Skip to main content
Log in

[35S]GTPγS binding: A tool to evaluate functional activity of a cloned opioid receptor transiently expressed in COS cells

Neurochemical Research Aims and scope Submit manuscript

Abstract

In this paper we propose a powerful procedure to measure functional activation of the mouse δ-opioid receptor transiently expressed in mammalian cells. Receptor stimulation was assessed using a population of electroporated COS cells, transfected at a 50% efficiency. Under those conditions, agonist-promoted activation of the receptor was measured by [35S]GTPγS binding. Both BW373U86, an alkaloid compound, and DADLE, a peptide agonist, elicited increase of specific [35S]GTPγS binding representing 300% of basal level. Maximal activation was compared to that obtained for the cloned receptor stably expressed in CHO cells. Agonist efficacy was similar in both expressions systems, demonstrating the high sensitivity of the proposed method applied to transient expression. Finally dose-response curves were found highly reproducible across transfection experiments, opening the possibility for a direct comparison of distinct recombinant receptor preparations. This method represents a powerfull tool for the study of opioid signal transduction at the receptor level. It may also be extended to investigate signalling properties of other Gi/Go coupled receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Simon, E. J., Hiller, J. M., and Edelman, I. 1973. Stereospecific binding of the potent narcotic analgesic [3H]etorphine to rat brain homogenate. Proc. Natl. Acad. Sci. USA 70:1947–1949.

    Article  PubMed  CAS  Google Scholar 

  2. Terenius, L. 1973. Stereospecific interaction between narcotic analgesics and a synaptic plasma membrane fraction of rat cerebral cortex. Acta. Pharmacol. Toxicol. 32:317–319.

    Article  CAS  Google Scholar 

  3. Pert, C. B., and Snyder, S. H. 1973. Oplate receptor: demonstration in nervous tissue. Science 179:1011–1014.

    Article  PubMed  CAS  Google Scholar 

  4. Goldstein, A. and Naidu, A. 1989. Multiple opioid receptors: ligand selectivity profiles and binding signatures. Mol. Pharmacol. 36:265–272.

    PubMed  CAS  Google Scholar 

  5. Law, P. Y. and Loh, H. H. 1992. Second messengers in the transduction of multiple opioid receptors' signals. Pages 39–68, in Drugs of abuse and neurobiology (Watson, R. R., ed.), CRC Press, Boca Raton, FL.

    Google Scholar 

  6. North, R. A. 1993. Opioid action on membrane ion channels. Pages 773–793, in Herz, A. (ed), Handbook of Experimental Pharmacology, Opioids I. Springer-Verlag, Berlin, Vol. 104/I.

    Google Scholar 

  7. Childers, S. R. 1993. Opioid receptor-coupled second messenger systems. Pages 189–208, in Herz, A. (ed) Handbook of Experimental Pharmacology, Opioids I. Springer-Verlag, Berlin, Vol. 104/I.

    Google Scholar 

  8. Cox, B. M. 1993. Opioid receptor-G protein interactions: acute and chronic effects of opioids. Pages 145–180, in: Herz A. (ed). Handbook of Experimental Pharmacology, Opioids I, Springer-Verlag, Berlin, Vol. 104/I.

    Google Scholar 

  9. Evans, C. J., Keith, D. E., Morrison, H., Magendzo, K., and Edwards, R. H. 1992. Cloning of a δ-opioid receptor by functional expression. Science 258:1952–1955.

    Article  PubMed  CAS  Google Scholar 

  10. Kieffer, B. L., Befort, K., Gaveriaux-Ruff, C., and Hirth, C. G. 1992. The δ-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc. Natl. Acad. Sci. U.S.A. 89:12048–12052.

    Article  PubMed  CAS  Google Scholar 

  11. Kieffer, B. L. 1995. Recent advances in molecular recognition and signal transduction of active peptides: receptors for opioid peptides. Cell. Mol. Neurobiol. 15:615–635.

    Article  PubMed  CAS  Google Scholar 

  12. Satoh, M. and Minami, M. 1995. Molecular pharmacology of the opioid receptors. Pharmacol. Ther. 68:343–364.

    Article  PubMed  CAS  Google Scholar 

  13. Tallent, M., Dichter, M. A., Bell, G. I., and Reisine, T. 1994. The cloned kappa opioid receptor couples to an N-type calcium current in undifferentiated PC-12 cells. Neurosci. 63:1033–1040.

    Article  CAS  Google Scholar 

  14. Piros, E. T., Prather, P. L., Loh, H. H., Law, P. Y., Evans, C. J., and Hales, T. G. 1995. Ca2+ channel and adenylyl cyclase modulation by cloned μ-opioid receptors in GH3 cells. Mol. Pharmacol. 47:1041–1049.

    PubMed  CAS  Google Scholar 

  15. Prather, P. L., McGinn, T. M., Erickson, L. J., Evans, C. J., Loh, H. H., and Law, P. Y. 1994. Ability of δ-opioid receptors to interact with multiple G-proteins is dependent of receptor density. J. Biol. Chem. 269:21293–21302.

    PubMed  CAS  Google Scholar 

  16. Chabrakarti, S., Prather, P. L., Yu, L., Law, P. Y., and Loh, H. H. 1995. Expression of the μ-opioid receptor in CHO cells: ability of μ-opioid ligands to promote α-azidoanilido [32P]GTP labeling of multiple G protein α subunits. J. Neurochem. 64:2534–2543.

    Article  Google Scholar 

  17. Prather, P. L., McGinn, T. M., Claude, P. A., Liu-Chen, L. Y., Loh, H. H., and Law, P. Y. 1995. Properties of a κ-opioid receptor expressed in CHO cells: interaction with multiple G-proteins is not specific for any individual Gα subunit and is similar to that of other opioid receptor. Mol. Brain. Res. 29:336–346.

    Article  PubMed  CAS  Google Scholar 

  18. Dascal, N., Schreibmayer, W., Lim, N. F., Wang, W., Chavkin, C., Di, M. L., Labarca, C., Kieffer, B. L., Gaveriaux, R. C., Trollinger, D., Lester, H. A. and Davidson, N. 1993. Atrial G protein-activated K+ channel: expression cloning and molecular properties. Proc. Natl. Acad. Sci. U.S.A. 90:10235–10239.

    Article  PubMed  CAS  Google Scholar 

  19. Lai, H. W. L., Minami, M., Satoh, M., and Wong, Y. H. 1995. Gz coupling to the rat κ-opioid receptor. FEBS. 360:97–99.

    Article  CAS  Google Scholar 

  20. Henry, D. J., Grandy, D. K., Lester, H. A., Davidson, N. and Chavkin, C. 1995. κ-opioid receptors couple to inwardly rectifying potassium channels when coexpressed byXenopus oocytes. Mol. Pharmacol. 47:551–557.

    PubMed  CAS  Google Scholar 

  21. Law, P. Y., McGinn, T. M., Wick, M. J., Erickson, L. J., Evans, C. J., and Loh, H. H. 1994. Analysis of delta-opioid receptor activities stably expressed in CHO cell lines: function of receptor density? J. Pharmacol. Exp. Ther. 271:1686–1694.

    PubMed  CAS  Google Scholar 

  22. Tsu, R. C., Chan, J. S. C., and Wong, Y. H. 1995. Regulation of multiple effectors by the cloned δ-opioid receptor: stimulation of phospholipase C and Type II adenylyl cyclase. J. Neurochem. 64: 2700–2707.

    Article  PubMed  CAS  Google Scholar 

  23. Kovoor, A., Henry, D., and Chavkin, C. 1995. Agonist-induced desensitization of the μ-opioid receptor-coupled potassium channel (GIRK1). J. Biol. Chem. 270:589–595.

    Article  PubMed  CAS  Google Scholar 

  24. Ma, G. H., Miller, R. J., Kuznetsov, A., and Philipson, L. H. 1995. κ-opioid receptor activates an inwardly rectifying K+ channel by a G protein-linked mechanism: coexpression inXenopus oocytes. Mol. Pharmacol. 47:1035–1040.

    PubMed  CAS  Google Scholar 

  25. Traynor, J. R., and Nahorski, S. R. 1995. Modulation by μ-opioid agonists of guanosine-5′-O-(3-[35S]thio)triphosphate binding to membranes from human neuroblastoma SH-SY5Y cells. Mol. Pharmacol. 47:848–854.

    PubMed  CAS  Google Scholar 

  26. Sim, L. J., Selley, D. E., and Childers, S. R. 1995. In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5′-[γ-[35S]thio]-triphosphate binding. Neurobiology 92:7242–7246.

    CAS  Google Scholar 

  27. Thomas, D. R., Faruq, S. A., Balcarek, J. M., and Brown, A. M. 1995. Pharmacological characterization of [35S]-GTPγS binding to Chinese hamster ovary cell membranes stably expressing cloned human 5-HT1D receptor subtypes. J. Receptor Signal Transduction Res. 15:199–211.

    Article  CAS  Google Scholar 

  28. Burford, N. T., Tobin, A. B., and Nahorski, S. R. 1995. Coupling of muscarinic m1, m2 and m3 acetylcholine receptors, expressed in Chinese hamster ovary cells, to pertussis toxin-sensitive guanine nucleotide-binding proteins. Eur. J. Pharmacol. Mol. Sect. 19: 343–351.

    Article  Google Scholar 

  29. Simonin, F., Befort, K., Gaveriaux-Ruff, C., Matthes, H., Nappey, V., Lannes, B., Micheletti, G., and Kieffer, B. 1994. The human δ-opioid receptor: genomic organization, cDNA cloning, functional expression and distribution in human brain. Mol. Pharmacol. 46:1015–1021.

    PubMed  CAS  Google Scholar 

  30. Befort, K., Tabbara, L., Bausch, S., Chavkin, C., Evans, C., and Kieffer, B. 1996. The conserved aspartate residue in the third putative tranmembrane domain of the δ-opioid receptor is not the anionic counterpart for cationic opiate binding but is a constituent of the receptor binding site. Mol. Pharm. 49:216–223.

    CAS  Google Scholar 

  31. Malatynska, E., Wang, Y., Knapp, R. J., Santoro, G., Li, X., Waite, S., Roeske, W. R., and Yamamura, H. I. 1995. Human δ-opioid receptor: a stable cell line for functional studies of opioids. Neuroreport. 6:613–616.

    Article  PubMed  CAS  Google Scholar 

  32. Chakrabarti, S., Law, P. Y., and Loh, H. H. 1995. Neuroblastoma Neuro2A cells stably expressing a cloned μ-opioid receptor: a specific cellular model to study acute and chronic effects of morphine. Mol. Brain Res. 30:269–278.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte L. Kieffer.

Additional information

Special issue dedicated to Dr. Eric J. Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Befort, K., Tabbara, L. & Kieffer, B.L. [35S]GTPγS binding: A tool to evaluate functional activity of a cloned opioid receptor transiently expressed in COS cells. Neurochem Res 21, 1301–1307 (1996). https://doi.org/10.1007/BF02532371

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02532371

Key Words

Navigation