Skip to main content
Log in

Type I and type II error rates for quantitative trait loci (QTL) mapping studies using recombinant inbred mouse strains

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Effective mapping strategies for quantitative traits must allow for the detection of the more important quantitative trait loci (QTLs) while minimizing false positives. Type I (false-positive) and Type II (false-negative) error rates were estimated from a computer simulation of QTL mapping in the BXD recombinant inbred (RI) set comprising 26 strains of mice, and comparisons made with theoretical predictions. The results are generally applicable to other RI sets when corrections are made for differing strain numbers and marker densities. Regardless of the number or magnitude of simulated QTLs contributing to the trait variance, thep value necessary to provide genome-wide. 05 Type I error protection was found to be aboutp=.0001. To provide adequate protection against both Type I (α=.0001) and Type II (β=.2) errors, a QTL would have to account for more than half of the between-strain (genetic) variance if the BXD or similar set was used alone. In contrast, a two-step mapping strategy was also considered, where RI strains are used as a preliminary screen for QTLs to be specifically tested (confirmed) in an F2 (or other) population. In this case, QTLs accounting for ∼16% of the between-strain variance could be detected with an 80% probability in the BXD set when α=0.2. To balance the competing goals of minimizing Type I and II errors, an economical strategy is to adopt a more stringent α initially for the RI screen, since this requires only a limited genome search in the F2 of the RI-implicated regions (∼10% of the F2 genome whenp<.01 in the RIs). If confirmed QTLs do not account in the aggregate for a sufficient proportion of the genetic variance, then a more relaxed α value can be used in the RI screen to increase the statistical power. This flexibility in setting RI α values is appropriate only when adequate protection against Type I errors comes from the F2 (or other) confirmation test(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bailey, D. W. (1981). Recombinant inbred strains and bilineal congenic strains. In Foster, H. L., Small, J. D., and Fox, J. G. (eds.),The Mouse in Biomedical Research, Vol. 1, Academic Press, New York, pp. 223–239.

    Google Scholar 

  • Belknap, J. K. (1992). Empirical estimates of Bonferroni corrections for use in chromosome mapping studies with the BXD recombinant inbred strains.Behav. Genet. 22:677–684.

    PubMed  CAS  Google Scholar 

  • Belknap, J. K., Metten, P. A., Helms, M. L., O'Toole, L. A., Angeli-Gade, S., Crabbe, J. C., and Phillips, T. J. (1993). Quantitative trait loci (QTL) applications to substances of abuse: Physical dependence studies with nitrous oxide and ethanol.Behav. Genet. 23:211–220.

    Article  Google Scholar 

  • Belknap, J. K., Mogil, J. S., Helms, M. L., Richards, S. P., O'Toole, L. A., Bergeson, S. E., and Buck, K. J. (1995). Localization to chromosome 10 of a locus influencing morphine-induced analgesia in crosses derived from C57BL/6 and DBA/2 mice.Life Sci. (Pharmacol. Lett.) 57:PL117-PL124.

    CAS  Google Scholar 

  • Berrettini, W. H., Ferraro, T. N., Alexander, R. C., Buchberg, A. M., and Vogel, W. H. (1994). Quantitative trait loci mapping of three loci controlling morphine preference using inbred mouse strains.Nature Genet. 7:54–58.

    Article  PubMed  CAS  Google Scholar 

  • Buck, K. J. (1995). Strategies for mapping and identifying quantitative trait loci specifying behavioral responses to alcohol.Alc. Clin. Exp. Res. 19:795–801.

    CAS  Google Scholar 

  • Crabbe, J. C., Belknap, J. K., and Buck, K. J. (1994a). Genetic animal models of alcohol and drug abuse.Science 264: 1715–1723.

    PubMed  CAS  Google Scholar 

  • Crabbe, J. C., Belknap, J. K., Buck, K. J., and Metten, P. (1994b). Use of recombinant inbred strains for studying genetic determinants of responses to alcohol.Alcohol Alcohol. S2:69–73.

    Google Scholar 

  • Crabbe, J. C., Buck, K. J., Metten, P., and Belknap, J. K. (1995). Strategies for identifying genes underlying drug abuse susceptibility. In Lee, T. N. H. (ed.)Molecular Approaches to Drug Abuse Research, Vol. III, NIDA Res. Monogr., USGPO, Washington, DC.

    Google Scholar 

  • Darvasi, A., Weinreb, A., Minke, V., Weller, J. I., and Soller, M. (1993). Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map.Genetics 134:943–951.

    PubMed  CAS  Google Scholar 

  • DeFries, J. C., Wilson, J. R., Erwin, V. G., and Petersen, D. R. (1989). LSXSS recombinant inbred strains of mice: Initial characterization.Alc. Clin. Exp. Res. 13:196–200.

    CAS  Google Scholar 

  • Dietrich, W., Katz, H., Lincoln, S. E., Shin, H.-S., Friedman, J., Dracopoli, N. C., and Lander, E. S. (1992). A genetic map of the mouse suitable for typing intraspecific crosses.Genetics 131:423–447.

    PubMed  CAS  Google Scholar 

  • Fisher, R. A. (1958).Statistical Methods for Research Workers, 13th ed., Hafner, New York, pp. 99–101.

    Google Scholar 

  • Flint, J., Corley, R., DeFries, J. C., Fulker, D. W., Gray, J. A., Miller, S., and Collins, A. C. (1995). A simple genetic basis for a complex psychological trait in laboratory mice.Science 269:1432–1435.

    PubMed  CAS  Google Scholar 

  • Goldman, D., Lister, R. G., and Crabbe, J. C. (1987). Mapping of a putative genetic locus determining ethanol intake in the mouse.Brain Res. 420:220–226.

    Article  PubMed  CAS  Google Scholar 

  • Groot, P. C., Moen, C. J. A., Dietrich, W., Stoye, J. P., Lander, E. S., and DeMant, P. (1992). The recombinant congenic strains for analysis of multigenic traits: Genetic composition.FASEB J. 6:2826–2835.

    PubMed  CAS  Google Scholar 

  • Hegmann, J., and Possidente, B. (1981). Estimating genetic correlations from inbred strains.Behav. Genet. 11:103–114.

    Article  PubMed  CAS  Google Scholar 

  • Hilbert, P., Lindpainter, K., Beckmann, J. S., Serikawa, T., Soubrier, F., Dubay, C. S., Cartwright, P., DeGouyon, B., Julier, C., Takahasi, S., Vincent, M., Ganten, D., Georges, M., and Lathrop, G. M. (1991). Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats.Nature 353:521–529.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, H. J., Lindpaintner, K., Lincoln, S. E., Kusumi, K., Bunker, R. K., Mao, Y.-P., Ganten, D., Dzau, V. J., and Lander, E. S. (1991). Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat.Cell 67:213–224.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, T. E., DeFries, J. C., and Markel, P. (1992). Mapping quantitative trait loci for behavioral traits in the mouse.Behav. Genet. 22:635–653.

    Article  PubMed  CAS  Google Scholar 

  • Lander, E. S., and Schork, N. J. (1994). Genetic dissection of complex traits.Science 265:2037–2048.

    PubMed  CAS  Google Scholar 

  • Lander, E. S., and Botstein, D. (1989). Mapping mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics 121:185–199.

    PubMed  CAS  Google Scholar 

  • Manly, K. E. (1993). A Macintosh program for storage and analysis of experimental genetic mapping data.Mammal. Genome 4:303–313.

    CAS  Google Scholar 

  • Manly, K. E., and Cudmore, R. (1994).Map Manager: A Program for Genetic Mapping (v. 2.6), Roswell Park Cancer Institute, Buffalo, NY.

    Google Scholar 

  • Markel, P. D., Fulker, D. W., Bennett, B., Corley, R. P., DeFries, J. C., Erwin, V. G., and Johnson, T. E. (1996). Quantitative trait loci for ethanol sensitivity in the LSXSS recombinant inbred strains: Interval mapping.Behav. Genet. (in press).

  • Marshall, J. D., Mu, J.-L., Cheah, Y.-C., Nesbitt, M. N., Frankel, W. N., and Paigen, B. (1992). The AXB and BXA set of recombinant inbred mouse strains.Mammal. Genome 3:669–680.

    CAS  Google Scholar 

  • Miller, R. G. Jr. (1981).Simultaneous Statistical Inference, McGraw-Hill, New York.

    Google Scholar 

  • Neumann, P. E. (1992). Inference in linkage analysis of multifactorial traits using recombinant inbred strains of mice.Behav. Genet. 22:665–676.

    Article  PubMed  CAS  Google Scholar 

  • Oliverio, A., and Eleftheriou, B. E. (1976). Motor activity and alcohol: A genetic investigation in the mouse.Physiol. Behav. 16:577–581.

    Article  PubMed  CAS  Google Scholar 

  • Ott, J. (1991).Analysis of Human Genetic Linkage, Johns Hopkins Press, Baltimore, MD.

    Google Scholar 

  • Phillips, T. J., Crabbe, J. C., Metten, P., and Belknap, J. K., (1994). Localization of genes affecting alcohol drinking in mice.Alc. Clin Exp. Res. 18:931–941.

    CAS  Google Scholar 

  • Plomin, R., McClearn, G. E., and Gora-Maslak, G. (1991). Use of recombinant inbred strains to detect quantitative trait loci associated with behavior.Behav. Genet. 21:99–116.

    PubMed  CAS  Google Scholar 

  • Plomin, R., Rodriguez, L. A., Blizard, D. A., Jones, B. C., and McClearn, G. E. (1995). Alcohol acceptance, preference, and sensitivity in mice. III. Using F1 crosses between BXD recombinant inbred strains to replicate BXD-nominated quantitative trait loci (QTL).Alc. Clin. Exp. Res. (in press).

  • Rice, W. R. (1989). Analyzing tables of statistical tests.Evolution 43: 223–225.

    Google Scholar 

  • Rise, M. T., Frankel, W. N., Coffin, J. M., and Seyfried, T. N. (1991). Genes for epilepsy mapped in the mouse.Science 253:669–673.

    PubMed  CAS  Google Scholar 

  • Silver, J. (1985). Confidence limits for estimates of gene linkage based on analysis of recombinant inbred strains.J. Hered. 76:436–440.

    PubMed  CAS  Google Scholar 

  • Silver, L. M., Nadeau, J. H., and Goodfellow, P. N. (1994). Encyclopedia of the mouse genome IV.Mammal. Genome 5:S1-S295. (Special issue).

    Google Scholar 

  • Simpson, S. P. (1989). Detection of linkage between quantitative trait loci and restriction fragment length polymorphisms using inbred lines.Theor. Appl. Genet. 77:815–819.

    Article  Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. (1981).Biometry, Freeman, San Francisco.

    Google Scholar 

  • Soller, M., Brody, T., and Genizi, A. (1976). On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines.Theoret. Appl. Genet. 47:35–39.

    Article  Google Scholar 

  • Tanksley, S. D. (1993). Mapping polygenes.Annu. Rev. Genet. 27:205–233.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, B. A. (1978). Recombinant inbred strains: Use in gene mapping. In Morse, H. C. (ed.),Origins of Inbred Mice, Academic Press, New York, pp. 423–438.

    Google Scholar 

  • Taylor, B. A. (1989). Recombinant inbred strains. In Lyon, M. F., and Searle, A. G. (eds.)Genetic Variants and Strains of the Laboratory Mouse, 2nd ed., Oxford University Press, Oxford, pp. 773–789.

    Google Scholar 

  • Wilkinson, L. (1990).Systat: The System for Statistics, Systat, Inc., Evanston, IL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Belknap.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belknap, J.K., Mitchell, S.R., O'Toole, L.A. et al. Type I and type II error rates for quantitative trait loci (QTL) mapping studies using recombinant inbred mouse strains. Behav Genet 26, 149–160 (1996). https://doi.org/10.1007/BF02359892

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02359892

Key Words

Navigation