Skip to main content
Log in

Involvement of purine compounds in the inotropic action of milrinone

  • Congestive Heart Failure
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

In spontaneously beating atria from reserpinetreated guinea pigs, milrinone (1–100 μg/ml) induced a positive inotropic and chronotropic effect but was ineffective in preparations preincubated with adenosine deaminase (1 U/ml). Both in spontaneously beating and in electrically driven atria, ATP and adenosine evoked a dual effect: a first negative phase characterized by a reduction in contractile force, followed by a positive phase of increased inotropism. In these preparations milrinone inhibited the early negative influence exerted by purine compounds and amplified the following positive phase. These data suggest that the positive inotropic and chronotropic effect of milrinone may originate from its interference with endogenous purines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alousi AA, Canter JM, Montenaro MJ, et al. Cardiotonic activity of milrinone, a new and potent cardiac bipyridine, on the normal and failing heart of experimental animals.J Cardiovasc Pharmacol 1983;5:792–803.

    PubMed  Google Scholar 

  2. Alousi AA, Stankus GP, Stuart JC, et al. Characterization of the cardiotonic effects of milrinone, a new and potent cardiac bipyridine on isolated tissues from several animal species.J Cardiovasc Pharmacol 1983;5:804–811.

    PubMed  Google Scholar 

  3. Honerjäger P, Schafer-Korting M, Reiter M. Involvement of cyclic AMP in the direct inotropic action of amrinone: Biochemical and functional evidence.Naunyn Schmiedebergs Arch Pharmacol 1981;381:112–120.

    Google Scholar 

  4. Endoh M, Yamashita A, Taira N. Positive inotropic effect of amrinone in relation to cyclic nucleotide metabolism in canine ventricular muscle.J Pharmacol Exp Ther 1982; 221:775–783.

    PubMed  Google Scholar 

  5. Earl CQ, Linden J, Weglicki WB. Biochemical mechanism for the inotropic effect of the cardiotonic drug milrinone.J Cardiovasc Pharmacol 1986;8:864–872.

    PubMed  Google Scholar 

  6. Weishaar RE, Burrows SD, Kobylarz DC, et al. Multiple molecular forms of cyclic nucleotide phosphodiesterase in cardiac and smooth muscle and in platelets.Biochem Pharmacol 1986;35:787–800.

    PubMed  Google Scholar 

  7. Silver PJ, Harris AL, Fort DJ, et al. Effects of the cardiotonic/vasodilator agents amrinone and milrinone, on phosphodiesterase (PDE) isoenzymes and contractile force in guinea pig cardiac and vascular tissue.Fed Proc 1987;46:373.

    Google Scholar 

  8. Ito M, Tanaka T, Saitoh M, et al. Selective inhibition of cyclic AMP phosphodiesterase from various human tissues by milrinone, a potent cardiac bipyridine.Biochem Pharmacol 1988;37:2041–2044.

    PubMed  Google Scholar 

  9. Alousi AA, Farah AE, Lesher GY, et al. Cardiotonic activity of amrinone-Win 40680 (5-amino-3,4′-bipyridine-6-(IH)-one).Circ Res 1979;45:666–677.

    PubMed  Google Scholar 

  10. Azari J, Huxtable RJ. Differential effects of amrinone on contractility and taurine influx in rat and guinea-pig hearts.Eur J Pharmacol 1980;67:347–353.

    PubMed  Google Scholar 

  11. Kenakin TP, Scott DL, A method to assess concomitant cardiac phosphodiesterase inhibition on positive inotrop.J Cardiovasc Pharmacol 1987;10:658–666.

    PubMed  Google Scholar 

  12. Goyal RK, McNeil GH. Effects of Na+ and Ca2+ on the responses to milrinone in rat cardiac preparations.Eur J Pharmacol 1986;120:267–274.

    PubMed  Google Scholar 

  13. Morgan JP, Blinks JR. Intracellular Ca2+ transient in the cat papillary muscle.Can J Physiol Pharmacol 1982; 60:524–529.

    PubMed  Google Scholar 

  14. Blinks JR, Wier WL, Morgan JP, et al. Regulation of intracellular (Ca2+) by cardiotonic drugs. In: Yoshide H, Hagihara Y, Ebashi S, eds.Advances in pharmacology and therapeutics, Vol. 3. Cardiorenal and cell pharmacology. Oxford: Pergamon Press, 1982:205–215.

    Google Scholar 

  15. Frangakis CJ, Lasher KP, Alousi AA. Transarcolemmal stimulation of calcium uptake by amrinone.Fed Proc 1984;43:938.

    Google Scholar 

  16. Su YY. Mechanism of milrinone-induced positive inotropic action.Biophys J 1985;47:283.

    Google Scholar 

  17. Sys SU, Goemen MJ, Chalant CH, et al. Inotropic effects of amrinone and milrinone on contraction and relaxation of isolated cardiac muscle.Circulation 1986;73:25–35.

    Google Scholar 

  18. Endoh M, Yanagisawa T, Taira N, et al. Effects of new inotropic agents on cyclic nucleotide metabolism and calcium transients in canine ventricular muscle.Circulation 1986;73:117–133.

    Google Scholar 

  19. Dorigo P, Maragno I. Interaction of amrinone with endogenous adenosine in guinea-pig atria.Br J Pharmacol 1986;87:623–629.

    PubMed  Google Scholar 

  20. Dorigo P, Gaion RM, Maragno I. Negative and positive influences exerted by purine compounds on isolated guinea-pig atria.J Autonom Pharmacol 1988;8:190–195.

    Google Scholar 

  21. Temma K, Akera T, Brody TM, et al. Hydroxylated chloropromazine metabolites: Positive inotropic action and the release of catecholamines.Mol Pharmacol 1977:13:1076–1085.

    PubMed  Google Scholar 

  22. Weishaar E, Quade MM, Shenden JA, et al. Relationship between inhibition of cardiac muscle phosphodiesterases, changes in cyclic nucleotide levels, and contractile response for CI-914 and other novel cardiotonics. In:Cyclic nucleotides and protein phosphorylation research, Vol. 10. New York: Raven Press, 1985:551–564.

    Google Scholar 

  23. Brown L, Nabauer M, Erdmann E. The positive inotropic response to milrinone in isolated human and guinea pig myocardium.Naunyn Schmiedebergs Arch Pharmacol 1986; 334:196–201.

    PubMed  Google Scholar 

  24. Schnar RL, Sparks HV. Response of large and small coronary arteries to nitroglycerin, NaNO2 and adenosine.Am J Physiol 1972;223:223–228.

    PubMed  Google Scholar 

  25. Verhaeghe RH, Vanhoutte PM. Inhibition of sympathetic neurotransmission in canine blood vessels by adenosine and adenine nucleotides.Circ Res 1977;40:208–215.

    PubMed  Google Scholar 

  26. Belardinelli L, West A, Crampton R, et al. Chronotropic and dromotropic effects of adenosine. In: Berne RM, Rall TW, Rubio R, eds.Regulatory function of adenosine. Boston: Martinus/Nijhoff. 1983:377–396.

    Google Scholar 

  27. Dobson JG, Fenton RA. Anti-adrenergic effects of adenosine in the heart. In: Berne RM, Rall TW, Rubio R, eds.Regulatory function of adenosine. Boston: Martinus/Nijhoff, 1983:363–376.

    Google Scholar 

  28. Collis MG, Pettinger SJ. Can ATP stimulate P1 receptors in guinea-pig atrium without conversion to adenosine?Eur J Pharmacol 1982;81:521–529.

    PubMed  Google Scholar 

  29. Burnstock G. A basis for distinguishing two types of purinergic receptor. In: Bolis L, Straub RW, eds.Membrane receptors for drugs and hormones. A multidisciplinary approach. New York: Raven press, 1978:107–118.

    Google Scholar 

  30. Leung E, Johnston CI, Woodcock EA. A comparison between the adenosine receptors mediating adenylate cyclase inhibition and cardiac depression in the guinea pig heart.J Cardiovasc Pharmacol 1986;8:1003–1008.

    PubMed  Google Scholar 

  31. Nawrath H, Jochem G, Sack U. Inotropic effects of adenosine in the guinea-pig myocardium. In: Stefanovich V, Rudolphi K, Schubert P, eds.Adenosine: Receptors and modulation of cell function. Oxford: IRL Press, 1985:323–342.

    Google Scholar 

  32. Böhm M, Burman NH, Meyer W, et al. Positive inotropic effect of Bay K8644: cAMP-independence and lack of inhibitory effect of adenosine.Naunyn Schmiedebergs Arch Pharmacol 1985;329:447–450.

    PubMed  Google Scholar 

  33. Belardinelli L, Isenberg G. Isolated atrial myocytes: Adenosine and acetylcholine increase potassium conductance.Am J Physiol (Heart Circ Physiol 13) 1983;H734–H737.

    Google Scholar 

  34. Böhm M, Bruckner R, Hackbarth J, et al. Adenosine inhibition of catecholamine-induced increase in force of contraction in guinea-pig atria and ventricular heart preparations. Evidence against a cyclic AMP- and cyclic GMP-dependent effect.J Pharmacol Exp Ther 1984;230:483–492.

    PubMed  Google Scholar 

  35. Farah AE, Canniff PC, Bentley R, et al. Effect of milrinone (corotrope) on the contractility of isolated dog ventricular muscle.J Cardiovasc Pharmacol 1987;10:607–615.

    PubMed  Google Scholar 

  36. Morgan PF, Tamborska E, Patel J, et al. Interactions between calcium channel compounds and adenosine systems in brain of rat.Neuropharmacology 1987;26:1693–1699.

    PubMed  Google Scholar 

  37. Hu PS, Lingren E, Jacobson KA, et al. Interaction of dihydropyridine calcium channel agonists and antagonists with adenosine receptors.Pharmacol Toxicol 1987;61:121–125.

    PubMed  Google Scholar 

  38. Caparrotta L, Fassina G, Froldi G, et al. Antagonism between (-)-N6-phenylisopropyladenosine and the calcium channel facilitator Bay K 8644, on guinea-pig isolated atria.Br J Pharmacol 1987;90:23–30.

    PubMed  Google Scholar 

  39. Farah AE, Canniff PC, Bentley RG, et al. The effect of extracellular Ca2+ and related ions on the cardiac action of milrinone.J Cardiovasc Pharmacol 1988;11:591–600.

    PubMed  Google Scholar 

  40. Brodde O-E, Beckering J, Michel MC. Human heart β-adrenoceptors a fair comparison with lymphocyte β-adrenoceptors?Trends Pharm Sci 1987;8:403–407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorigo, P., Gaion, R.M. & Maragno, I. Involvement of purine compounds in the inotropic action of milrinone. Cardiovasc Drug Ther 4, 509–513 (1990). https://doi.org/10.1007/BF01857762

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01857762

Key Words

Navigation