Skip to main content
Log in

Neuropeptides in the human appendix

Distribution and motor effects

  • Original Articles
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

At present our knowledge of enteric peptide-containing neurons in man is limited. In this study we have used human appendices removed at surgery to examine the peptidergic innervation by immunocytochemistry, immunochemistry, and pharmacological in vitro experiments. Immunocytochemistry revealed a variety of peptide-containing nerve fiber populations in the human appendix. VIP/PHI-, VIP/PHI/NPY-, SP/NKA-, galanin-, and enkephalin-containing nerve fibers were numerous; CGRP- and GRP- containing nerve fibers were moderate in number, while only scattered NPY-, enkephalin/BAM-, and somatostatin-containing nerve fibers could be found. No CCK-, dynorphin A-, or dynorphin B- immunoreactive nerve fibers could be detected. The coexistence of VIP/PHI, SP/NKA, and enkaphalin/BAM can be anticipated from the known sequence of their respective precursors. However, the coexistence of VIP/PHI and NPY was unexpected but corroborates previous observations in other species. Interestingly, SP and CGRP did not seem to coexist in nerve fibers of the human appendix. Immunochemistry (RIA and HPLC) confirmed the presence of VIP, NPY, SP, galanin, CGRP, GRP, enkephalin, and somatostatin. Motor activity studies suggest that acetylcholine plays a major role in the electrically evoked contractions, since atropine suppressed these contractions. Galanin (10−8-10−6 M) and GRP (10−9-10−7 M) caused concentration-dependent contractions that were unaffected by tetrodotoxin and thus probably reflect a direct action on smooth muscle receptors. GRP (10−9 M) enhanced the electrically induced cholinergic contraction (to 193±24%), while met-enkephalin (10−6 M) reduced it (to 54±6%). Both peptides failed to affect the contractile response to exogenous acetylcholine and probably act to modulate the release of acetylcholine. NPY, VIP, CGRP, SP, and somatostatin failed to induce contraction or to affect the electrically evoked contractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hökfelt T, Johansson O, Ljungdahl å, Lundberg JM, Schultzberg M: Peptidergic neurones. Nature 284:515–521, 1980

    PubMed  Google Scholar 

  2. Sundler F, Håkanson R, Leander S: Peptidergic nervous systems in the gut. Clin Gastroenterol 9:517–543, 1980

    PubMed  Google Scholar 

  3. Costa M, Furness JB, Llewellyn-Smith IJ: Histochemistry of the enteric nervous system.In Physiology of the Gastrointestinal Tract, 2nd ed, LR Johnson (ed). New York, Raven Press, 1987, pp 1–31

    Google Scholar 

  4. Polak JM, Bloom SR: Distribution, origin, and pathology of the gut peptidergic innervation.In Cellular Basis of Chemical Messengers in the Digestive Tract. M Grossman, MAB Brazier, J Lechago (eds). New York, Academic Press, 1981, pp 267–282

    Google Scholar 

  5. Makhlouf GM: Enteric neuropeptides: Role in neuromuscular activity of the gut. Trends Pharmacol Sci 6:214–218, 1985

    Google Scholar 

  6. Ashley DJB: Observations on the epidemiology of appendicitis. Gut 8:533–538, 1967

    PubMed  Google Scholar 

  7. Creed F: Life events and appendectomy. Lancet 1:1381–1385, 1981

    PubMed  Google Scholar 

  8. Masson P: Neuronal proliferations in the vermiform appendix.In Cytology of the Nervous System, Vol III, W Penfield (ed). 1932, pp 1095–1130

  9. Auböck L, Ratzenhofer M: “Extraepithelial enterochromaffin cell-nerve fibre complexes” in the normal human appendix, and in neurogenic appendicopathy. J Pathol 136:217–226, 1982

    PubMed  Google Scholar 

  10. Höfler H, Kasper M, Heitz PU: The neuroendocrine system of normal human appendix, ileum and colon, and in neurogenic appendicopathy. Virchows Arch A (Pathol Anat) 399:127–140, 1983

    Google Scholar 

  11. Ekblad E, Håkanson R, Sundler F: VIP and PHI coexist with an NPY-like peptide in intramural neurones of the small intestine. Regul Pept 10:47–55, 1984

    PubMed  Google Scholar 

  12. Yanaihara N, Yanaihara C, Mochizuki T, Imura K, Fujita T, Iwanaga T: Immunoreactive GRP. Peptides 2(Suppl 2): 185–192, 1981

    PubMed  Google Scholar 

  13. Brodin E, Alumets J, Håkanson R, Leander S, Sundler F: Immunoreactive substance P in chicken gut: Distribution, development and possible functional significance. Cell Tissue Res 216:455–469, 1981

    PubMed  Google Scholar 

  14. Brodin E, Lindefors N, Theodorsson-Norheim E, Peterson L, Bartfai T, ögren S-O, Rosell S: Tachykinins in rat central nervous system: Distribution, molecular forms, release and effects of chronic treatment with antidepressent drugs.In Tachykinin Antagonists, Proceedings, Fernström Symposium, Vol 6. R Håkanson, F Sundler (eds). Amsterdam, Elsevier, 1985, pp 3–14

    Google Scholar 

  15. Alumets J, Håkanson R, Sundler F, Chang KJ: Leuenkephalin-like material in nerves and enterochromaffin cells in the gut. Histochemistry 56:187–196, 1978

    PubMed  Google Scholar 

  16. Ekblad E, Ekelund M, Graffner H, Håkanson R, Sundler F: Peptide containing nerve fibers in the stomach wall of rat and mouse. Gastroenterology 89:73–85, 1985

    PubMed  Google Scholar 

  17. Sundler F, Moghimzadeh E, Håkanson R, Ekelund M, Emson P: Nerve fibers in the gut and pancreas of the rat displaying neuropeptide-Y immunoreactivity. Intrinsic and extrinsic origin. Cell Tissue Res 230:487–493, 1983

    PubMed  Google Scholar 

  18. Ekblad E, Winther C, Ekman R, Håkanson R, Sundler F: Projections of peptide-containing neurons in rat small intestine. Neuroscience 20:169–188, 1987

    PubMed  Google Scholar 

  19. Ekblad E, Rökaeus å, Håkanson R, Sundler F: Galanin nerve fibers in the rat gut: distribution, origin and projections. Neuroscience 16:355–363, 1985

    PubMed  Google Scholar 

  20. Lorén I, Alumets J, Håkanson R, Sundler F: Distribution of gastrin- and CCK-like peptides in rat brain. An immunocytochemical study. Histochemistry 59:249–257, 1979

    PubMed  Google Scholar 

  21. Sundler F, Brodin E, Ekblad E, Håkanson R, Uddman R: Sensory nerve fibers: Distribution of substance P, neurokinin A and calcitonin gene-related peptide.In Tachykinin Antagonists, Proceedings, Fernström Symposium, R Håkanson, F Sundler (eds). Amsterdam, Elsevier, 1985, pp 3–14

    Google Scholar 

  22. Coons AH, Leduc EH, Connolly JM: Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J Exp Med 102:49–60, 1955

    PubMed  Google Scholar 

  23. Tramu G, Pillez A, Leonardelli J: An efficient method of antibody elution for the successive or simultaneous location of two antigens by immunocytochemistry. J Histochem Cytochem 26:322–324, 1978

    PubMed  Google Scholar 

  24. Cuello AC, Milstein C, Couture R, Wright B, Priestley JV, Jarvis J: Characterization and immunocytochemical application of monoclonal antibodies against enkephalins. J Histochem Cytochem 32:947–957, 1984

    PubMed  Google Scholar 

  25. Fahrenkrug J, Schaffalitzky de Muckadell OB: Radioimmunoassay of VIP in plasma. J Lab Clin Med 89:1379, 1977

    PubMed  Google Scholar 

  26. Voigt KH, Weber E, Martin R: Neuropeptides, subcellular localization of ACTH and related peptides.In Structure and Activity of Natural Peptides. W Woelter, G Weitzel (eds). Berlin, de Gruyter, 1980, pp 115–140

    Google Scholar 

  27. Grunditz T, Ekman R, Håkanson R, Rerup C, Sundler F, Uddman R: Calcitonin gene-related peptide in thyroid nerve fibers and C cells: Effects on thyroid hormone secretion and response to hypercalcemia. Endocrinology 119:2313–2324, 1987

    Google Scholar 

  28. Ekman R, Widerlöv E, Walleus H, Lindström LH: Elevated levels of NPY-like material in CSF in depression. ISPN XVth International Congress, Vienna. July 15–19, 1984, p 73

  29. Wallengren J, Ekman R, Sundler F: Occurrence and distribution of neuropeptides in the human skin. Acta Derm Venereol 67:185–192, 1987

    PubMed  Google Scholar 

  30. Ishida Y, Krakawa N: Isometric and isotonic spontaneous contractions of guinea-pig taenia coli. Jpn J Pharmacol 24:925–927, 1974

    PubMed  Google Scholar 

  31. Leander S, Håkanson R, Sundler F: Nerves containing substance P, vasoactive intestinal polypeptide, enkephalin or somatostatin in the guinea pig taenia coli. Cell Tissue Res 215:21–39, 1981

    PubMed  Google Scholar 

  32. Bishop AE, Ferri GL, Probert L, Bloom SR, Polak JM: Peptidergic nerves. Scand J Gastroenterol (Suppl 71) 17:43–59, 1981

    Google Scholar 

  33. Ferri GL, Potti PL, Vezzadin P, Biliotti G, Bloom SR, Polak JM: Peptide-containing innervation of the human intestinal mucosa. Histochemistry 76:413–420, 1982

    PubMed  Google Scholar 

  34. Larsson LT, Malmfors G, Sundler F: Peptidergic innervation in Hirschsprung's disease. Z Kinderchir 38:301–304, 1983

    PubMed  Google Scholar 

  35. Sjölund K, Schaffalitzky de Muckadell OB, Fahrenkrug J, Håkanson R, Peterson BG, Sundler F: Peptide-containing nerve fibres in the gut wall in Crohn's disease. Gut 24:724–733, 1983

    PubMed  Google Scholar 

  36. Taguchi Y, Tanaka K, Ikeda K, Matsubayashi S, Yanaihara N: Peptidergic innervation irregularities in Hirschsprung's disease. Virchows Arch A 401:223–235, 1983

    Google Scholar 

  37. Tsuto T, Okamura H, Fukui K, Obata-Tsuto HL, Terubayashi H, Yanaighara J, Iwai N, Majima S, Yanaihara N, Ibata Y: Immunohistochemical investigations of gut hormones in the colon of patients with Hirschsprung's disease. J Pediatr Surg 20:266–270, 1985

    PubMed  Google Scholar 

  38. Keast JR, Furness JB, Costa M: Distribution of certain peptide-containing nerve fibers and endocrine cells in the gastrointestinal mucosa in five mammalian species. J Comp Neurol 236:403–422, 1985

    PubMed  Google Scholar 

  39. Wattchow DA, Furness JB, Costa M: Distribution and coexistence of peptides in nerve fibers of the external muscle of the human gastrointestinal tract. Gastroenterology 95:32–41, 1988

    PubMed  Google Scholar 

  40. Ito S, Iwanaga T, Yamada Y, Shibata A: Somatostatin-28 like immunoreactivity in the human gut. Horm Metab Res 14:500–501, 1982

    PubMed  Google Scholar 

  41. Larsson LT, Malmfors G, Sundler F: Neuropeptide Y, calcitonin gene-related peptide and galanin in Hirschsprung's disease: An immunocytochemical study. J Pediatr Surg 23:342–345, 1988

    PubMed  Google Scholar 

  42. Itoh N, Obata K, Yanaihara N, Okamoto H: Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 304:547–549, 1983

    PubMed  Google Scholar 

  43. Nawa H, Hirose T, Takashima H, Inayama S, Nakanishi S: Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursor. Nature 306:31–36, 1983

    Google Scholar 

  44. Mizuno K, Minamino N, Kangawa K, Matsuo H: A new family of endogenous “big” met-enkephalins from bovine adrenal medulla: Purification and structure of docosa- (BAM-22P) and eicosapeptide (BAM-20P) with very potent opiate activity. Biochem Biophys Res Commun 97:1283–1290, 1980

    PubMed  Google Scholar 

  45. Gibbins IL, Furness JB, Costa M, MacIntyre I, Hillyard CJ, Girgis S: Co-localization of calcitonin gene-related peptidelike immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea pigs. Neurosci Lett 57:125–130, 1985

    PubMed  Google Scholar 

  46. Burnstock G, Campell G, Rand MJ: The inhibitory innervation of the taenia of the guinea pig caecum. J Physiol 182:504–526, 1966

    PubMed  Google Scholar 

  47. Leander S, Ekman R, Uddman R, Sundler F, Håkanson R: Neuronal cholecystokinin, gastrin-releasing peptide, neurotensin and Β-endorphin in the intestine of the guinea pig. Distribution and possible motor function. Cell Tissue Res 235:521–531, 1984

    PubMed  Google Scholar 

  48. Bitar KN, Makhlouf GM: Specific opiate receptors on isolated mammalian gastric smooth muscle cells. Nature 297:72–74, 1982

    PubMed  Google Scholar 

  49. Dockray G: Physiology of Enteric Neuropeptides.In Physiology of the Gastrointestinal Tract, 2nd ed. LR Johnson (ed). New York, Raven Press, 1987, pp 41–66

    Google Scholar 

  50. Bertaccini G: Peptides: Candidate hormones.In Handbook of Experimental Pharmacology. G Bertaccini (ed). Berlin, Springer-Verlag, 1982, pp 85–135

    Google Scholar 

  51. Ekblad E, Håkanson R, Sundler F, Wahlestedt C: Galanin: Neuromodulatory and direct contractile effects on smooth muscle preparations. Br J Pharmacol 86:241–246, 1985

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekblad, E., Arnbjörnsson, E., Ekman, R. et al. Neuropeptides in the human appendix. Digest Dis Sci 34, 1217–1230 (1989). https://doi.org/10.1007/BF01537270

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01537270

Key words

Navigation