Skip to main content
Log in

Interaction of opioids with antidepressant-induced antinociception

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

The antinociceptive activity of antidepressant drugs is poorly understood. In this study, using the acetic acid writhing test in mice, the antinociception produced by clomipramine (CLO), maprotiline (MAP), imipramine (IMI), and zimelidine (ZIM) was tested and correlated with opioid drugs. All the compounds displayed a significant dose-dependent antinociception, which was not antagonized by naloxone (NX) or naltrexone (NTX). The administration of morphine (M) plus CLO, MAP, IMI or ZIM resulted in a significant additive effect that was antagonized by 1 or 10 mg/kg NX or NTX, except in the case of IMI. This finding suggests that the additive effect seems to be partially due to activation of opioid receptors, except for the case of imipramine. However, aminophylline, a non-selective blocker of A1/A2 adenosine receptors, significantly antagonized the antinociceptive activity of CLO, IMI, MAP and ZIM, demonstrating an interaction at the level of adenosine receptors. This work suggests that the antinociceptive activity of antidepressants could be dependent on critical levels of free 5-HT and NE at receptor(s) site(s) in CNS and on their interaction with opioid and adenosine receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ardid D, Guilbaud G (1992) Antinociceptive effects of acute and “chronic” injections of tricyclic antidepressant drugs in a new model of mononeuropathy in rats. Pain 49:279–287

    Article  PubMed  Google Scholar 

  • Bhargava HN, Larsen AK, Rahmani NH, Villar VM (1993) Naltrexone-induced alterations of the distribution of morphine in brain regions and spinal cord of the rat. Brain Res 607:1–8

    Article  PubMed  Google Scholar 

  • Bergman SA, Wynn RL, Alvarez L, Asher K, Thut PD (1991) Imipramine-fentanyl antinociception in a rabbit booth pulp model. Life Sci 49:1279–1288

    Article  PubMed  Google Scholar 

  • Biegon A, Samuel D (1980) Interaction of tricyclic antidepressants with opiate receptors. Biochem Pharmacol 29:460–462

    Article  PubMed  Google Scholar 

  • Botney M, Fields HL (1983) Amitriptyline potentiates morphine analgesia by a direct action on the central nervous system. Ann Neurol 13:160–164

    Article  PubMed  Google Scholar 

  • Carr DJ, Gerak LR, Franz CP (1994) Naltrexone antagonizes the analgesia and immunosuppressive effects of morphine in mice. J Pharmacol Exp Ther 269:693–698

    PubMed  Google Scholar 

  • Committee for Research and Ethical Issues of the IASP (1983) Ethical standards for investigations of experimental pain in animals. Pain 16:109–110

    Google Scholar 

  • Crisp T, Stafinsky JL, Spanos LJ, Uram M, Perni VC, Donepudi HB (1991) Analgesic effects of serotonin and receptor-selective serotonin agonists in the rat spinal cord. Gen Pharmacol 22:247–251

    PubMed  Google Scholar 

  • Daval JL, Nehlig A, Nicolas F (1991) Physiological and pharmacological properties of adenosine: therapeutic implications. Life Sci 49:1435–1453

    Article  PubMed  Google Scholar 

  • Enna SJ, Kendall DA (1981) Interaction of antidepressants with brain neurotransmitter receptors. J Clin Psychopharmacol 1:12–16

    Google Scholar 

  • Fasmer OB, Kunskaar S, Hole K (1989) Antinociceptive effects of serotonergic reuptake inhibitors in mice. Neuropharmacology 28:1363–1366

    Article  PubMed  Google Scholar 

  • Fuller RWG (1981) Enhancement of monoaminergic neurotransmission by antidepressant drugs. In: Enna SJ, Malick JB, Richelson E (eds) Antidepressants: neurochemicals, behavioral and clinical perspectives. Raven Press, New York, pp 1–12

    Google Scholar 

  • Goldstein FJ, Mojaverian P, Ossipov MH, Swamson BN (1982) Elevation in analgesic effect and plasma levels of morphine by desipramine in rats. Pain 14:279–282

    Article  PubMed  Google Scholar 

  • Goldstein FJ, Malseed RT, Nutz JF (1990) Effects of chronic clomipramine on central DADLE antinociception. Pain 42:331–336

    Article  PubMed  Google Scholar 

  • Hayashi G, Takemori AE (1971) The type of analgesic-receptor interaction involved in certain analgesic assays. Eur J Pharmacol 16:63–66

    Article  PubMed  Google Scholar 

  • Ho IK, Loh HH, Way EL (1973) Cyclic adenosine monophosphate antagonism of morphine analgesia. J.Pharmacol Exp Ther 185:336–346

    PubMed  Google Scholar 

  • Jensen TS, Yaksh TL (1984) Spinal monoamine and opiate systems partly mediate the antinociceptive effects produced by glutamate at brain stem sites. Brain Res 321:287–297

    Article  PubMed  Google Scholar 

  • Jurna I (1981) Aminophylline differentiates between the depressants effects of morphine on the spinal nociceptive reflex and on the spinal ascending activity evoked from afferent C fibers. Eur J Pharmacol 71:393–400

    Article  PubMed  Google Scholar 

  • Kilpatrick GJ, Bunce KT, Tyers MB (1990) 5-HT3 receptors. Med Res Rev 10:441–475

    PubMed  Google Scholar 

  • Larsen JJ, Arnt J (1984) Spinal 5-HT or NA uptake inhibition potentiates supraspinal morphine antinociception in rats. Acta Pharmacol Toxicol 54:72–75

    Google Scholar 

  • Maggi A, U'Prichard DC, Enna SJ (1980) Differential effects of antidepressant treatment on brain monoaminergic receptors. Eur J Pharmacol 61:91–98

    Article  Google Scholar 

  • Magni G (1991) The use of antidepressants in the treatment of chronic pain. Drugs 42:730–748

    PubMed  Google Scholar 

  • Ollat H, Parvez S, Parvez H (1989) Endogenous morphines and nociception. Biogenic Amines 6:381–410

    Google Scholar 

  • O'Neill KA, Valentino D (1986) Chronic desipramine attenuates morphine analgesia. Pharmacol Biochem Behav 24:155–158

    Article  PubMed  Google Scholar 

  • Pick CG, Paul D, Eison MS, Pasternak GW (1992) Potentiation of opioid analgesia by the antidepressant nefazodone. Eur J Pharmacol 211:375–381

    Article  PubMed  Google Scholar 

  • Reichenberg K, Gaillard-Plaza G, Montastruc JL (1985) Influence of naloxone on the antinociceptive effects of some antidepressant drugs. Arch Int Pharmacodyn Ther 275:78–85

    PubMed  Google Scholar 

  • Reisine T, Soubrie P (1982) Loss of rat cerebral cortical opiates receptors following chronic desipramine treatment. Eur J Pharmacol 77:39–44

    Article  PubMed  Google Scholar 

  • Rosenblatt MR, Reich J, Dehring D (1984) Tricyclic antidepressants in treatment of depression and chronic pain. Anesth Analg 63:1025–1032

    PubMed  Google Scholar 

  • Sawynok J, Reid A (1992) Desipramine potentiates spinal antinociception by 5-hydroxytryptamine, morphine and adenosine. Pain 50:113–118

    Article  PubMed  Google Scholar 

  • Sierralta F, Miranda HF (1993) Adenosine modulates the antinociceptive action of benzodiazepines. Gen Pharmacol 24:891–894

    PubMed  Google Scholar 

  • Smits SE, Takemori AE (1970) Quantitative studies on the antagonism by naloxone of some narcotics and narcotic-antagonist analgesics. Br J Pharmacol 39:627–638

    PubMed  Google Scholar 

  • Stirt JA (1983) Aminophylline may act as a morphine antagonist. Anaesthesia 38:275–278

    PubMed  Google Scholar 

  • Taiwo YO, Fabian A, Pazoles CJ, Fields HL (1985) Potentiation of morphine antinociception by monoamine reuptake inhibitors in the rat spinal cord. Pain 21:329–337

    Article  PubMed  Google Scholar 

  • Takemori AE, Kupferberg HJ, Miller JW (1969) Quantitative studies on the antagonism of morphine by nalorphine and naloxone. J Pharmacol Exp Ther 169:39–45

    PubMed  Google Scholar 

  • Takemori AE, Larson DL, Portoghese PS (1981) The irreversible narcotic antagonist and reversible agonistic properties of the fumaramate methyl ester derivative of naltrexone. Eur J Pharmacol 70:445–451

    Article  PubMed  Google Scholar 

  • Tura B, Tura SM (1990) The analgesic effect of tricyclic antidepressants. Brain Res 518:19–22

    Article  PubMed  Google Scholar 

  • Tyers MB (1982) Studies on the antinociceptive activities of mixtures of mu and kappa opiate receptor agonists and antagonists. Life Sci 31:1233–1234

    Article  PubMed  Google Scholar 

  • Valeri P, Pimpinella G, Morrone LA, Romanelli L (1991) Antinociceptive effects of trazodone and m-chlorophenyl-piperazine (mCPP) in mice: interaction with morphine. Gen Pharmacol 22:127–131

    PubMed  Google Scholar 

  • Van Paag HM (1983) In search of the mode of action of antidepressants. Neuropharmacology 22:433–440

    Article  PubMed  Google Scholar 

  • Ward SJ, Takemori AE (1983) Relative involvement of mu, kappa and delta receptor mechanisms in opiate-mediated antinociception in mice. J. Pharmacol Exp Ther 224:525–530

    PubMed  Google Scholar 

  • Wong CL, Bentley GA (1978) Increased antagonist potency of naloxone caused by morphine pretreatment. Eur J Pharmacol 47:415–422

    Article  PubMed  Google Scholar 

  • Yang SW, Zhang ZH, Chen JY, Xie YF, Qiao JT, Dafny N (1994) Morphine and norepinephrine-induced antinociception at the spinal level is mediated by adenosine. Neuroreport 5:1441–1444

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sierralta, F., Miranda, H.F., Pinardi, G. et al. Interaction of opioids with antidepressant-induced antinociception. Psychopharmacology 122, 374–378 (1995). https://doi.org/10.1007/BF02246269

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02246269

Key words

Navigation