganglia and cerebellar output inIntegrative and Molecular Approach to Brain Function, (Ito M. and Miyashita Y. eds.) Elsevier, pp. 253–269.

  • Miyamoto A., Yamamoto T., Ohno M., Watanabe S., Tanaka H., Morimoto S., and Shoyama Y. (1996) Roles of dopamine D1 receptors in δ9 expression of Fos protein in the rat brain.Brain Res. 710, 234–240.

    PubMed  CAS  Google Scholar 

  • Moorman J. M. and Leslie R. A. (1996)P-Chloroamphetamine inducesc-fos in rat brain: a study of serotonin2A/2C receptor function.Neuroscience 72, 129–139.

    PubMed  CAS  Google Scholar 

  • Moratalla R., Robertson H. A., and Graybiel A. M. (1992) Dynamic regulation of NGFI-A (zif268,egr1) gene expression in the striatum.J. Neuroscience 12, 2609–2622.

    CAS  Google Scholar 

  • Moratalla R., Viockers E. A., Robertson H. A., Cochran B. H., and Graybiel A. M. (1993) Coordinate expression ofc-fos andjun B is induced in the rat striatum by cocaine.J. Neurosci 13, 423–433.

    PubMed  CAS  Google Scholar 

  • Moratalla R., Elibol B., Vallejo M., and Graybiel A. M. (1996a) Network-level changes in expression of inducible Fos-Jun proteins in the striatum during chronic cocaine treatment and withdrawal.,Neuron 17, 147–156.

    PubMed  CAS  Google Scholar 

  • Moratalla R., Xu M., Tonegawa S., and Graybiel A. M. (1996b) Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor.Proc. Natl. Acad. Sci USA 93, 14928–14933.

    PubMed  CAS  Google Scholar 

  • Morgan P. F., Nadi N. S., Karanian J., and Linnoila M. (1992) Mapping rat brain structures activated during ethanol withdrawal: role of glutamate and NMDA receptors.Eur. J. Pharmacol. 225, 217–223.

    PubMed  CAS  Google Scholar 

  • Nakajima T., Daval J.-L., Morgan P. F., Post R. M., and Marangos P. J. (1989) Adenosinergic modulation of caffeine-induced c-fos mRNA expression in mouse brain.Brain Res. 501, 307–314.

    PubMed  CAS  Google Scholar 

  • Nakao S.-I., Arai T., Mori K., Yasuhara O., Tooyama I., and Kimura H. (1993) High-dose ketamine does not induce c-Fos protein expression in rat hippocampus.Neurosci. Lett. 151, 33–36.

    PubMed  CAS  Google Scholar 

  • Nakao S.-I., Adachi T., Murakawa M., Shinomura T., Kurata J., Shichino T., Shibata M., Tooyama I., Kimura H., and Mori K. (1996) Halothane and diazepam inhibit ketamine-induced c-fos expression in the rat cingulate cortex.Anesthesiology 85, 874–882.

    PubMed  CAS  Google Scholar 

  • Nakki R., Sharp F. R. and Sagar S. M. (1996a) FOS expression in the brainstem and cerebellum following phencyclidine and MK801.J. Neurosci. Res. 43, 203–212.

    PubMed  CAS  Google Scholar 

  • Nakki R., Sharp F. R., Sagar S. M., and Honkaniemi J. (1996b) Effects of phencyclidine on immediate early gene expression in the brain.J. Neurosci. Res. 45, 13–27.

    PubMed  CAS  Google Scholar 

  • Napier T. C., Mitrovic I., Churchill L., Klitenick M. A., Lu X. Y., and Kalivas P. W. (1995) Substance P in the ventral pallidum: projection from the ventral striatum, and electrophysiological and behavioral consequences of pallidal substance P.Neuroscience 69, 59–70.

    PubMed  CAS  Google Scholar 

  • Naranjo J. R., Mellstrom B., Achaval M., and Sassone-Corsi P. (1991) Molecular pathways of pain:fos/jun-mediated activation of a noncanonical AP-1 site in the prodynorphin gene.Neuron 6, 607–617.

    PubMed  CAS  Google Scholar 

  • Nehlig A., Daval J.-L., and Debry G. (1992) Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects.Brain Res. Reviews 17, 139–170.

    CAS  Google Scholar 

  • Nestler E. J. (1996) Under siege: the brain on opiates.Neuron 16, 897–900.

    PubMed  CAS  Google Scholar 

  • Nguyen T. V., Kosofsky B. E., Cohen B. M., and Hyman S. E. (1992) Differential expression of c-Fos and Zif268 in rat striatum after haloperidol, clozapine, and amphetamine.Proc. Natl. Acad. Sci. USA 89, 4270–4274.

    PubMed  CAS  Google Scholar 

  • Norman A. B., Lu S. Y., Klug J. M., and Norgren R. B. (1993) Sensitization of c-fos expression in rat striatum following multiple challenges with D-amphetamine.Brain Res. 603, 125–128.

    PubMed  CAS  Google Scholar 

  • Nye H. E., Hope B. T., Kelz M. B., Iadarola M., and Nestler E. J. (1995) Pharmacological studies of the regulation of chronic FOS-related antigen induction by cocaine in the striatum and nucleus accumbens.J. Pharm. Exp. Ther. 275, 1671–1680.

    CAS  Google Scholar 

  • Nye H. E. and Nestler E. J. (1996) Induction of chronic fos-related antigens in rat brain by chronic morphine administration.Mol. Pharmacology 49, 636–645.

    CAS  Google Scholar 

  • Ohno M., Yoshida H., and Watanabe S. (1994) NMDA receptor-mediated expression of Fos protein in the rat striatum following methamphetamine administration: relation to behavioral sensitization.Brain Res. 665, 135–140.

    PubMed  CAS  Google Scholar 

  • Pakzaban Deacon P. T. W., Burns L. H., and Isacson O. (1993) Increased proportion of acetylcholinesterase-rich zones and improved morphological integration in host striatum of fetal grafts derived from the lateral but not the medial ganglionic eminence.Exp. Brain Res. 97, 13–22.

    Google Scholar 

  • Panagis G., Nisell M., Nomikos G. G., Chergui K., and Svensson T. H. (1996) Nicotine injections into the ventral tegmental area increase locomotion and Fos-like immunoreactivity in the nucleus accumbens of the rat.Brain Res. 730, 133–142.

    PubMed  CAS  Google Scholar 

  • Pang Y., Kiba H., and Jayaraman A. (1993) Acute nicotine injections inducec-fos mostly in nondopaminergic neurons of the midbrain of the rat.Mol. Brain Res. 20, 162–170.

    PubMed  CAS  Google Scholar 

  • Parthasarathy H. B. and Graybiel A. M. (1997) Cortically-driven immediate-early gene expression reflects modular influence of sensorimotor cortex on identified striatal neurons in the squirrel monkey.J. Neurosci. 17, 2477–2491.

    PubMed  CAS  Google Scholar 

  • Paul M. L., Currie R. W., and Robertson H. A. (1995) Priming of a D1 dopamine receptor behavioral response is dissociated from striatal immediate-early gene activity.Neuroscience 66, 347–359.

    PubMed  CAS  Google Scholar 

  • Persico A. M., Schindler C. W., O'Hara B. F., Brannock M. T., and Uhl G. R. (1993) Brain transcription factor expression: effects of acute and chronic amphetamine and injection stress.Mol. Brain Res. 20, 91–100.

    PubMed  CAS  Google Scholar 

  • Petraglia R. S. and Wenthold R. J. (1992) Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain.J. Comp. Neurol. 318, 329–354.

    Google Scholar 

  • Pfaus J. G., Kleopoulos S. P., Mobbs C. V., Gibbs R. B., and Pfaff D. W. (1993) Sexual stimulation activatesc-fos within estrogen-concentrating regions of the female rat forebrain.Brain Res. 624, 253–267.

    PubMed  CAS  Google Scholar 

  • Pich E. M., Pagliusi S. R., Tessari M., Tallabot-Ayer D., Huijsduijnen R. H. v., and Chiamulera C. (1997) Common neuronal substrates for the addictive properties of nicotine and cocaine.Science 275, 83–86.

    PubMed  CAS  Google Scholar 

  • Polston E. K. and Erskine M. S. (1995) Patterns of induction of the immediate-early genes c-fos andegr-1 in the female rat brain following differential amounts of mating stimulation.Neuroendocrinology 62, 370–384.

    PubMed  CAS  Google Scholar 

  • Putzke J., Spanagel R., Tolle T. R., and Zieglgansberger W. (1996) The anti-craving drug acamprosate reduces c-fos expression in rats undergoing ethanol withdrawal,Eur. J. Pharmacol. 317, 39–48.

    PubMed  CAS  Google Scholar 

  • Ragsdale C. W. J. and Graybiel A. M. (1988) Fibers from the basolateral nucleus of the amygdala selectively innervate striosomes in the caudate nucleus of the cat.J. Comp. Neurol. 269, 506–522.

    PubMed  Google Scholar 

  • Ren T. and Sagar S. M. (1992) Induction of c-fos immunostaining in the rat brain after the system administration of nicotine.Brain Res. Bull. 29, 589–597.

    PubMed  CAS  Google Scholar 

  • Robertson G. S. and Jian M. (1995) D1 and D2 dopamine receptors differentially increase foslike immunoreactivity in accumbal projections to the ventral pallidum and midbrain.Neuroscience 64, 1019–1034.

    PubMed  CAS  Google Scholar 

  • Robinson T. E. and Berridge K. C. (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction.Brain Res. Reviews 18, 247–291.

    CAS  Google Scholar 

  • Robledo P. and Koob G. F. (1993) Two discrete nucleus accumbens projection areas differentially mediate cocaine self-administration in the rat.Behav. Brain Res. 55, 159–166.

    PubMed  CAS  Google Scholar 

  • Rosen J. B., Chuang E., and Iadarola M. J. (1994) Differential induction of Fos protein and a Fos-related antigen following acute and repeated cocaine administration.Mol. Brain Res. 25, 168–172.

    PubMed  CAS  Google Scholar 

  • Ruskin D. N. and Marshall J. F. (1994) Amphetamine-and cocaine-induced fos in the rat striatum depends on D2 dopamine receptor activation.Synapse 18, 233–240.

    PubMed  CAS  Google Scholar 

  • Ryabinin A. E., Melia K. R., Cole M., Bloom F. E., and Wilson M. C. (1995) Alcohol selectively attenuates stress-induced c-fos expression in rat hippocampus.J. Neurosci. 15, 721–730.

    PubMed  CAS  Google Scholar 

  • Sakurai-Yamashita Y., Kataoka Y., Fujiwara M., Mine K., and Ueki S. (1989) δ9 facilitates striatal dopaminergic transmission.Pharmacol. Biochem. Behav. 33, 397–400.

    PubMed  CAS  Google Scholar 

  • Salminen O., Lahtinen S. and Ahtee L. (1996) Expression of fos protein in various rat brain areas following acute nicotine and diazepam.Pharm. Biochem. Behav. 54, 241–248.

    CAS  Google Scholar 

  • Schiffmann S. N., Jacobs O., and Vanderhaeghen J.-J. (1991) Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study.J. Neurochem. 57, 1062–1067.

    PubMed  CAS  Google Scholar 

  • Schwarzschild M. A., Cole R. L., and Hyman S. E. (1997) Glutamate, but not dopamine, stimulates stress-activated protein kinase and AP-1-mediated transcription in striatal neurons.J. Neurosci. 17, 3455–3466.

    PubMed  CAS  Google Scholar 

  • Self D. S. and Nestler E. J. (1995) Molecular mechanisms of drug reinforcement and addiction.Annu. Rev. Neurosci. 18, 463–495.

    PubMed  CAS  Google Scholar 

  • Sharp T., Zetterstrom T., Ljungberg T., and Ungerstedt U. (1987) A direct comparison of amphetamine-induced behaviours and regional brain dopamine release in the rat using intracerebral dialysis.Brain Res. 401, 322–330.

    PubMed  CAS  Google Scholar 

  • Simpson J. N., Wang J. Q., and McGinty J. F. (1995) Repeated amphetamine administration induces a prolonged augmentation of phosphorylated cyclase response element-binding protein and fos-related antigen immunoreactivity in rat striatum.Neuroscience 69, 441–457.

    PubMed  CAS  Google Scholar 

  • Smith J. A., Mo Q., Guo H., Kunko P. M., and Robinson S. E. (1995) Cocaine increases extraneuronal levels of aspartate and glutamate in the nucleus accumbens.Brain Res. 683, 264–269.

    PubMed  CAS  Google Scholar 

  • Snyder-Keller A. M. (1995) The development of striatal patch/matrix organization after prenatal methylazoxymethanol: a combined immunocytochemical and bromo-deoxy-uridine birthdating study.Neuroscience 68, 751–763.

    PubMed  CAS  Google Scholar 

  • Song D. D. and Harlan R. E. (1994a) Genesis and migration patterns of neurons forming the patch and matrix compartments of the rat striatum.Dev. Brain Res. 83, 233–246.

    CAS  Google Scholar 

  • Song D. D. and Harlan R. E. (1994b) The development of enkephalin and substance P neurons in the basal ganglia: insights into neostriatal compartments and the extended amygdala.Dev. Brain Res. 83, 247–261.

    CAS  Google Scholar 

  • Steiner H. and Gerfen C. R. (1993) Cocaine-induced c-fos messenger RNA is inversely related to dynorphin expression in striatum.J. Neurosci. 13, 5066–5081.

    PubMed  CAS  Google Scholar 

  • Steiner H. and Gerfen C. R. (1995) Dynorphin opioid inhibition of cocaine-induced, D1 dopamine receptor-mediated immediate-early gene expression in the striatum.J. Comp. Neurol. 353, 200–212.

    PubMed  CAS  Google Scholar 

  • Stornetta R. L., Norton F. E., and Guyenet P. G. (1993) Autonomic areas of rat brain exhibit increased Fos-like immunoreactivity during opiate withdrawal in rats.Brain Res. 624, 19–28.

    PubMed  CAS  Google Scholar 

  • Sugita S., Namima M., Nabeshima T., Okamoto K., Furukawa H., and Watanabe Y. (1996) Phencyclidine-induced expression of c-Fos-like immunoreactivity in mouse brain regions.Neurochem. Int. 28, 545–550.

    PubMed  CAS  Google Scholar 

  • Sukhatme V. P., Cao X., Chang L. C., Tsai-Morris C.-H., Stamenkovich D., Ferreira P. C. P., Cohen D. R., Edwards S. A., Shows T. B., Curran T., Beau M. M. L., and Adamson E. D. (1988) A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization.Cell 53, 37–43.

    PubMed  CAS  Google Scholar 

  • Svenningsson P., Johansson B., and Fredholm B. B. (1995a) Effect of different xanthines and phosphodiesterase inhibitors on c-fos expression in rat striatum.Acta Physiol. Scand. 154, 17–24.

    PubMed  CAS  Google Scholar 

  • Svenningsson P., Nomikos G. G., and Fredholm B. B. (1995b) Biphasic changes in locomotor behavior and in expression of mRNA for NGFI-a and NGFI-B in rat striatum following acute caffeine administration.J. Neurosci. 15, 7612–7624.

    PubMed  CAS  Google Scholar 

  • Svenningsson P., Strom A., Johansson B., and Fredholm B. B. (1995c) Increased expression of c-jun, junB, AP-1, and preproenkephalin mRNA in rat striatum following a single injection of caffeine.J. Neurosci. 15, 3583–3593.

    PubMed  CAS  Google Scholar 

  • Svenningsson P., Johansson B., and Fredholm B. B. (1996) Caffeine-induced expression of c-fos mRNA and NGFI-A mRNA in caudate putamen and in nucleus accumbens are differentially affected by theN-methyl-D-aspartate receptor antagonist MK-801.Mol. Brain Res. 35, 183–189.

    PubMed  CAS  Google Scholar 

  • Swanson L. W. (1995) Mapping the human brain: past, present, and future.Trends. Neurosci. 18, 471–474.

    PubMed  CAS  Google Scholar 

  • Tabakoff B. and Hoffman P. L. (1996) Alcohol addiction: an anigma among us.Neuron 16, 909–912.

    PubMed  CAS  Google Scholar 

  • Torres G. (1994) Acute administration of alcohol blocks cocaine-induced striatal c-fos immunoreactivity protein in the rat.Synapse 1994, 161–167.

    Google Scholar 

  • Torres G. and Rivier C. (1992) Differential effects of intermittent or continuous exposure to cocaine on the hypothalamic-pituitary-adrenal axis and c-fos expression.Brain Res. 571, 204–211.

    PubMed  CAS  Google Scholar 

  • Torres G. and Rivier C. (1993) Cocaine-induced expression of striatal c-fos in the rat is inhibited by NMDA receptor antagonists.Brain Re. Bull. 30, 173–176.

    CAS  Google Scholar 

  • Torres G. and Rivier C. (1994) Induction of c-fos in rat brain by acute cocaine and fenfluramine exposure: a comparison study.Brain Research 647, 1–9.

    PubMed  CAS  Google Scholar 

  • Torres G. and Horowitz J. M. (1996) Combined effects of ethanol and cocaine on FOS-like protein and cocaethylene biosynthesis in the rat.Psychopharmacology 128, 105–114.

    PubMed  CAS  Google Scholar 

  • Toth E., Vizi E. S., and Lajtha A. (1993) Effect of nicotine on levels of extracellular amino acids in regions of the rat brain in vivo.Neuropharmacology 32, 827–832.

    PubMed  CAS  Google Scholar 

  • Turgeon S. M., Pollack A. E., Schusheim L., and Fink J. S. (1996) Effects of selective adenosine A1 and A2a agonists on amphetamine-induced locomotion and c-Fos in straiatum and nucleus accumbens.Brain Res 707, 75–80.

    PubMed  CAS  Google Scholar 

  • Unterwald E. M., Ho A., Rubenfeld J. M., and Kreek M. J. (1994) Time course of the development of behavioral sensitization and dopamine receptor up-regulation during binge cocaine administration.J. Pharmacol. Exp. Ther. 270, 1387–1396.

    PubMed  CAS  Google Scholar 

  • van der Kooy D. and Fishell G. (1987) Neuronal birthdate underlies the development of striatal compartments.Brain Res. 401, 155–161.

    PubMed  Google Scholar 

  • Van Tol J. H. M., Bunzow J. R., Guan H. C., Sunahara R. K., Seeman P., Niznik H. B., and Civelli O. (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine.Nature 350, 610–614.

    PubMed  Google Scholar 

  • Vargo J. M., Estrick M. S., and Marshall J. F. (1996) Amphetamine-induced Fos expression in globus pallidus is altered by frontal cortex injury.Brain Res. 716, 207–212.

    PubMed  CAS  Google Scholar 

  • Wang J. G., Daunais J. B. and McGinty J. F. (1994a) NMDA receptors mediate amphetamine-induced upregulation ofzif/268 and preprodynorphin mRNA expression in rat striatum.Synapse 18, 343–353.

    PubMed  CAS  Google Scholar 

  • Wang J. Q., Daunais J. B., and McGinty J. F. (1994b) Role of kainate/AMPA receptors in induction of striatalzif/268 and preprodynorphin mRNA by a single injection of amphetamine.Mol. Brain Res. 27, 118–126.

    PubMed  CAS  Google Scholar 

  • Wang J. Q., Smith A. J. W., and McGinty J. F. (1995) A single injection of amphetamine or methamphetamine induces dynamic alterations inc-fos, zif/268 and preprodynorphin messenger RNA expression in rat forebrain.Neuroscience 68, 83–95.

    PubMed  CAS  Google Scholar 

  • Wang J. Q. and McGinty J. F. (1996) Acute methamphetamine-induced zif/268, preprodynorphin, and preproenkephalin mRNA expression in rat striatum depends on activation of NMDA and kainate/AMPA receptors.Brain Res. Bull. 39, 349–357.

    PubMed  CAS  Google Scholar 

  • Warden M. K. and III, W. S. Y. (1988) Distribution of cells containing mRNAs encoding substance P and neurokinin B in the rat central nervous system.J. Comp. Neurol. 272, 90–113.

    PubMed  CAS  Google Scholar 

  • Wirtshafter D., Asin K. E., and Pitzer M. R. (1994) Dopamine agonists and stress produce different patterns of Fos-like immunoreactivity in the lateral habenula.Brain Res. 633, 21–26.

    PubMed  CAS  Google Scholar 

  • Wood R. I. and Newman S. W. (1993) Mating activates androgen receptor-containing neurons in chemosensory pathways of the male Syrian hamster brain.Brain Res. 614, 65–77.

    PubMed  CAS  Google Scholar 

  • Worley P. F., Christy B. A., Nakabeppu Y., Bhat R. V. Cole A. J., and Baraban J. M. (1991) Constitutive expression ofzif268 in neocortex is regulated by synaptic activity.Proc. Natl. Acad. Sci. USA 88, 5106–5110.

    PubMed  CAS  Google Scholar 

  • Xue C. J., Ng J. P., Li Y., and Wolf M. E. (1996) Acute and repeated systemic amphetamine, adminsitration: effects on extracellular glutamate, aspartate, and serine levels in rat ventral tegmental area and nucleus accumbens.J. Neurochem. 67, 352–363.

    PubMed  CAS  Google Scholar 

  • Yamamoto B. K. and Spanos L. J. (1988) The acute effects of methylenedioxymethamphetamine on dopamine release in the awake-behaving rat.Eur. J. Pharmacol. 148, 195–203.

    PubMed  CAS  Google Scholar 

  • Young S. T., Porrino L. J., and Iadarola M. J. (1991) Cocaine induces striatal c-Fos-immunoreactive proteins via dopaminergic D1 receptors.Proc. Natl. Acad. Sci. USA 88, 1291–1295.

    PubMed  CAS  Google Scholar 

  • Zoeller R. T. and Fletcher D. L. (1994) A single administration of ethanol simultaneously increases c-fos mRNA and reduces c-jun mRNA in the hypothalamus and hippocampus.Mol. Brain Res. 24, 185–191.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harlan, R.E., Garcia, M.M. Drugs of abuse and immediate-early genes in the forebrain. Mol Neurobiol 16, 221–267 (1998). https://doi.org/10.1007/BF02741385

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02741385

Index Entries

Navigation