Skip to main content
Log in

Post-capillary venules in the “milky spots” of the greater omentum are the major site of plasma protein and leukocyte extravasation in rodent models of peritonitis

  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Intraperitoneal injection of inflammatory agents in the mouse and rat causes plasma protein and leukocyte extravasation into the peritoneal cavity. Following an intraperitoneal injection of zymosan A, the milky spots of the omentum were the only abdominal sites detected where intravenously administered Monastral Blue labeled interendothelial cell gaps responsible for plasma extravasation. In addition, when colored microspheres were intraventricularly administered to quantify blood flow, the omentum was the only abdominal organ which showed an increase in blood flow during zymosan A peritonitis. A combination of light and electron microscopy, plus measurement of myeloperoxidase activity (a marker of neutrophil accumulation) demonstrated that the omental milky spots are the major route through which leukocytes migrate into the peritoneal cavity. Identical structures in the pleura likewise are the sites of protein leakage into the pleural cavity. In contrast, selective sites of protein and cellular extravasation could not be detected in the synovial lining of the inflamed knee joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Majno G, Palade GE. Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability. J Biol Physiol Biochem Cytol 1961;11:571–605.

    Google Scholar 

  2. Williams TJ, Peck MJ. Role of prostaglandins-mediated vasodilatation inflammation. Nature 1977;246:215–7.

    Google Scholar 

  3. Majno G, Shea S, Leventhal M. Endothelial contractions induced by histamine-type mediators. An electron microscopic study. J Cell Biol 1969;42:647–72.

    PubMed  Google Scholar 

  4. Grega G. Contractile elements in endothelial cells as potential targets for drug action. Trends Pharmacol Sci 1986;7:452–7.

    Google Scholar 

  5. Wedmore CV, Williams TJ. Control of vascular permeability by polymorphonuclear leukocytes in inflammation. Nature 1981;289:646–50.

    PubMed  Google Scholar 

  6. Issekutz AC. The effect of vasodilator prostaglandins on polymorphonuclear leukocyte infiltration and vascular injury. Am J Pathol 1982;107:300–9.

    PubMed  Google Scholar 

  7. Issekutz AC. Effect of vasoactive agents on polymor-phonuclear leukocyte emigration in vivo. Lab Invest 1981;45:234–40.

    PubMed  Google Scholar 

  8. Von Andrian UH, Arfors KE. In: Bonney RJ, et al. eds. Agents actions Suppl 1993; 41:153–64.

    PubMed  Google Scholar 

  9. Cranshaw ML, Leak LV. Milky spots of the omentum: a source of peritoneal cells in the normal and stimulated animal. Arch Histol Cytol 1990;53:165–77.

    PubMed  Google Scholar 

  10. Doherty NS, Poubelle P, Borgeat P, Beaver TH, Westrich GL, Schrader NL. Intraperitoneal injection of zymosan in mice induces pain, inflammation and the synthesis of peptidoleuko-trienes and prostaglandin E2. Prostaglandins 1985;30:769–89.

    PubMed  Google Scholar 

  11. Pettipher ER, Salter ER, Breslow R, Raycroft L, Showell HJ. Specific inhibition of leukotriene B4 (LTB4)-induced neutrophil emigration by 20-hydroxy LTB4: implications for the regulation of inflammatory responses. Br J Pharmac 1993;110:423–7.

    Google Scholar 

  12. Bradley PB, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 1982;78:206–9.

    PubMed  Google Scholar 

  13. Bath PMW, Booth RFG, Hassall DG. Monocyte-lymphocyte discrimination in a new micro-titre based adhesion assay. J Immunol Methods 1989;118:59–65.

    PubMed  Google Scholar 

  14. Lundberg C, Arfors KE. Polymorphonuclear leukocyte accumulation in inflammatory dermal sites as measured by51Cr-labelled cells and myeloperoxidase. Inflam 1983;7:247–55.

    Google Scholar 

  15. Griffiths RJ, Li SW, Wood BE, Blackham A. A comparison of the anti-inflammatory activity of selective 5-lipoxygenase inhibitors with dexamethasone and colchcine in a model of zymosan induced inflammation in the rat knee joint and peritoneal cavity. Agents Actions 1991;32:312–9.

    PubMed  Google Scholar 

  16. Vinegar R, Truax JF, Selph JL. Some quantitative and temporal characteristics of carrageenin-induced pleurisy in the rat. Proc Soc Exp Biol Med 1973;143:711–4.

    PubMed  Google Scholar 

  17. Joris I, Degirola U, Wortham K, Majno G. Vascular labeling with Monastral Blue-B. Stain Tech 1982;57:177–83.

    PubMed  Google Scholar 

  18. Marchesi V. The passage of colloidal carbon through inflamed endothelium. Proc Roy Soc Lond, Ser B. 1962;156:550–2.

    Google Scholar 

  19. Otterness I, Bliven M, Milici A, Poole A. LPS-arthritis in the hamster: comparison of mobility changes with cartilage proteoglycan changes. Am J Pathol 1994;144:1098–108.

    PubMed  Google Scholar 

  20. Milici AJ, L'Hernault N, Palade GE. Surface densities of diaphragmed fenestrae and transendothelial channels in different murine capillary beds. Circ Res 1985;56:709–17.

    PubMed  Google Scholar 

  21. Whittle B. The use of changes in capillary permeability in mice to distinguish between narcotic and non-narcotic analgesics. Br J Pharmacol 1964;22:246–53.

    PubMed  Google Scholar 

  22. Ishise S, Pegram DL, Yamomoto J, Kitamura Y, Frohlich A. Reference sample microsphere method: cardiac output and blood flows in conscious rats. Am J Physiol 1980;239:H443–9.

    PubMed  Google Scholar 

  23. Hakkinen J, Miller M, Smith A, Knight D. Measurement of organ blood flow with colored microspheres in the rat. Cardiovascular Res. 1995;29:74–9.

    Google Scholar 

  24. Doherty NS, Beaver TH, Chan KY, Coutant JE, Westrich GL. The role of prostaglandins in the nociceptive response induced by intraperitoneal injection of zymosan in mice. Br J Pharmac 1987;91:39–47.

    Google Scholar 

  25. Doherty NS, Beaver TH, Chan KY, Dinertein RJ, Diekema KA. The antinociceptive activity of paracetamol in zymosan induced peritonitis in mice: the role of prostacyclin and reactive oxygen species. Br J Pharmac 1990;101:869–74.

    Google Scholar 

  26. Beelen RHJ, Fluitsma DM, Hoefsmit ECM. The cellular composition of omental milky spots and the ultrastructure of milky spot macrophages and reticulum cells. J Reticulo-endothel Soc 1980;28:585–99.

    Google Scholar 

  27. Lundberg JM, Brodin E, Hua X, Saria A. Vascular permeability changes and smooth muscle contractions in relation to capsaicin-sensitive substance P afferents in the guinea-pig. Acta Physiol Scand 1984;120:217–27.

    PubMed  Google Scholar 

  28. Louis SM, Jamieson A, Russell NJW, Dockray GJ. The role of substance P and calcitonin gene related peptide in neurogenic plasma extravasation and vasodilation in the rat. Neuroscience 1989;32:581–6.

    PubMed  Google Scholar 

  29. Wijffels J, Hendrickx R, Steenbergen J, Eestermans I, Beelen R. Milky spots in the mouse omentum may play an important role in the origin of peritoneal macrophages. Res Immunol 1992;143:401–9.

    PubMed  Google Scholar 

  30. Leak LV. Interaction of mesothelium to intraperitoneal stimulation. 1. Aggregation of peritoneal cells. Lab Invest 1983;48:479–91.

    PubMed  Google Scholar 

  31. Luvuno FM. Role of adhesive wraps in the pathogenesis of complicated amoebic colitis. Br J Surg 1988;75:713–6.

    PubMed  Google Scholar 

  32. Ellis H. The cause and prevention of post-operative intraperitoneal adhesions. Surg Gynecol Obstet 1971;133:497–511.

    PubMed  Google Scholar 

  33. Leak L, Rahil K. Permeability of the diaphragmatic mesothelium: the ultrastructural basis of “stomata”. Am J Anat 1978;180:373–90.

    Google Scholar 

  34. Shimotsuma M, Shirasu M, Hagiwara A, Takahashi T, Shields JW. Omental milky spots and the local immune response. Lancet 1992;339:1232.

    Google Scholar 

  35. Seymour L, Schacht E, Duncan R. The effect of size of polystyrene particles on their retention within the rat peritoneal compartment, and on their interaction with rat peritoneal macrophages in vitro. Cell Biol Int Rep 1991;15:37–45.

    Google Scholar 

  36. Mixter R. On macrophagal foci “milky spots” in the pleura of different mammals, including man. Am J Anat 1994;64:159–86.

    Google Scholar 

  37. Kanazawa K, Roe F, Yamamoto T. Milky spots (Taches laiteuses) as structures which trap asbestos in mesothelial layers and their significance in the pathogenesis of mesothelial neoplasia. Int J Cancer 1979;23:858–65.

    PubMed  Google Scholar 

  38. Nakatani T, Shinohara H, Fukuo Y, Morisawa S, Matsuda T. Pericardium of rodents: pores connect the pericardial and pleural cavities. Anat Rec 1988;220:132–7.

    PubMed  Google Scholar 

  39. Warwick R, Williams P. In Gray's Anatomy 35th edition. Philadelphia: WB Saunders Company, 1973.

    Google Scholar 

  40. Ranvier L. Du dévelopment et de l'accroisment des vaisseux sanguins. Arch de Physiol 1874;1:429–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doherty, N.S., Griffiths, R.J., Hakkinen, J.P. et al. Post-capillary venules in the “milky spots” of the greater omentum are the major site of plasma protein and leukocyte extravasation in rodent models of peritonitis. Inflamm Res 44, 169–177 (1995). https://doi.org/10.1007/BF01782815

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01782815

Key words

Navigation