Skip to main content
Log in

Comparative physiological pharmacokinetics of fentanyl and alfentanil in rats and humans based on parametric single-tissue models

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 1995

Abstract

The objectives of this investigation were to characterize the disposition of fentanyl and alfentanil in 14 tissues in the rat, and to create physiological pharmacokinetic models for these opioids that would be scalable to man. We first created a parametric submodel for the disposition of either drug in each tissue and then assembled these submodels into whole-body models. The disposition of fentanyl and alfentanil in the heart and brain and of fentanyl in the lungs could be described by perfusion-limited 1-compartment models. The disposition of both opioids in all other examined tissues was characterized by 2- or 3-compartment models. From these models, the extraction ratios of the opioids in the various tissues could be calculated, confirming the generally lower extraction of alfentanil as compared to fentanyl. Assembly of the single-tissue models resulted in a whole-body model for fentanyl that accurately described its disposition in the rat. A similar assembly of the tissue models for alfentanil revealed non-first-order elimination kinetics that were not apparent in the blood concentration data. Michaelis-Menten parameters for the hepatic metabolism of alfentanil were determined by iterative optimization of the entire model. The parametric models were finally scaled to describe the disposition of fentanyl and alfentanil in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Gabrielsson, P. Johansson, U. Bondesson, and L. K. Paalzow. Analysis of methadone disposition in the pregnant rat by means of a physiological flow model.J. Pharmacokin. Biopharm. 13:355–372 (1985).

    Article  CAS  Google Scholar 

  2. J. L. Gabrielsson and T. Groth. An extended physiological pharmacokinetic model of methadone disposition in the rat: validation and sensitivity analysis.J. Pharmacokin. Biopharm. 16:183–201 (1988).

    Article  CAS  Google Scholar 

  3. J. L. Gabrielsson, P. Johansson, U. Bondesson, M. Karlsson, and L. K. Paalzow. Analysis of pethidine disposition in the pregnant rat by means of a physiological flow model.J. Pharmacokin. Biopharm. 14:381–395 (1986).

    Article  CAS  Google Scholar 

  4. S. Björkman, D. R. Stanski, D. Verotta, and H. Harashima. Comparative tissue concentration profiles of fentanyl and alfentanil in humans predicted from tissue/blood partition data obtained in rats.Anesthesiology 72:865–873 (1990).

    Article  PubMed  Google Scholar 

  5. N. R. Davis and W. W. Mapleson. A physiological model for the distribution of injected agents, with special reference to pethidine.Br. J. Anaesth. 70:248–258 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. K. B. Bischoff. Some fundamental considerations of the applications of pharmacokinetics to cancer chemotherapy.Cancer Chemother. Rep. 59:777–793 (1975).

    CAS  PubMed  Google Scholar 

  7. R. J. Lutz, R. L. Dedrick, and D. S. Zaharko. Physiological pharmacokinetics: anin vivo approach to membrane transport.Pharmacol. Ther. 11:559–592 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. L. E. Gerlowski and R. K. Jain. Physiologically based pharmacokinetic modeling: principles and applications.J. Pharm. Sci. 72:1103–1127 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. S. Björkman, D. R. Stanski, H. Harashima, R. Dowrie, S. R. Harapat, D. R. Wada, and W. F. Ebling. Tissue distribution of fentanyl and alfentanil in the rat cannot be described by a blood flow limited model.J. Pharmacokin. Biopharm. 21:255–279 (1993).

    Article  Google Scholar 

  10. F. G. King and R. L. Dedrick. Physiologic model for the pharmacokinetics of 2′-deoxycoformycin in normal and leukemic mice.J. Pharmacokin. Biopharm. 9:519–534 (1981).

    Article  CAS  Google Scholar 

  11. M. J. Angelo, K. B. Bischoff, A. B. Pritchard, and M. A. Presser. A physiological model for the pharmacokinetics of methylene chloride in B6C3F1 mice following intravenous administrations.J. Pharmacokin. Biopharm. 12:413–436 (1984).

    Article  CAS  Google Scholar 

  12. J. M. Gallo, P. Varkonyi, E. E. Hassan, and D. R. Groothius. Targeting anticancer drugs to the brain: II. Physiological pharmacokinetic model of oxantrazole following intraarterial administration to rat glioma-2 (RG-2) bearing rats.J. Pharmacokin. Biopharm. 21:575–592 (1993).

    Article  CAS  Google Scholar 

  13. W. F. Ebling, D. R. Wada, and D. R. Stanski. From piecewise to full physiologic pharmacokinetic modeling: applied to thiopental disposition in the rat.J. Pharmacokin. Biopharm. 22:259–292 (1994).

    Article  CAS  Google Scholar 

  14. S. Björkman and D. R. Stanski. Simultaneous determination of fentanyl and alfentanil in rat tissues by capillary column gas chromatography.J. Chromatog. 433:95–104 (1988).

    Article  Google Scholar 

  15. D. Z. D'Argenio and A. Schumitzky. A program package for simulation and parameter estimation in pharmacokinetic systems.Comput. Prog. Biomed. 9:115–134 (1979).

    Article  Google Scholar 

  16. L. R. Williams and R. W. Leggett. Reference values for resting blood flow to organs of man.Clin. Phys. Physiol. Meas. 10:187–217 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. N. B. Everett, B. Simmons, and E. P. Lasher. Distribution of blood (Fe59) and plasma (I131) volumes of rats determined by liquid nitrogen freezing.Circ. Res. 4:419–424 (1956).

    Article  CAS  PubMed  Google Scholar 

  18. D. R. Wada, D. R. Stanski, and W. F. Ebling. A PC-based graphical simulator for physiological pharmacokinetic models.Comput. Meth Prog. Biomed. (in press).

  19. K. Yamaoka, T. Nakagawa, and T. Uno. Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations.J. Pharmacokin. Biopharm. 6:165–175 (1978).

    Article  CAS  Google Scholar 

  20. K. Taeger, E. Weninger, F. Schmelzer, M. Adt, N. Franke, and K. Peter. Pulmonary kinetics of fentanyl and alfentanil in surgical patients.Br. J. Anaesth. 61:425–434 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. F. Boer, J. G. Bovill, A. G. L. Burm, and R. A. G. Mooren. Uptake of sufentanil, alfentanil and morphine in the lungs of patients about to undergo coronary artery surgery.Br. J. Anaesth. 68:370–375 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. J. R. Varvel, S. L. Shafer, S. S. Hwang, P. A. Coen, and D. R. Stanski. Absorption characteristics of transdermally administered fentanyl.Anesthesiology 70:928–934 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. H. J. M. Lemmens, J. B. Dyck, S. L. Shafer, and D. R. Stanski. Pharmacokinetic/dynamic modeling in drug development: Application to the investigational opioid trefentanil.Clin. Pharmacol. Ther. 56:261–271 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. W. E. G. Meuldermans, R. M. A. Hurkmans, and J. J. P. Heykants. Plasma protein binding and distribution of fentanyl, sufentanil, alfentanil and lofentanil in blood.Arch. int. Pharmacodyn. 257:4–19 (1982).

    CAS  PubMed  Google Scholar 

  25. M. Yaster, R. C. Koehler, and R. J. Traystman, Effects of fentanyl on peripheral and cerebral hemodynamics in neonatal lambs.Anesthesiology 66:524–530 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. N. D. Kien, J. A. Reitan, D. A. White, C-H. Wu, and J. H. Eisele. Hemodynamic responses to alfentanil in halothane-anesthetized dogs.Anesth. Analg. 65:765–770 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. S. S. Kety. The theory and applications of the exchange of inert gas at the lungs and tissues.Pharmacol. Rev. 3:1–40 (1951).

    CAS  PubMed  Google Scholar 

  28. S. Björkman, J. Åkeson, F. Nilsson, K. Messeter, and B. Roth. Ketamine and midazolam decrease cerebral blood flow and consequently their own rate of transport to the brain: An application of mass balance pharmacokinetics with a changing regional blood flow.J. Pharmacokin. Biopharm. 20:637–652 (1992).

    Article  Google Scholar 

  29. J. D. Horowitz, M. K. Dynon, E. Woodward, S. T. B. Sia, P. S. MacDonald, D. J. Morgan, A. J. Globe, and W. J. Louis. Short-term myocardial uptake of lidocaine and mexiletine in patients with ischemic heart disease.Circulation 73:987–996 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Y. F. Huang, R. N. Upton, and W. B. Runciman. I.V. bolus administration of subconvulsive doses of lignocaine to conscious sheep: Myocardial pharmacokinetics.Br. J. Anaesth. 70:326–332 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. G. P. Stec and A. J. Atkinson. Analysis of the contributions of permeability and flow to intercompartmental clearance.J. Pharmacokin. Biopharm. 9:167–180 (1981).

    Article  CAS  Google Scholar 

  32. D. L. Roerig, K. J. Kotrly, E. J. Vucins, S. B. Ahlf, C. A. Dawson, and J. P. Kampine. First pass uptake of fentanyl, meperidine, and morphine in the human lung.Anesthesiology 67:466–472 (1987)

    Article  CAS  PubMed  Google Scholar 

  33. D. L. Roerig, K. J. Kotrly, S. B. Ahlf, C. A.Dawson, and J. P. Kampine. Effect of propranolol on the first pass uptake of fentanyl in the human and rat lung.Anesthesiology 71:62–68 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. R. Hess, A. Herz, and K. Friedel. Pharmacokinetics of fentanyl in rabbits in view of the importance for limiting the effect.J. Pharmacol. Exp. Ther. 179:474–484 (1971).

    CAS  PubMed  Google Scholar 

  35. C. C. Hug and M. R. Murphy. Tissue redistribution of fentanyl and termination of its effects in rats.Anesthesiology,55:369–375 (1981).

    Article  CAS  PubMed  Google Scholar 

  36. K. A. Lehmann, L. Hunger, K. Brandt, and D. Daub. Biotransformation von Fentanyl.Anaesthetist 32:165–173 (1983).

    CAS  Google Scholar 

  37. E. Schneider and K. Brune. Distribution of fentanyl in rats: an autoradiographic study.Naunyn-Schmiedebergs Arch. Pharmacol. 331:359–363 (1985).

    Article  CAS  PubMed  Google Scholar 

  38. H. Stoeckel, J. H. Hengstmann, and J. Schüttler. Pharmacokinetics of fentanyl as a possible explanation for recurrence of respiratory depression.Br. J. Anaesth. 51:741–745 (1979).

    Article  CAS  PubMed  Google Scholar 

  39. L. B. Sheiner. Analysis of pharmacokinetic data using parametric models. II. Point estimates of an individual's parameters.J. Pharmacokin. Biopharm. 13:515–540 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the National Institute on Aging, RO1-AG-4594, and the Anesthesia/Pharmacology Research Foundation.

An erratum to this article is available at http://dx.doi.org/10.1007/BF02353643.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Björkman, S., Wada, D.R., Stanski, D.R. et al. Comparative physiological pharmacokinetics of fentanyl and alfentanil in rats and humans based on parametric single-tissue models. Journal of Pharmacokinetics and Biopharmaceutics 22, 381–410 (1994). https://doi.org/10.1007/BF02353862

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353862

Key words

Navigation