Skip to main content
Log in

Glucose reabsorption in the rat kidney

Dependence on glomerular filtration

  • Published:
Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere Aims and scope Submit manuscript

Zusammenfassung

Bei Ratten wurde durch Glucoseinfusionen die Glucosekonzentration die Glucosekonzentration im Plasma erhöht und Glomerulumfiltrat sowie renale Glucoseresorption gemessen. Die Glucoseschwelle, d.h. die Glucosekonzentration im Plasma, von welcher ab es zu einer deutlichen Glucoseausscheidung im Endharn kommt, lag bei den Ratten mit etwa 520 mg-% im Vergleich zu Hund und Mensch relativ hoch. Bei Glucosekonzentrationen oberhalb der Schwelle waren spontane Schwankungen des Glomerulumfiltrates zwischen 0,08–1,18 ml/min·g Niere von proportionalen Änderungen der Glucoseresorptionsrate (0,9–13,1 mg/min·g Niere) begleitet. Bei drei adrenalektomierten Tieren wurden gleiche Resultate erhoben. Zu jeder Filtrationsrate gehörte eine eigene, bestimmte maximale Glucosetransportrate. Diese Beziehung wird im Hinblick auf das geläufige Konzept einer konstanten maximalen Transportkapazität des Tubulus für Glucose diskutiert.

Summary

Glomerular filtration rate (inulin clearance) and glucose reabsorption rate were measured in anesthetized rats at plasma glucose concentrations from 1.9 to 28.85 mg/ml. Glucose reabsorption rate (T G mg/min per g kidney) was dependent upon GFR (ml/min per g kidney) both above and below the plasma glucose concentration at which significant amounts of glucose appear in the urine (at about 5.2 mg/ml). Similar results were obtained in 3 adrenalectomized rats. As a consequence of the dependence ofT G upon GFR, any one filtration rate is characterized by a specific maximum glucose reabsorption rate. This is discussed in relation to the concept of a uniqueTm G .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Boylan, J. W., andD. Antkowiak: Renal tubular reabsorption of glucose in Squalus acanthias. Bull. Mt. Desert Island Biol. Lab.6, 2 (1966).

    Google Scholar 

  2. Bradley, S. E., J. H. Laragh, H. O. Wheeler, M. MacDowell, andJ. Oliver: Correlation of structure and function in the handling of glucose by the nephrons of the canine kidney. J. clin. Invest.40, 1113 (1961).

    Google Scholar 

  3. Brunner, F. P., F. C. Rector jr., andD. W. Seldin: Mechanism of glomerulotubular balance. II. Regulation of proximal tubular reabsorption by tubular volume, as studied by stopped-flow microperfusion. J. clin. Invest.45, 603 (1966).

    PubMed  Google Scholar 

  4. Dantzler, W. H.: Renal response to chickens to infusion of hyperosmotic sodium chloride solution. Amer. J. Physiol.210, 640 (1966).

    PubMed  Google Scholar 

  5. Deetjen, P., andJ. W. Boylan: Glucose reabsorption by single mammalian nephron perfused in situ. Fed. Proc.24, 582 (1965).

    Google Scholar 

  6. —— —— Factors influencing glucose reabsorption in single perfused rat nephron. Fed. Proc.25, 392 (1966).

    Google Scholar 

  7. Dempster, W. J., M. G. Eggleton, andS. Shuster: The effect of hypertonic infusions on glomerular filtration rate and glucose reabsorption in the kidney of the dog. J. Physiol. (Lond.)132, 213 (1956).

    PubMed  Google Scholar 

  8. Eggleton, M. G., andS. Shuster: Excretion of glucose by the cat's kidney. J. Physiol. (Lond.)122, 54 P (1953).

    Google Scholar 

  9. Forster, R. P.: The nature of the glucose reabsorptive process in the frog renal tubule. Evidence for intermittency of glomerular function in the intact animal. J. cell. comp. Physiol.20, 55 (1942).

    Article  Google Scholar 

  10. —— An examination of some factors which alter glomerular activity in the rabbit kidney. Amer. J. Physiol.150, 523 (1947).

    Google Scholar 

  11. Führ, J., J. Kaczmarczyk, andC. D. Krüttgen: Eine einfache colorimetrische Methode zur Inulin-Bestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin. Wschr.33, 729 (1955).

    PubMed  Google Scholar 

  12. Gertz, K. H., J. A. Mangos, G. Braun, andH. D. Pagel: On the glomerular tubular balance in the rat kidney. Pflügers Arch. ges. Physiol.285, 360 (1965).

    Google Scholar 

  13. Handley, C. A., R. B. Sigafoos, andM. La Forge: Proportional changes in renal tubular reabsorption of dextrose and excretion of p-aminohippurate with changes in glomerular filtration. Amer. J. Physiol.159, 175 (1949).

    PubMed  Google Scholar 

  14. Harvey, A. M., andR. L. Malvin: Comparison of creatinine and inulin clearances in male and female rats. Amer. J. Physiol.209, 849 (1965).

    PubMed  Google Scholar 

  15. Hilger, H. H., J. D. Klümper, andK. J. Ullrich: Wasserrückresorption und Ionentransport durch die Sammelrohrzellen der Säugetierniere. Pflügers Arch. ges. Physiol.267, 218 (1958).

    Article  Google Scholar 

  16. Kolmer, J. A.: Clinical diagnosis by laboratory examination, 3rd. ed., p. 58. New York: Appleton—Century Crofts, Inc. 1961.

    Google Scholar 

  17. Miller, J. H.: Changes in renal tubular transport maxima associated with renal vasodilation. J. appl. Physiol.6, 129 (1953).

    PubMed  Google Scholar 

  18. Mudge, G. H., andJ. V. Taggart: Effect of acetate on the renal excretion of p-aminohippurate in the dog. Amer. J. Physiol.161, 191 (1950).

    PubMed  Google Scholar 

  19. Ni, T.-G., andP. B. Rehberg: On the mechanism of sugar excretion. I. Glucose. Biochem. J.24, 1039 (1930).

    Google Scholar 

  20. Peters, G.: Glomeruläre Clearancen, p-Aminohippursäure-Clearance und Diurese bei verschiedenen Diureseformen der nicht narkotisierten Ratte. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak.235, 113 (1959).

    Google Scholar 

  21. Pitesky, I., andJ. H. Last: Effects of seasonal heat stress on glomerular and tubular functions in the dog. Amer. J. Physiol.164, 497 (1951).

    PubMed  Google Scholar 

  22. Radford, E. P., jr.: Factors modifying water metabolism in rats fed dry diets. Amer. J. Physiol.196, 1098 (1959).

    PubMed  Google Scholar 

  23. Rector, F. C., jr.,F. P. Brunner, andD. W. Seldin: Mechanism of glomerulotubular balance. I. Effect of aortic constriction and elevated ureteropelvic pressure on glomerular filtration rate, fractional reabsorption, transit time, and tubular size in the proximal tubule of the rat. J. clin. Invest.45, 590 (1966).

    PubMed  Google Scholar 

  24. Renschler, H.: Der Einfluß der Nierenfunktion auf die Glukose-Ausscheidung Gesunder. Habilitationsschrift, S. 99, Heidelberg 1965.

  25. Richards, A. N., andC. F. Schmidt: A description of glomerular circulation in the frog's kidney and observations concerning the action of adrenalin and various other substances upon it. Amer. J. Physiol.71, 178 (1924).

    Google Scholar 

  26. Shannon, J. A., S. Farber, andL. Troast: The measurement of glucoseT m in the normal dog. Amer. J. Physiol.133, 752 (1941).

    Google Scholar 

  27. ——, andS. Fisher: The renal tubular reabsorption of glucose in the normal dog. Amer. J. Physiol.122, 765 (1938).

    Google Scholar 

  28. Smith, H. W.: The Kidney, p. 83, 85, 568. New York: Oxford 1951.

    Google Scholar 

  29. ——, andS. E. Bradley: The application of saturation methods to the study of glomerular and tubular function in the human kidney. J. Mt Sinai Hosp.10, 59 (1943).

    Google Scholar 

  30. Spector, W. S., ed.: Handbook of Biological Data, p. 174. Philadelphia: W. B. Saunders 1956.

    Google Scholar 

  31. Steinhausen, M.: Eine Methode zur Differenzierung proximaler und distaler Tubuli der Nierenrinde von Ratten in vivo und ihre Anwendung zur Bestimmung tubulärer Strömungsgeschwindigkeiten. Pflügers Arch. ges. Physiol.277, 23 (1963).

    Article  Google Scholar 

  32. Sumner, J. B.: A more specific reagent for the determination of sugar in urine. J. biol. Chem.65, 393 (1925).

    Google Scholar 

  33. Thompson, D. D., M. J. Barrett, andR. F. Pitts: Significance of glomerular perfusion in relation to variability of filtration rate. Amer. J. Physiol.167, 546 (1951).

    PubMed  Google Scholar 

  34. Ullrich, K. J., andA. Hampel: Eine einfache Mikrokuvette für Monochromator Zeiss und Beckman Modell DU. Pflügers Arch. ges. Physiol.268, 177 (1958).

    Article  Google Scholar 

  35. Walker, A. M., andJ. A. Reisinger: Quantitative studies of the composition of glomerular urine. IX. The concentration of reducing substances in glomerular urine from frogs and necturi determined by an ultramicroadaptation of the method ofSumner. Observations on the action of phlorphizin. J. biol. Chem.101, 223 (1933).

    Google Scholar 

  36. Wirz, H.: Untersuchungen über die Nierenfunktion bei adrenalektomierten Katzen. Helv. physiol. pharmacol. Acta3, 589 (1945).

    Google Scholar 

  37. ——, andP. A. Bott: Potassium and reducing substances in proximal tubule fluid of the rat kidney. Proc. Soc. exp. Biol. (N. Y.)87, 405 (1954).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported (in part) by a PHS General Research Support Grant and by the Western New York Chapter of the National Kidney Disease Foundation.

Visiting Research Professor of Medicine, Dr.Henry C. andBertha H. Buswell Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Liew, J.B., Deetjen, P. & Boylan, J.W. Glucose reabsorption in the rat kidney. Pflügers Arch 295, 232–244 (1967). https://doi.org/10.1007/BF01844103

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01844103

Keywords

Navigation