Skip to main content
Log in

Cation permeability ratios of sodium channels in normal and grayanotoxin-treated squid axon membranes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Permeabilities of squid axon membranes to various cations at rest and during activity have been measured by voltage clamp before and during internal perfusion of 4×10−5 m grayanotoxin I. The resting sodium and potassium permeabilities were estimated to be 6.85×10−8 cm/sec and 2.84×10−6 cm/sec, respectively. Grayanotoxin I increased the resting sodium permeability to 7.38×10−7 cm/sec representing an 11-fold increase. The potassium permeability was increased only by a factor of 1.24. The resting permeability ratios as estimated by the voltage clamp method before application of grayanotoxin I were Na (1): Li (0.83): formamidine (1.34): guanidine (1.49): Cs (0.87): methylguanidine (0.86): methylamine (0.78). Grayanotoxin I did not drastically change the resting permeability ratios with a result of Na (1): Li (0.95): formamidine (1.27): guanidine (1.16): Cs (0.47): methylguanidine (0.72): methylamine (0.46). The membrane potential method gave essentially the same resting permeability ratios before and during application of grayanotoxin I if corrections were made for permeability to choline as the cation substitute and for changes in potassium permeability caused by test cations. The permeability ratio choline/Na was estimated to be 0.72 by the voltage clamp method and 0.65 by the membrane potential method. Grayanotoxin I decreased the ratio to 0.43. The permeability ratios during peak transient current were estimated to be Na (1): Li (1.12): formamidine (0.20): guanidine (0.20): Cs (0.085): methylguanidine (0.061): methylamine (0.036). Thus the sodium channels for the peak current are much more selective to cations than the resting sodium channels. It appears that the resting sodium channels in normal and grayanotoxin I-treated axons are operationally different from the sodium channels that undergo a conductance increase upon stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adelman, W. J., Jr., Senft, J. P. 1968. Dynamic asymmetries in axon membrane.J. Gen. Physiol. 51:102s

    Google Scholar 

  • Albuquerque, E. X., Seyama, I., Narahashi, T. 1973. Characterization of batrachotoxin-induced depolarization of the squid giant axons.J. Pharmacol. Exp. Ther. 184:308

    PubMed  CAS  Google Scholar 

  • Baker, P. F., Hodgkin, A. L., Meves, H. 1964. The effect of diluting the internal solution on the electrical properties of a perfused giant axon.J. Physiol. (London) 170:541

    CAS  Google Scholar 

  • Baker, P. F., Hodgkin, A. L., Shaw, T. I. 1962. The effects of changes in internal ionic concentrations on the electrical properties of perfused giant axons.J. Physiol. (London) 164:355

    CAS  Google Scholar 

  • Cahalan, M. D., Begenisich, T. 1975. Internal K+ alters sodium channel selectivity.Biophys. J. 15 (2):261a

    Google Scholar 

  • Chandler, W. K., Meves, H. 1965. Voltage clamp experiments on internally perfused giant axons.J. Physiol. 180:788

    PubMed  CAS  Google Scholar 

  • Cuervo, L. A., Adelman, W. J., Jr. 1970. Equilibrium and kinetic properties of the interaction between tetrodotoxin and the excitable membrane of the squid giant axon.J. gen. Physiol. 55:309

    Article  PubMed  CAS  Google Scholar 

  • Eisenman, G. 1967. Particular properties of cation-selective glass electrodes containing Al2O3.In: Glass Electrodes for Hydrogen and Other Cations. G. Eisenman, editor. p. 268. Marcel Dekker, New York

    Google Scholar 

  • Eisenman, G., Szabo, G., Ciani, S., McLaughlin, S., Kranse, S. 1973. Ion binding and ion transport produced by neutral lipid-soluble molecules.Prog. Surf. Membr. Sci. 6:139

    Google Scholar 

  • Goldman, D. E. 1943. Potential, impedance, and rectification in membranes.J. Gen. Physiol. 27:37

    Article  PubMed  CAS  Google Scholar 

  • Goldman, L., Binstock, L. 1969. Current separations inMyxicola giant axons.J. Gen. Physiol. 54:741

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara, S., Eaton, D. C., Stuart, A. E., Rosenthal, N. P. 1972. Cation selectivity of the resting membrane of squid axon.J. Membrane Biol. 9:373

    Article  CAS  Google Scholar 

  • Hagiwara, S., Toyama, K., Hayashi, H. 1971. Mechanisms of anion and cation permeations in the resting membrane of a barnacle muscle fiber.J. Gen. Physiol. 57:408

    Article  PubMed  CAS  Google Scholar 

  • Hille, B. 1971. The permeability of the sodium channel to organic cations in myelinated nerve.J. Gen. Physiol. 58:599

    Article  PubMed  CAS  Google Scholar 

  • Hille, B. 1972. The permeability of the sodium channel to metal cations in myelinated nerve.J. Gen. Physiol. 59:637

    Article  PubMed  CAS  Google Scholar 

  • Hironaka, T., Narahashi, T. 1975. Ionic permeability profile of the resting axon membrane as affected by grayanotoxin I.Fed. Proc. 34:360

    Google Scholar 

  • Hironaka, T., Narahasi, T. 1976. Cation permeability ratios of normal and grayanotoxintreated squid axon membranes.Biophys. J. 16 (2):187a

    Google Scholar 

  • Hodgkin, A. L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37

    CAS  Google Scholar 

  • Hodgkin, A. L., Keynes, R. D. 1955. The potassium permeability of a giant nerve fibre.J. Physiol. (London) 128:61

    CAS  Google Scholar 

  • Hodgkin, A. L., Keynes, R. D. 1957. Movements of labelled calcium in squid giant axons.J. Physiol. (London) 138:253

    CAS  Google Scholar 

  • Narahashi, T. 1974. Chemicals as tools in the study of excitable membranes.Physiol. Rev. 54:813

    Article  PubMed  CAS  Google Scholar 

  • Narahashi, T., Albuquerque, E. X., Deguchi, T. 1971. Effects of batrachotoxin on membrane potential and conductance of squid giant axons.J. Gen. Physiol. 58:54

    Article  PubMed  CAS  Google Scholar 

  • Narahashi, T., Anderson, N. C. 1967. Mechanism of excitation block by the insecticide allethrin applied externally and internally to squid giant axins.Toxic. Appl. Pharmacol. 10:529

    Article  PubMed  CAS  Google Scholar 

  • Narahashi, T., Deguchi, T., Albuquerque, E. X. 1971. Effects of batrachotoxin on nerve membrane potential and conductances.Nature New Biol. 229:221

    PubMed  CAS  Google Scholar 

  • Narahashi, T., Seyama, I. 1974. Mechanism of nerve membrane depolarization caused by grayanotoxin I.J. Physiol. (London) 242:471

    CAS  Google Scholar 

  • Ohta, M., Narahashi, T., Keeler, R. F. 1973. Effects of veratrum alkaloids on membrane potential and conductance of squid and crayfish giant axons.J. Pharmacol. Exp. Ther. 184:143

    CAS  Google Scholar 

  • Robinson, R. A., Stokes, R. H. 1965. Electrolyte Solutions. (2nd ed.) Butterworth, London

    Google Scholar 

  • Scudder, H. 1914. The electrical conductivity and ionization constants of organic compounds. D. Van Nostrand, Princeton

    Google Scholar 

  • Seyama, I., Narahashi, T. 1973. Increase in sodium permeability of squid axon membranes by α-dihydrograyanotoxin IL.J. Pharmacol. Exp. Ther. 184:299

    PubMed  CAS  Google Scholar 

  • Seyama, I., Narahashi, T. 1976. Sodium conductance kinetics of squid axon membranes poisoned by grayanotoxin I.Biophys. J. 16 (2):187a

    Google Scholar 

  • Shanes, A. M., Berman, M. D. 1955. Kinetics of ion movement in the squid giant axon.J. Gen. Physiol. 39:279

    Article  PubMed  CAS  Google Scholar 

  • Ulbricht, W. 1969a. The effect of veratridine on excitable membranes of nerve and muscle.Ergeb. Physiol. 61:17

    Google Scholar 

  • Ulbricht, W. 1969b. Effect of temperature on the slowly changing sodium permeability of veratrinized nodes of Ranvier.Pflügers Arch. Gesamte Physiol. 311:73

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hironaka, T., Narahashi, T. Cation permeability ratios of sodium channels in normal and grayanotoxin-treated squid axon membranes. J. Membrain Biol. 31, 359–381 (1977). https://doi.org/10.1007/BF01869413

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869413

Keywords

Navigation