Skip to main content
Log in

Animal models of Parkinson's disease: An empirical comparison with the phenomenology of the disease in man

  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Summary

Animal models are an important aid in experimental medical science because they enable one to study the pathogenetic mechanisms and the therapeutic principles of treating the functional disturbances (symptoms) of human diseases. Once the causative mechanism is understood, animal models are also helpful in the development of therapeutic approaches exploiting this understanding. On the basis of experimental and clinical findings. Parkinson's disease (PD) became the first neurological disease to be treated palliatively by neurotransmitter replacement therapy.

The pathological hallmark of PD is a specific degeneration of nigral and other pigmented brainstem nuclei, with a characteristic inclusion, the Lewy body, in remaining nerve cells. There is now a lot of evidence that degeneration of the dopaminergic nigral neurones and the resulting striatal dopamine-deficiency syndrome are responsible for its classic motor symptoms akinesia and bradykinesia. PD is one of many human diseases which do not appear to have spontaneously arisen in animals. The characteristic features of the disease can however be more or less faithfully imitated in animals through the administration of various neurotoxic agents and drugs disturbing the dopaminergic neurotransmission.

The cause of chronic nigral cell death in PD and the underlying mechanisms remain elusive. The partial elucidation of the processes underlie the selective action of neurotoxic substances such as 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), has however revealed possible molecular mechanisms that give rise to neuronal death. Accordingly, hypotheses concerning the mechanisms of these neurotoxines have been related to the pathogenesis of nigral cell death in PD.

The present contribution starts out by describing some of the clinical, pathological and neurochemical phenomena of PD. The currently most important animal models (e.g. the reserpine model, neuroleptic-induced catalepsy, tremor models, experimentally-induced degeneration of nigro-striatal dopaminergic neurons with 6-OHDA, methamphetamine, MPTP, MPP+, tetrahydroisoquinolines, β-carbolines, and iron) critically reviewed next, and are compared with the characteristic features of the disease in man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abekawa T, Ohmori T, Koyama T (1994) Effects of repeated administration of a high dose of methamphetamine on dopamine and glutamate release in rat striatum and nucleus accumbens. Brain Res 643: 276–281

    Google Scholar 

  • Adams JD, Klaidman LK, Leung AC (1993) MPP+ and MPDP+ induced oxygen radical formation with mitochondrial enzymes. Free Rad Biol Med 15: 181–186

    Google Scholar 

  • Albores R, Neafsey EJ, Drucker G, Fields JZ, Collins MA (1990) Mitochondrial respiratory inhibition by N-methylated β-carboline derivatives structurally resembling N-methyl-4-phenylpyridine. Proc Natl Acad Sci USA 87: 9368–9372

    Google Scholar 

  • Alexander GM, Brainard DL, Gordon SW, Hichens M, Grothusen JR, Schwartzman RJ (1991) Dopamine receptor changes in untreated and (+)-PHNO-treated MPTP Parkinsonian primates. Brain Res 547: 181–189

    Google Scholar 

  • Altar C, Heikkila RE, Manzino L, Marien MR (1986) 1-Methyl-4-phenyl-pyridine (MPP+): regional dopamine neuron uptake, toxicity, and novel rotational behavior following dopamine receptor proliferation. Eur J Pharmacol 131: 199–209

    Google Scholar 

  • Ambani LM, Van Woert MH, Murphy S (1975) Brain peroxides and catalase in Parkinson's disease. Arch Neurol 32: 114–118

    Google Scholar 

  • Andén N-E, Dahlström A, Fuxe K, Larsson K (1966) Functional role of the nigro-neo-striatal dopamine neurons. Acta Pharmacol Toxicol 24: 263–274

    Google Scholar 

  • Arendash GW, Olanow CW, Sengstock GJ (1993) Intranigral iron infusion in rats: a progressive model for excess nigral iron levels in Parkinson's disease? In: Riederer P, Youdim MBH (eds) Iron in central nervous system disorders. Springer, Wien New York, pp 87–101 (Key Topics in Brain Research)

    Google Scholar 

  • Baik J-H, Picetti R, Saiardi A, Thiriet G, Dierich A, Depaulis A, Le Meur M, Borrelli E (1995) Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 377: 424–428

    Google Scholar 

  • Ballarin M, Reiriz J, Ambrosio S, Camps M, Blesa R, Mahy N (1989) Acute effects of 1-methyl-4-phenylpyridinium ion (MPP+) on purine metabolism in rat striatum in vivo using the microdialysis technique. Brain Res 483: 184–187

    Google Scholar 

  • Barker SA, Harrison REW, Monti JA, Brown GB, Christian ST (1981) Identification and quantitation of 1,2,3,4-tetrahydro-beta-carboline, 2-methyl-1,2,3,4-tetrahydro-beta-carboline, and 8-methoxy-1,2,3,4-tetrahydro-beta-carboline as in vivo constituents of rat brain and adrenal gland. Biochem Pharmacol 30: 9–17

    Google Scholar 

  • Bates TE, Heales SJR, Davies EEC, Boakye P, Clark JB (1994) Effects of 1-methyl-4-phenylpyridinium on isolated rat brain mitochondria: evidence for a primary involvement of energy depletion. J Neurochem 63: 640–648

    Google Scholar 

  • Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 31: 119–130

    Google Scholar 

  • Bédard PJ, Boucher R (1989) Effect of D1 receptor stimulation in normal and MPTP monkeys. Neurosci Lett 104: 223–228

    Google Scholar 

  • Ben-Shachar D, Youdim MBH (1991) Intranigral iron injection induces behavioral and biochemical “Parkinsonism” in rats. J Neurochem 57: 2133–2135

    Google Scholar 

  • Ben-Shachar D, Eshel G, Finberg JPM, Youdim MBH (1991) The iron chelator desferrioxamine (desferal) retards 6-hydroxydopamine-induced degeneration of nigro-striatal dopamine neurons. J Neurochem 56: 1441–1444

    Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20: 415–455

    Google Scholar 

  • Bernocchi G, Gerzeli G, Scherini E, Vignola C (1993) Neuroprotective effects of a-dihydroergocryptine against damages in the substantia nigra caused by severe treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Acta Neuropathol 85: 404–413

    Google Scholar 

  • Birkmayer W, Riederer P (1975) Responsibility of extrastriatal areas for the appearance of psychotic symptoms. J Neural Transm 37: 175–181

    Google Scholar 

  • Birkmayer W, Riederer P (1985) Die Parkinson-Krankheit: Biochemie, Klinik, Therapie, 2. Aufl. Springer, Wien New York, pp 60–101

    Google Scholar 

  • Bloom FE, Algeria S, Groppetti A, Revuelta A, Costa E (1969) Lesions of central norepinephrine terminals with 6-OH-dopamine: biochemistry and fine structure. Science 166: 1284–1286

    Google Scholar 

  • Boireau A, Bordier F, Dubedat P, Doble A (1995) Methamphetamine and dopamine neurotoxicity: differential effects of agents interfering with glutamatergic transmission. Neurosci Lett 195: 9–12

    Google Scholar 

  • Boissier JR, Simon P (1963) Un test simple pour l'étude quantitative de la catatonie provoquée chez le rat par les neuroleptiques. Application a l'étude des anticatatoniques. Thérapie 18: 1257–1277

    Google Scholar 

  • Braak H, Braak E, Yilmazer D, Schultz C, de Vos RAI, Jansen ENH (1995) Nigral and extranigral pathology in Parkinson's disease. J Neural Transm [Suppl] 46: 15–31

    Google Scholar 

  • Breese GR, Traylor TD (1970) Effect of 6-hydroxydopamine on brain norephinephrine and dopamine: evidence for selective degeneration of catecholamine neurons. J Pharmacol Exp Ther 174: 413–420

    Google Scholar 

  • Bringmann G, God R, Feineis D, Wesemann W, Riederer P, Rausch W-D, Reichmann H, Sontag K-H (1995) The TaClo concept: 1-trichloromethyl-1,2,3,4-tetahydro-β-carboline (TaClo), a new toxin for dopaminergic neurons. J Neural Transm [Suppl] 46: 235–244

    Google Scholar 

  • Buja LM, Eigenbrodt ML, Eigenbrodt EH (1993) Apoptosis and necrosis: basic types and mechanisms of cell death. Arch Pathol Lab Med 117: 1208–1214

    Google Scholar 

  • Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of Parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80: 4546–4550

    Google Scholar 

  • Butterwort RF, Bélanger F, Barbeau A (1978) Hypokinesia produced by anterioolateral hypothalamic 6-hydroxydopamine lesions and its reversal by some antiparkinson drugs. Pharmacol Biochem Behav 8: 41–45

    Google Scholar 

  • Cadet JL, Katz M, Jackson-Lewis V, Fahn S (1989) Vitamin E attenuates the toxic effects of intrastriatal injection of 6-OHDA in rats: behavioral and biochemical evidence. Brain Res 476: 10–15

    Google Scholar 

  • Cadet JL, Sheng P, Ali S, Rothman R, Carlson E, Epstein C (1994) Attenuation of methamphetamine-induced neurotoxicity in copper/zinc Superoxide dismutase transgenic mice. J Neurochem 62: 380–383

    Google Scholar 

  • Carboni S, Melis F, Pani L, Hadjiconstantinou M, Rossetti ZL (1990) The non-competitive NMDA-receptor antagonist MK-801 prevents the massive release of glutamate and aspartate from rat striatum induced by 1-methyl-4-pyridinium (MPP+). Neurosci Lett 117: 129–133

    Google Scholar 

  • Carlsson M, Carlsson A (1989) Marked locomotor stimulation in monoamine-depleted mice following treatment with atropine in combination with clonidine. J Neural Transm [P-D Sect] 1: 317–322

    Google Scholar 

  • Carlsson A, Lundqvist M, Magnusson T (1957) 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180: 1200

    Google Scholar 

  • Carmichael SW, Wilson RJ, Brimijoin WS, Melton III LJ, Okazaki H, Yaksh TL, Ahlskog JE, Stoddard SL, Tyce GM (1988) Decreased catecholamines in the adrenal medulla of patients with parkinsonism. N Engl J Med 318: 254

    Google Scholar 

  • Chan P, Di Monte DA, Luo J-J, DeLanney LE, Irwin I, Langston JW (1994) Rapid ATP loss caused by methamphetamine in the mouse striatum: relationship between energy impairment and dopaminergic neurotoxicity. J Neurochem 62: 2484–2487

    Google Scholar 

  • Chiueh CC, Markey SD, Burns RS, Johannessen JN, Jacobowitz DM, Kopin IJ (1984) Neurochemical and behavioral effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in rat, guinea pig and monkey. Psychopharmacol Bull 20: 548–553

    Google Scholar 

  • Cleeter MWJ, Cooper JM, Schapira AHV (1992) Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement. J Neurochem 58: 786–789

    Google Scholar 

  • Close SP, Elliot PJ, Hayes AG, Marriott AS (1990) Effects of classical and novel agents in a MPTP-induced reversible model of Parkinson's disease. Psychopharmacology 102: 295–300

    Google Scholar 

  • Collins MA, Neafsey EJ (1985) β-Carboline analogues of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): endogenous factors underlying idiopathic parkinsonism. Neurosci Lett 55: 179–184

    Google Scholar 

  • Colpaert FC (1987) Pharmacological characteristics of tremor, rigidity and hypokinesia induced by reserpine in rats. Neuropharmacology 26: 1431–1440

    Google Scholar 

  • Colosimo C, Granata R, Del Zompo M, Piccardi MP, Perretta G, Albanese A (1992) Chronic administration of MPTP to monkeys: behavioral morphological and biochemical correlates. Neurochem Int [Suppl] 20: 279S-285S

    Google Scholar 

  • Corsini GU, Pintus S, Chiueh CC, Weiss JF, Kopin IJ (1985) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in mice is enhanced by pretreatment with diethyldithiocarbamate. Eur J Pharmacol 119: 127–128

    Google Scholar 

  • Corsini GU, Zuddas A, Bonuccelli U, Schinelli S, Kopin IJ (1987) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in mice is enhanced by ethanol or acetaldehyde. Life Sci 40: 827–832

    Google Scholar 

  • Crossman AR, Peggs D, Boyce S, Luquin MR, Sambrook MA (1989) Effect of the NMDA antagonist MK-801 on MPTP-induced Parkinsonism in the monkey. Neuropharmacology 28: 1271–1273

    Google Scholar 

  • Danysz W, Gossel M, Zajaczkowski W, Dill D, Quack G (1994) Are NMDA antagonistic properties relevant for antiparkinsonian-like activity in rats? Case of amantadine and memantine. J Neural Transm [P-D Sect] 7: 155–166

    Google Scholar 

  • Date I, Felten DL, Felten SY (1990) Long-term effect of MPTP in the mouse brain in relation to ageing: neurochemical and immunocytochemical analysis. Brain Res 519: 266–276

    Google Scholar 

  • Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiat Res 1: 249–254

    Google Scholar 

  • Deng Y, Maruyama W, Dostert P, Takahashi T, Kawai M, Naoi M (1995) Determination of the (R)- and (S)-enantiomeres of salsolinol and N-methylsalsolinol by use of a chiral high-performance liquid chromatographic column. J Chromatogr 670: 47–54

    Google Scholar 

  • De Ryck M, Schallert T, Teitelbaum P (1980) Morphine versus haloperidol catalepsy in the rat: a behavioral analysis of postural support mechanisms. Brain Res 201: 143–172

    Google Scholar 

  • Desole MS, Esposito G, Fresu L, Migheli R, Enrico P, Miele M, Denatale G, Miele E (1993) Correlation between 1-methyl-4-phenylpyridinium ion (MPP+) levels, ascorbic acid oxidation and glutathione levels in the striatal synaptosomes of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated rats. Neurosci Lett 161: 121–123

    Google Scholar 

  • De Vito MJ, Wagner GC (1989) Methamphetamine-induced neuronal damage: a possible role for free radicals. Neuropharmacology 28: 1145–1150

    Google Scholar 

  • Dexter DT, Cater CJ, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem 52: 381–389

    Google Scholar 

  • Dipasquale B, Marini AM, Youle RJ (1991) Apoptosis and DNA degradation induced by 1-methyl-phenylpyridinium in neurons. Biochem Biophys Res Commun 181: 1442–1448

    Google Scholar 

  • Dordain G, Dostert P, Strolin-Benedetti M, Rovei V (1984) Tetrahydroisoquinoline derivatives and Parkinsonism. In: Tipton KF, Dostert P, Strolin-Benedetti M (eds) Monoamine oxidase and disease. Prospects for therapy with reversible inhibitors. Academic Press, London, pp 417–426

    Google Scholar 

  • Dostert P, Strolin-Benedetti M, Dordain G (1988) Dopamine-derived alkaloids in alcoholism and in Parkinson's and Huntington's disease. J Neural Transm 74: 61–74

    Google Scholar 

  • Drucker G, Raikoff K, Neafsey EJ, Collins MA (1990) Dopamine uptake inhibitory capacities of β-carbolines and 3,4-dihydro-β-carboline analogs of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) oxidation products. Brain Res 509: 125–133

    Google Scholar 

  • During MJ, Freese A, Deutch AY, Kibat PG, Sabel B, Langer R, Roth RH (1992) Biochemical and behavioral recovery in a rodent model of Parkinson's disease following stereotactic implantation of dopamine-containing liposomes. Exp Neurol 115: 193–199

    Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen des extrapyramidalen Systems. Wien Klin Wochenschr 38: 1236–1239

    Google Scholar 

  • Elsworth JD, Deutch AY, Redmond Jr DE, Taylor JR, Sladek Jr JR, Roth RH (1989) Symptomatic and asymptomatic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates: biochemical changes in striatal regions. Neurosci 33: 323–331

    Google Scholar 

  • Espino A, Cutillas B, Tortosa A, Ferrer I, Bartrons R, Ambrosio S (1995) Chronic effects of single intrastriatal injections of 6-hydroxydopamine or 1-methyl-4-phenyl-pyridinium studied by microdialysis in freely moving rats. Brain Res 695: 151–157

    Google Scholar 

  • Everett GM (1956) Tremor produced by drugs. Nature 177: 1238

    Google Scholar 

  • Fazzini E, Durso R, Davoudi H, Szabo GK, Albert ML (1990) GM1 gangliosides alter acute MPTP-induced behavioral and neurochemical toxicity in mice. J Neurol Sci 99: 59–68

    Google Scholar 

  • Fields JZ, Albores RR, Neafsey EJ, Collins MA (1992) Inhibition of mitochondrial succinate oxidation — similarities and differences between N-methylated β-carbolines and MPP+. Arch Biochem Biophys 249: 539–543

    Google Scholar 

  • Fog R (1972) On stereotypy and catalepsy: studies on the effect of amphetamines and neuroleptics in rats. Acta Neurol Scand 50: 1–66

    Google Scholar 

  • Forno LS, Delanney LE, Irwin I, Langston JW (1993) Similarities and differences between MPTP-induced Parkinsonism and Parkinson's disease. In: Narabayashi H, Nagatsu T, Yanagisawa N, Mizuno Y (eds) Parkinson's disease: from basic research to treatment. Raven, New York, pp 600–608 (Adv Neurol 60)

    Google Scholar 

  • Gaspar P, Febvret A, Colombo J (1993) Serotonergic sprouting in primate MPTP-induced hemiparkinsonism. Exp Brain Res 96: 100–106

    Google Scholar 

  • Gerlach M, Riederer P (1993) The pathophysiological basis of Parkinson's disease. In: Szelenyi I (ed) Inhibitors of monoamine oxidase B. Birkhäuser, Basel Boston Berlin, pp 25–50

    Google Scholar 

  • Gerlach M, Riederer P, Przuntek H, Youdim MBH (1991) MPTP mechanisms of neurotoxicity and their implications for Parkinson's disease. Eur J Pharmacol [Mol Pharmacol Sect] 208: 273–286

    Google Scholar 

  • Gerlach M, Russ H, Winker J, Witzmann K, Traber J, Stasch J-P, Riederer P, Przuntek H (1993) Effects of nimodipine on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced depletions on the biogenic amine levels in C57BL/6-mice. Arznei-mittelforsch/Drug Res 43(1): 413–415

    Google Scholar 

  • Gerlach M, Jellinger K, Riederer P (1994) The possible role of noradrenergic deficits in selected signs of Parkinson's disease. In: Briley M, Marien M (eds) Noradrenergic mechanisms in Parkinson's disease. CRC Press, Boca Raton Ann Arbor London Tokyo, pp 59–71

    Google Scholar 

  • Gerlach M, Götz M, Dirr A, Kupsch A, Janetzky B, Oertel W, Sautter J, Schwarz J, Reichmann H, Riederer P (1996a) Acute MPTP treatment produces no changes in mitochondrial complex activities and indices of oxidative damage in the common marmoset ex vivo one week after exposure to the toxin. Neurochem Int 28: 41–49

    Google Scholar 

  • Gerlach M, Riederer P, Youdim MBH (1996b) Molecular mechanisms for neurodegeneration: synergism between reactive oxygen species, calcium and excitotoxic amino acids. In: Battistin L, Scarlato G, Caraceni T, Ruggieri S (eds) Advances in neurology, vol 69. Lippincott-Raven, Philadelphia, pp 177–194

    Google Scholar 

  • German DC, Dubach M, Askaria S, Speciale G, Bowden DM (1988) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonian syndrome in macaca fascicularis: which midbrain dopaminergic neurons are lost? Neurosci 24: 161–174

    Google Scholar 

  • Gibb JW, Kogan FJ (1979) Influence of dopamine synthesis on methamphetamine-induced changes in striatal and adrenal tyrosine hydroxylase activity. Naunyn Schmiedebergs Arch Pharmacol 310: 185–187

    Google Scholar 

  • Gibb WRG (1989) The diagnostic relevance of Lewy bodies and other inclusions in Parkinson's disease. In: Przuntek H, Riederer P (eds) Early diagnosis and preventive therapy in Parkinson's disease. Springer, Wien New York, pp 171–180 (Key Topics in Brain Research)

    Google Scholar 

  • Gibb WRG, Terruli M, Lees AJ, Jenner P, Marsden CD (1989) The evolution and distribution of morphological changes in the nervous system of the common marmoset following the acute administration of 1-methy1-4-phenyl-1,2,3,6-tetrahydropyridine. Mov Disord 4: 53–74

    Google Scholar 

  • Gibb WRG, Fearnley JM, Lees AJ (1990) The anatomy and pigmentation of the human substantia nigra in relation to selective neuronal vulnerability. In: Streifler MB, Korczyn AD, Melamed E, Youdim MBH (eds) Parkinson's disease. Anatomy, pathology, and therapy. Raven, New York, pp 31–40 (Adv Neurol 53)

    Google Scholar 

  • Gilman SC, Bonner MJ, Pellmar TC (1993) Effect of oxidative stress on excitatory amino acid release by cerebral cortical synaptosomes. Free Rad Biol Med 15: 671–675

    Google Scholar 

  • Glinka YY, Youdim MBH (1995) Inhibition of mitochondrial complex I and IV by 6-hydroxydopamine. Eur J Pharmacol [Environm Toxicol Pharmacol Sect] 292: 329–332

    Google Scholar 

  • Gomez-Mancilla B, Boucher R, Bédard PJ (1991) Effect of clonidine and atropine on rest tremor in the MPTP monkey model of Parkinsonism. Clin Neuropharmacol 14: 359–366

    Google Scholar 

  • Goto S, Korematsu K, Inoue N, Yamada K, Oyama T, Nagahiro S, Ushio Y (1993) N-Methyl-D-aspartate receptor antagonist MK-801 induced circling behavior in rats with unilateral striatal ischemie lesions or nigral 6-hydroxydopamine lesions. Acta Neuropathol 86: 480–483

    Google Scholar 

  • Grote C, Clement H-W, Wesemann W, Bringmann G, Feineis D, Riederer P, Sontag K-H (1995) Biochemical lesions of the nigrostriatal system by TaClo (1-trichloro-methyl-1,2,3,4-tetrahydro-β-carboline) and derivatives. J Neural Transm [Suppl] 46: 275–281

    Google Scholar 

  • Haefely W (1978) Pharmakologische Modelle zur Wirkung von Antiparkinsonmitteln. In: Fischer PA (Hrsg) Langzeitbehandlung des Parkinson-Syndroms. Schattauer, Stuttgart New York, pp 53–64

    Google Scholar 

  • Hall S, Rulledge JH, Schallert T (1992) MRI brain iron and 6-hydroxydopamine experimental Parkinson's disease. J Neurol Sci 113: 198–208

    Google Scholar 

  • Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59: 1609–1623

    Google Scholar 

  • Hantraye P, Varastet M, Peschanski M, Riche D, Cesaro P, Willer JC, Maziere M (1993) Stable Parkinsonian syndrome and uneven loss of striatal dopamine fibres following chronic MPTP administration in baboons. Neurosci 53: 169–178

    Google Scholar 

  • Harnois C, Diapolo T (1990) Decreased dopamine in the retinas of patients with Parkinson's disease. Invest Opthalmol Vis Sci 31: 2473–2475

    Google Scholar 

  • Hartley A, Stone JM, Heron C, Cooper JM, Schapira AHV (1994) Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson's disease. J Neurochem 63: 1987–1990

    Google Scholar 

  • Hasegawa E, Takeshige K, Oishi T, Murai Y, Minakami S (1990) 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent Superoxide formation, and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem Biophys Res Commun 170: 1049–1055

    Google Scholar 

  • Hauber W (1990) A novel reaction time task for investigating force and time parameters in rats. Experientia 46: 1984–1988

    Google Scholar 

  • Hefti F, Melamed E, Sahakian BJ, Wurtman RJ (1980) Circling behavior in rats with partial, unilateral nigrostriatal lesions: effects of amphetamine, apomorphine and DOPA. Pharmacol Biochem Behav 12: 185–188

    Google Scholar 

  • Heikkila RE, Cohen G (1972) Further studies on generation of hydrogen peroxide by 6-hydroxydopamine: potentiation by ascorbic acid. Mol Pharmacol 8: 241–248

    Google Scholar 

  • Heikkila RE, Sonsalla P (1991) The MPTP-treated mouse as a model of Parkinsonism: how good is it? Neurochem Int [Suppl] 20: 299S-303S

    Google Scholar 

  • Heikkila RE, Nicklas WJ, Vyas I, Duvoisin RC (1985) Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: implications for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Neurosci Lett 62: 389–394

    Google Scholar 

  • Heikkila RE, Sieber BA, Manzino L, Sonsalla PK (1989) Some features of the nigrostriatal dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse. Mol Chem Neuropathol 10: 171–183

    Google Scholar 

  • Hodgson EK, Fridovich I (1975) The interaction of bovine erythrocyte Superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry 14: 5294–5299

    Google Scholar 

  • Horst WD, Pool WR, Spiegel HE (1973) Correlation between brain dopamine levels and L-dopa activity in anti-Parkinson tests. Eur J Pharmacol 21: 337–342

    Google Scholar 

  • Ichitani Y, Okamura H, Nakahara D, Nagatsu I, Ibata Y (1994) Biochemical and immu-nocytochemical changes induced by intrastriatal 6-hydroxydopamine injection in the rat nigrostriatal dopamine neuron system. Evidence for cell death in the substantia nigra. Exp Neurol 130: 269–278

    Google Scholar 

  • Ikawa K, Watanabe A, Motohashi N, Kaneno S (1994) The effect of repeated administration of methamphetamine on dopamine uptake sites in rat striatum. Neurosci Lett 167: 37–40

    Google Scholar 

  • Irwin IJ, Langston JW, DeLanney LE (1987) 4-Phenylpyridine (4PP): the relationship between striatal MPP+ concentration and neurotoxicity. Life Sci 40: 731–740

    Google Scholar 

  • Irwin I, DeLanney LE, Forno LS, Finnegan KT, Di Monte DA, Langston JW (1990) The evolution of nigrostriatal neurochemical changes in the MPTP-treated squirrel monkey. Brain Res 531: 242–252

    Google Scholar 

  • Irwin I, Finnegan KT, Delanney LE, Di Monte D, Langston JW (1992) The relationships between aging, monoamine oxidase, striatal dopamine and the effects of MPTP in C57BL/6 mice: a critical reassessment. Brain Res 572: 224–231

    Google Scholar 

  • Jackson-Lewis V, Jakowec MJ, Burke RE, Przedborski S (1995) Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methy1-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 4: 257–269

    Google Scholar 

  • Janetzky B, God R, Bringmann G, Reichmann H (1995) 1-Trichloromethyl-1,2,3,4-tetrahydro-β-carboline, a new inhibitor of complex I. J Neural Transm [Suppl] 46: 265–273

    Google Scholar 

  • Jarvis MF, Wagner GC (1985) Neurochemical and behavioral consequences following MPTP administration. Life Sci 36: 249–254

    Google Scholar 

  • Jellinger K (1988) Pathology of Parkinson's syndrome. In: Calne DB (ed) Handbook of experimental pharmacology, vol 88. Springer, Berlin Heidelberg New York Tokyo, pp 47–112

    Google Scholar 

  • Jellinger KA (1991) Pathology of Parkinson's disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14: 153–197

    Google Scholar 

  • Jellinger K, Linert L, Kienzl E, Herlinger E, Youdim MBH (1995) Chemical evidence for 6-hydroxydopamine to be an endogenous toxic factor in the pathogenesis of Parkinson's disease. J Neural Transm [Suppl] 46: 297–314

    Google Scholar 

  • Jurna I, Nell T, Schreyer I (1970) Motor disturbance induced by tremorine and oxotremorine. Naunyn Schmiedebergs Arch Pharmacol 267: 80–98

    Google Scholar 

  • Jurna I, Grossmann W, Nell T (1973) Depression by amantadine of tremor induced by reserpine and oxotremorine in the rat. Naunyn Schmiedebergs Arch Pharmacol 280: 141–152

    Google Scholar 

  • Karoum F, Chrapusta SJ, Egan MF, Wyatt RJ (1993) Absence of 6-hydroxydopamine in the rat brain affter treatment with stimulants and other dopaminergic agents: a mass fragmentographic study. J Neurochem 61: 1369–1375

    Google Scholar 

  • Kish SJ, Morito CH, Hornykiewicz O (1985) Glutathione peroxidase activity in Parkinson's disease brain. Neurosci Lett 58: 343–346

    Google Scholar 

  • Kita T, Wagner GC, Philbert MA, King LA, Lowndes HE (1995) Effects of pargyline and pyrogallol on the methamphetamine-induced dopamine depletion. Mol Chem Neuropathol 24: 31–41

    Google Scholar 

  • Klockgether T, Turski L, Honoré T, Zhang Z, Gash DM, Kurlan R, Greenamyre JT (1991) The AMPA receptor antagonist NBQX has antiparkinsonian effect in monoamine-depleted rats and MPTP-treated monkeys. Ann Neurol 30: 717–723

    Google Scholar 

  • Knoll J (1986) The pharmacology of (−)Deprenyl. J Neural Transm [Suppl] 22: 75–89

    Google Scholar 

  • Kogan FJ, Nichols WK, Gibb JW (1976) Influence of methamphetamine on nigral and striatal tyrosine hydroxylase activity and on striatal dopamine levels. Eur J Pharmacol 36: 363–371

    Google Scholar 

  • Krueger MJ, Tan AK, Ackrell BAC, Singer TP (1993) Is complex II involved in the inhibition of mitochondrial respiration by N-methyl-4-phenylpyridinium cation (MPP+) and N-methyl-β-carbolines? Biochem J 291: 673–676

    Google Scholar 

  • Kumar R, Agarwal AK, Seth PK (1995) Free radical-generated neurotoxicity of 6-hydroxydopamine. J Neurochem 64: 1703–1707

    Google Scholar 

  • Kupsch A, Loeschmann P, Sauer H, Arnold G, Renner P, Pufal D, Burg M, Wachtel H, ten Bruggencate G, Oertel WH (1992) Do NMDA receptor antagonists protect against MPTP-toxicity? Biochemical and immunocytochemical analyses in black mice. Brain Res 592: 74–83

    Google Scholar 

  • Kupsch A, Gerlach M, Pupeter SC, Sautter J, Dirr A, Arnold G, Opitz W, Przuntek H, Riederer P, Oertel WH (1995) The calcium channel blocker nimodipine prevents MPTP-induced neurotoxicity at the nigral, but not at the striatal level in mice. Neuro-Report 6: 621–625

    Google Scholar 

  • Kupsch A, Sautter J, Schwarz J, Riederer P, Gerlach M, Oertel WH (1996) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in non-human primates is antagonized by pertreatment with nimodipine at the nigral, but not at the striatal level. Brain Res (submitted)

  • Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J (1993) NMDA-dependent Superoxide production and neurotoxicity. Nature 364: 535–537

    Google Scholar 

  • Lambert CE, Bondy SC (1989) Effects of MPTP, MPP+ and paraquat on mitochondrial potential and oxidative stress. Life Sci 44: 1277–1284

    Google Scholar 

  • Lange KW, Löschmann PA, Sofic E, Burg M, Horowski R, Kalveram KT, Wachtel H, Riederer P (1993) The competitive NMDA antagonist CPP protects substantia nigra neurons from MPTP-induced degeneration in primates. Naunyn Schmidebergs Arch Pharmacol 34: 586–592

    Google Scholar 

  • Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979–980

    Google Scholar 

  • Lloyd KG, Hornykiewicz O (1970) Parkinson's disease: activity ofl-Dopa decarboxylase in discrete brain regions. Science 170: 1212–1213

    Google Scholar 

  • Lloyd KG, Davidson L, Hornykiewicz O (1975) The neurochemistry of Parkinson's disease: effect of L-DOPA therapy. J Pharmacol Exp Ther 195: 453–464

    Google Scholar 

  • Löschmann PA, Lange KW, Kumow M, Rettig KJ, Jähnig P, Honoré T, Turski T, Wachtel H, Jenner P, Marsden CD (1991) Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPP withl-DOPA in models of Parkinson's disease. J Neural Transm [PD-Sect] 3: 203–213

    Google Scholar 

  • Luquin MR, Obeso JA, Laguna J, Guillen J, Martinezlage JM (1993) The AMPA receptor antagonist NBQX does not alter the motor response induced by selective dopamine agonists in MPTP-treated monkeys. Eur J Pharmacol 235: 297–300

    Google Scholar 

  • Marien M, Briley M, Colpaert F (1993) Noradrenaline depletion exacerbates MPTP-induced striatal dopamine loss in mice. Eur J Pharmacol 236: 487–489

    Google Scholar 

  • Marshall JF, Odell SJ, Weihmuller FB (1993) Dopamine-glutamate interactions in methamphetamine-induced neurotoxicity. J Neural Transm [Gen Sect] 91: 241–254

    Google Scholar 

  • Maruyama W, Nakahara D, Ota M, Takahashi T, Takahashi A, Nagatsu T, Naoi M (1992) N-Methylation of dopamine-derived 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, (R)-salsolinol, in rat brains: in vivo microdialysis study. J Neurochem 59: 395–400

    Google Scholar 

  • Maruyama W, Dostert P, Naoi M (1995a) Dopamine-derived 1-methyl-6,7-dihydroxyisoquinolines as hydroxyl radical promoters and scavengers in the rat brain: in vivo and in vitro studies. J Neurochem 64: 2635–2643

    Google Scholar 

  • Maruyama W, Nakahara D, Dostert P, Takahashi T, Naoi M (1995b) Dopamine-derived isoquinolines as dopaminergic neurotoxins and oxidative stress. In: Hanin I, Yoshida M, Fisher A (eds) Alzheimer's and Parkinson's disease. Recent developments. Plenum Press, New York, pp 575–581

    Google Scholar 

  • Mavridis M, Degryse A-D, Lategan AJ, Mariens MR, Colpaert FC (1991) Effects of locus coeruleus lesions on Parkinsonian signs, striatal dopamine and substantia nigra cell loss after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in monkeys: a possible role for the locus coeruleus in the progression of Parkinson's disease. Neurosci 41: 507–523

    Google Scholar 

  • McGeer PL, Sir Eccles JC, McGeer EG (1987) Molecular neurobiology of the mammalian brain, 2nd ed, chapter 15.5.1. Neuroleptics. Plenum Press, New York, pp 533–539

    Google Scholar 

  • McMillen BA (1983) CNS stimulants: two distinct mechanisms of action for amphetamine-like drugs. TIPS 4: 429–432

    Google Scholar 

  • Michel PP, Vyas S, Agid Y (1992) Toxic effects of iron for cultured mesencephalic dopaminergic neurons derived from rat embryonic brains. J Neurochem 59: 118–127

    Google Scholar 

  • Mihatsch W, Russ H, Gerlach M, Riederer P, Przuntek H (1991) Treatment with antioxidants does not prevent loss of dopamine in the striatum of MPTP-treated common marmosets: preliminary observations. J Neural Transm [P-D Sect] 3: 73–78

    Google Scholar 

  • Miller HH, Shore PA, Clarke DE (1980) In vivo monoamine oxidase inhibition by d-amphetamine. Biochem Pharmacol 29: 1347–1354

    Google Scholar 

  • Mitchell IJ, Cross AJ, Sambrook MA, Crossman AR (1985) Sites of the neurotoxic action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the macaque monkey include the ventral tegmental area and the locus ceruleus. Neurosci Lett 61: 195–200

    Google Scholar 

  • Mithöfer K, Sandy MS, Smith MT, Di Lonte D (1992) Mitochondrial poisons cause depletion of reduced glutatione in isolated hepatocytes. Arch Biochem Biophys 295: 132–136

    Google Scholar 

  • Mizukawa K, McGeer EG, McGeer PL (1993) Autoradiographic study on dopamine uptake sites and their correlation with dopamine levels and their striata from patients with Parkinson's disease, Alzheimer's disease, and neurologically normal controls. Mol Chem Neuropathol 18: 133–144

    Google Scholar 

  • Mochizuki H, Nakamura N, Nishi K, Mizuno Y (1994) Apoptosis is induced by 1-methyl-4-phenylpyridinium (MPP+) in ventral mesencephalic-striatal co-culture in rat. Neurosci Lett 170: 191–194

    Google Scholar 

  • Monteiro HP, Winterbourn CC (1989) 6-Hydroxydopamine releases iron from ferritin and promotes ferritin-dependent lipid peroxidation. Biochem Pharmacol 38: 4177–4182

    Google Scholar 

  • Moratalla R, Quinn B, DeLanney LE, Irwin I, Langston JW (1992) Differential vulnerability of primate caudate-putamen and striosome-matrix dopamine systems to the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 89: 3859–3863

    Google Scholar 

  • Morgan ME, Gibb JW (1980) Short-term and long-term effects of methamphetamine on biogenic amine metabolism in extra-striatal dopaminergic nuclei. Neuropharmacology 19: 989–995

    Google Scholar 

  • Naoi M, Maruyama W, Niwa T, Nagatsu T (1994) Novel toxins and Parkinson's disease: N-methylation and oxidation as metabolic bioactivation of neurotoxin. J Neural Transm [Suppl] 41: 197–205

    Google Scholar 

  • Naoi M, Maruyama W, Dostert P, Nakahara D, Takahashi T, Nagatsu T (1995a) Metabolic bioactivation of endogenous isoquinolines as dopaminergic neurotoxins to elicit Parkinson's disease. In: Hanin I, Yoshida M, Fisher A (eds) Alzheimer's and Parkinson's disease. Recent development. Plenum Press, New York, pp 553–559

    Google Scholar 

  • Naoi M, Maruyama W, Zhang JH, Takahashi T, Deng Y, Dostert P (1995b) Enzymatic oxidation of the dopaminergic neurotoxin, 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, into 1,2 (N)-dimethyl-6,7-dihydroxyisoquinolinium ion. Life Sci 57: 1061–1066

    Google Scholar 

  • Naoi M, Maruyama W, Dostert P, Hashizume Y, Nakahara D, Takahashi T, Ota M (1996) Dopamine-derived endogenous 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, N-methyl-(R)-salsolinol, induced parkinsonism in rat: biochemical, pathological and behavioral studies. Brain Res 709: 285–295

    Google Scholar 

  • Nash JF, Yamamoto BK (1992) Methamphetamine neurotoxicity and striatal glutamate release — comparison to 3,4-methylenedioxymethamphetamine. Brain Res 581: 237–243

    Google Scholar 

  • Neafsey EJ, Drucker G, Raikoff K, Collins MA (1989) Striatal dopaminergic toxicity following intranigral injection in rats of 2-methyl-norharman, a β-carbolinium analog of N-methyl-4-phenylpyridinium ion (MPP+). Neurosci Lett 105: 344–349

    Google Scholar 

  • Niwa T, Takeda N, Kaneda N, Hashizume Y, Nagatsu T (1987) Presence of tetra-hydroisoquinoline and 2-methyl-tetrahydroquinoline in parkinsonian and normal human brains. Biochem Biophys Res Commun 144: 1084–1089

    Google Scholar 

  • Nwanze E, Souverbie F, Jonsson G, Sundström E (1995) Regional biotransformation of MPTP in the CNS of rodents and its relation to neurotoxicity. Neurotoxicology 16: 469–477

    Google Scholar 

  • Obata T, Chiueh CC (1992) In vivo trapping of hydroxyl free radicals in the striatum utilizing intracranial microdialysis perfusion of salicylate: effects of MPTP, MPDP+, and MPP+. J Neural Transm [Gen Sect] 89: 139–145

    Google Scholar 

  • O'Dell SJ, Weihmuller FB, Marshall JF (1991) Multiple methamphetamine injections induce marked inreases in extracellular striatal dopamine which correlate with subsequent neurotoxicity. Brain Res 564: 256–260

    Google Scholar 

  • Oestreicher E, Sengstock GJ, Riederer P, Olanow CW, Dunn AJ, Arendash GW (1994) Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study. Brain Res 660: 8–18

    Google Scholar 

  • Ohmori T, Koyama T, Muraki A, Yamashita I (1993) Competitive and noncompetitive N-methyl-D-aspartate antagonists protect dopaminergic and serotonergic neurotoxicity produced by methamphetamine in various brain regions. J Neural Transm [Gen Sect] 92: 97–106

    Google Scholar 

  • Ohta S, Kohno M, Makino Y, Tachikawa O, Hirobe M (1987) Tetrahydroisoquinoline and 1-methyl-tetrahydroisoquinoline are present in the human brain: relation to Parkinson's disease. Biomed Res 8: 453–456

    Google Scholar 

  • Oishi T, Hasegawa E, Murai Y (1991) Sulfhydryl drugs reduce neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the mouse. J Neural Transm [P-D Sect] 6: 45–52

    Google Scholar 

  • Olanow CW (1993) A radical hypothesis for neurodegeneration. TINS 16: 439–444

    Google Scholar 

  • Otto D, Unsicker K (1990) Basic FGF reserves chemical and morphological deficits in thenigostriatal system of MPTP-treated mice. J Neurosci 10: 1912–1921

    Google Scholar 

  • Parkinson J (1817) Essay on the shaking palsy. Sherwood, Neely and Jones, London

    Google Scholar 

  • Paulus W, Jellinger K (1991) The neuropathologic basis of different clinical subgroups of Parkinson's disease. J Neuropathol Exp Neurol 50: 743–755

    Google Scholar 

  • Pérez-Otaño I, Herrero MT, Oset C, De Ceballos ML, Luquin MR, Obeso JA, Del Río (1991) Extensive loss of brain dopamine and serotonin induced by chronic administration of MPTP in the marmoset. Brain Res 567: 127–132

    Google Scholar 

  • Perumal AS, Gopal VB, Tordzro K, Cooper TB, Cadet JL (1992) Vitamin E attenuates the toxic effects of 6-hydroxydopamine of free radical scavenging systems in rat brain. Brain Res Bull 29: 699–701

    Google Scholar 

  • Pifl C, Schingnitz G, Hornykiewicz O (1988) The neurotoxin MPTP does not reproduce in the rhesus monkey the interregional pattern of striatal dopamine loss typical of human idiopathic Parkinsons' disease. Neurosci Lett 92: 228–233

    Google Scholar 

  • Pifl C, Bertel O, Schingnitz G, Hornykiewicz O (1990) Extrastriatal dopamine in symptomatic and asymptomatic rhesus monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurochem Int 17: 263–270

    Google Scholar 

  • Pifl CH, Schingnitz G, Hornykiewicz O (1991) Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on the regional distribution of brain monoamines in the rhesus monkey. Neurosci 44: 591–605

    Google Scholar 

  • Porter CC, Totara J, Stone CA (1963) Effect of 6-hydroxydopamine and some other compounds on the concentration of norepinephrine in the hearts of mice. J Pharmacol Exp Ther 140: 308–316

    Google Scholar 

  • Przedborski S, Jackson-Lewis V, Muthane U, Jiang H, Ferreira M, Naini AB, Fahn S (1993) Chronic levodopa administration alters cerebral mitochondrial respiratory chain activity. Ann Neurol 34: 715–723

    Google Scholar 

  • Przuntek H, Russ H, Henning K, Pindur U (1985) The protective effect of 1-tert-butyl-4,4-diphenylpiperidine against the nigrostriatal neurodegeneration caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Life Sci 37: 1195–1200

    Google Scholar 

  • Rausch WD, Hirata Y, Nagatsu T, Riederer P, Jellinger K (1988) Human brain tyrosine hydroxylase: in vitro effects of iron and phosphorylating agents in the CNS of controls, Parkinson's disease and schizophrenia. J Neurochem 50: 202–228

    Google Scholar 

  • Rausch W-D, Abdel-mohsen M, Koutsilieri E, Chan WW, Bringmann G (1995) Studies of the potentially endogenous toxin TaClo (1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline) in neuronal and glial cell cultures. J Neural Transm [Suppl] 46: 255–263

    Google Scholar 

  • Reichmann H, Lestienne P, Jellinger K, Riederer P (1993) Parkinson's disease and the electron transport chain in post mortem brain. In: Narabayashi H, Nagatsu T, Yanagisawa N, Mizuno Y (eds) Parkinson's disease: from basic research to treatment. Raven, New York, pp 297–299 (Adv Neurol 60)

    Google Scholar 

  • Reynolds GP, Garrett NJ (1986) Striatal dopamine and homovanillic acid in Huntington's disease. J Neural Transm 65: 151–155

    Google Scholar 

  • Riachi NJ, Harik SI (1988) Strain differences in systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity in mice correlate best with monoamine oxidase activity at the blood-brain barrier. Life Sci 42: 2359–2363

    Google Scholar 

  • Ricaurte GA, Schuster CR, Seiden LS (1980) Long-term effects of repeated methamphet-amine administration on dopamine and serotonin neurons in the rat brain: a regional study. Brain Res 193: 153–163

    Google Scholar 

  • Ricaurte GA, Guillery RW, Seiden LS, Schuster CR, Moore RY (1982) Dopamine nerve terminal degeneration produced by high doses of methamphetamine in the rat brain. Brain Res 235: 93–103

    Google Scholar 

  • Ricaurte GA, Langston JW, Delanney LE, Irwin I, Peroutka SJ, Forno LS (1986) Fate of nigrostriatal neurons in young mature mice given 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: a neurochemical and morphological reassessment. Brain Res 376: 117–124

    Google Scholar 

  • Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in Parkinson's disease: a detailed study of influential factors in human brain amine analysis. J Neural Transm 38: 277–301

    Google Scholar 

  • Riederer P, Rausch WD, Birkmayer W, Jellinger K, Seemann D (1978) CNS modulation of adrenal tyrosine hydroxylase in Parkinson's disease and metabolic encephalopathies. J Neural Transm [Suppl] 14: 121–132

    Google Scholar 

  • Riederer P, Sofic E, Konradi C (1986) Neurobiochemische Aspekte zur Progression der Parkinson-Krankheit: Post-mortem-Befunde und MPTP-Modell. In: Fischer PA (Hrsg) Spätsyndrome der Parkinson-Krankheit. Editiones 〈Roche〉, Basel, pp 37–49

    Google Scholar 

  • Riederer P, Sofic E, Heuschneider G, Strolin-Benedetti M, Dostert P (1988) Secondary (toxic) Parkinsonism as model of Parkinson's disease. Funct Neurol 3: 449–457

    Google Scholar 

  • Riederer P, Sofic E, Rausch WD, Hebenstreit G, Bruinvels J (1989a) Pathobiochemistry of the extrapyramidal system: a “short note” review. In: Przuntek H, Riederer P (eds) Early diagnosis and preventive therapy in Parkinson's disease. Springer, Wien New York, pp 139–149 (Key Topics in Brain Research)

    Google Scholar 

  • Riederer P, Sofie E, Rausch W-D, Schmidt B, Reynolds GP, Jellinger K, Youdim MBH (1989b) Transition metals, ferritin, glutathione, and ascorbic acid in Parkinsonian brains. J Neurochem 52: 515–520

    Google Scholar 

  • Rios C, Tapia R (1987) Changes in lipid peroxidation induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium in mouse brain homogenates. Neurosci Lett 77: 321–326

    Google Scholar 

  • Rose S, Nomoto M, Jackson EA, Gibb WRG, Jenner P, Marsden CD (1990) 1-Methyl-4-(2′-methylphenyl)-1,2,3,6-tetrahydropyridine (2′-methyl-MPTP) is less neurotoxic than MPTP in the common marmoset. Eur J Pharmacol 181: 97–103

    Google Scholar 

  • Rose S, Nomoto M, Jackson EA, Gibb WRG, Jaehnig P, Jenner P, Marsden CD (1993) Age-related effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment of common marmosets. Eur J Pharmacol 230: 177–185

    Google Scholar 

  • Rossetti ZI, Sotgiu A, Sharp DE, Hadjiconstantinou M, Neff NH (1988) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and free radicals in vitro. Biochem Pharmacol 37: 4573–4574

    Google Scholar 

  • Russ H, Mihatsch W, Gerlach M, Riederer P, Przuntek H (1991) Neurochemical and behavioural features induced by chronic low dose treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the common marmoset: implications for Parkinson's disease? Neurosci Lett 123: 115–118

    Google Scholar 

  • Sachs CH, Jonsson G (1975) Mechanism of action of 6-hydroxydopamine. Pharmacology 24: 1–8

    Google Scholar 

  • Saggu H, Cooksey J, Dexter D, Wells FR, Lees A, Jenner P, Marsden CD (1989) A selective increase in particulate Superoxide dismutase activity in Parkinsonian substantia nigra. J Neurochem 53: 692–697

    Google Scholar 

  • Sanberg PR, Bunsey MD, Giordano M, Norman AB (1988) The catalepsy test: its ups and downs. Behav Neurosci 102: 748–759

    Google Scholar 

  • Sanchez-Ramos JR, Övervik E, Ames BN (1994) A marker of oxyradical-mediated DNA damage (8-hydroxy-2′deoxyguanosine) is increased in nigro-striatum of Parkinson's disease brain. Neurodegeneration 3: 197–204

    Google Scholar 

  • Santiago M, Granero L, Machado A, Cano J (1995) Complex I inhibitor effect on the nigral and striatal release of dopamine in the presence and absence of nomifensine. Eur J Pharmacol 280: 251–256

    Google Scholar 

  • Schallert T, Teitelbaum P (1981) Haloperidol, catalepsy, and equilibrating functions in the rat: an antagonistic interaction of clinging and labyrinthine righting reactions. Physiol Behav 27: 1077–1083

    Google Scholar 

  • Schapira AHV (1994) Review: Evidence for mitochondrial dysfunction in Parkinson's disease — a critical appraisal. Mov Disord 9: 125–138

    Google Scholar 

  • Schmidt CJ, Ritter JK, Sonsalla P, Hansen GR, Gibb JW (1985) The role of dopamine in the neurotoxic effects of methamphetamine. J Pharmacol Exp Ther 233: 539–544

    Google Scholar 

  • Schmidt WJ, Bubser M, Hauber W (1992) Behavioural pharmacology of glutamate in the basal ganglia. J Neural Transm [Suppl] 38: 65–89

    Google Scholar 

  • Schulz JB, Henshaw DR, Matthews PT, Beal MF (1995a) Coenzyme Q(10) and nicotineamide and a free radical spin trap protect against MPTP neurotoxicity. Exp Neurol 132: 279–283

    Google Scholar 

  • Schulz JB, Matthews RT, Muqit MMK, Browne SE, Beal MF (1995b) Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem 64: 936–939

    Google Scholar 

  • Seiden LS, Vosmer G (1984) Formation of 6-hydroxydopamine in caudate nucleus of the rat brain after single large dose of methamphetamine. Pharmacol Biochem Behav 21: 29–31

    Google Scholar 

  • Seiden LS, Fischman MW, Schuster CR (1975) Long-term methamphetamine induced changes in brain catecholamines in tolerant rhesus monkeys. Drug Alcohol Depend 1: 215–219

    Google Scholar 

  • Sengstock GW, Olanow CW, Dunnet AJ, Arendash GW (1992) Iron induces degeneration of nigrostriatal neurons. Brain Res Bull 28: 645–649

    Google Scholar 

  • Sengstock GJ, Olanow CW, Menzies RA, Dunn AJ, Arendash GW (1993) Infusion of iron into the rat substantia nigra: nigral pathology and dose-dependent loss of striatal dopaminergic markers. J Neurosci Res 35: 76–82

    Google Scholar 

  • Sengstock GJ, Olanow CW, Dunn AJ, Barone S Jr, Arendash GW (1994) Progressive changes in striatal dopaminergic markers, nigral volume, and rotational behavior following iron infusion into rat substantia nigra. Exp Neurol 130: 82–94

    Google Scholar 

  • Seniuk NA, Tatton WG, Greenwood CE (1990) Dose-dependent destruction of the coeruleus-cortical and nigro-striatal projections by MPTP. Brain Res 527: 7–20

    Google Scholar 

  • Siesjö BK (1990) Calcium in the brain under physiological and pathological conditions. Eur Neurol [Suppl 2] 30: 3–9

    Google Scholar 

  • Sjöquist B, Eriksson A, Winblad B (1982) Salsolinol and catecholamines in human brain and their relation to alcoholism. Prog Clin Biol Res 80: 57–67

    Google Scholar 

  • Smith GP, Young RC (1974) A new experimental model of hypokinesia. Adv Neurol 5: 427–432

    Google Scholar 

  • Smith RD, Zhang Z, Kurlan R, McDermott M, Gash DM (1993) Developing a stable bilateral model of Parkinsonism in rhesus monkeys. Neurosci 52: 7–16

    Google Scholar 

  • Snyder SH, D'Amato RJ (1985) Predicting Parkinson's disease. Nature 317: 198–199

    Google Scholar 

  • Sofic E, Riederer P, Heinsen H, Beckman H, Reynolds GP, Hebenstreit G, Youdim MBH (1988) Increased iron(III) and total iron content in post mortem substantia nigra of Parkinsonian brain. J Neural Transm 74: 199–205

    Google Scholar 

  • Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson's disease. Neurosci Lett 142: 128–130

    Google Scholar 

  • Sonsalla PK, Nicklas WJ, Heikkila RE (1989) Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity. Science 243: 398–400

    Google Scholar 

  • Sonsalla PK, Riordan DE, Heikkila RE (1991) Competitive and noncompetitive antagonists at N-methyl-D-aspartate receptors protect against methamphetamine-induced dopaminergic damage in mice. J Pharmacol Exp Ther 256: 506–512

    Google Scholar 

  • Sonsalla PK, Zeevalk GD, Manzino L, Giovanni A, Nicklas WJ (1992) MK-801 fails to protect against the dopaminergic neuropathology produced by systemic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice or intranigral 1-methyl-4-phenylpyridinium in rats. J Neurochem 58: 1979–1982

    Google Scholar 

  • Sontag K-H, Heim C, Sontag TA, God R, Reichmann H, Wesemann W, Rausch W-D, Riederer P, Bringmann G (1995) Long-term behavioural effects of TaClo (1-trichloro-methyl-1,2,3,4-tetrahydro-β-carboline) after subchronic treatment in rats. J Neural Transm [Suppl] 46: 283–289

    Google Scholar 

  • Starr MS (1995) Antiparkinsonian actions of glutamate antagonists — alone and with L-DOPA: a review of evidence and suggestions for possible mechanisms. J Neural Transm [P-D Sect] 10: 141–185

    Google Scholar 

  • Stern Y (1990) MPTP-induced Parkinsonism. Prog Neurobiol 34: 107–114

    Google Scholar 

  • Storey E, Hyman BT, Jenkins B, Brouillet E, Miller JM, Rosen BR, Beal MF (1992) 1-Methyl-4-phenylpyridinium produces excitotoxic lesions in rat striatum as a result of impairment of oxidative metabolism. J Neurochem 58: 1975–1978

    Google Scholar 

  • Sullivan JP, Tipton KF (1992) Interactions of the neurotoxin MPTP and its demethylated derivative (PTP) with monoamine oxidase-B. Neurochem Res 8: 791–796

    Google Scholar 

  • Sundstöm E, Fredriksson A, Archer T (1990) Chronic neurochemical and behavioral changes in MPTP-lesioned C57BL/6 mice: a model for Parkinson's disease. Brain Res 528: 181–188

    Google Scholar 

  • Takahashi T, Deng Y, Maruyama W, Dostert P, Kawai M, Naoi M (1994) Uptake of a neurotoxin-candidate, (R)-1,2,-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline into human dopaminergic neuroblastoma SH-SY5Y cells by dopamine transport system. J Neural Transm [Gen Sect] 98: 107–118

    Google Scholar 

  • Tanner CM (1989) The role of environmental toxins in the etiology of Parkinson's disease. TINS 12: 49–54

    Google Scholar 

  • Taylor MD, nde Ceballos ML, Rose S, Chong PN, Jenner P, Marsden CD (1991) Neuropeptide levels in the basal ganglia of aged common marmosets following prolonged treatment with MPTP. J Neural Transm [P-D Sect] 3: 99–108

    Google Scholar 

  • Ter Horst GJ, Knigge MF, Van der Wal A (1992) Neurochemical lesioning in the rat brain with iontophoretic injection of the 1-methyl-4-phenyl-pyridinium ion (MPP+). Neurosci Lett 141: 203–207

    Google Scholar 

  • Temlett JA, Landsberg JP, Watt F, Grime GW (1994) Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian african green monkey: evidence from proton microprobe elemental microanalysis. J Neurochem 62: 134–146

    Google Scholar 

  • Testa B, Naylor R, Costall B, Jenner P, Marsden CD (1985) Does an endogenous methylpyridinium analogue cause Parkinson's disease? J Pharm Pharmacol 37: 679–680

    Google Scholar 

  • Thoenen H, Tanzer JP (1968) Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Naunyn Schmiedebergs Arch Pharmacol 261: 271–288

    Google Scholar 

  • Tipton KF, Singer TP (1993) Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds. J Neurochem 61: 1191–1206

    Google Scholar 

  • Tsukahara T, Takeda M, Shimohama S, Ohara O, Hashimoto N (1995) Effects of brain-derived neurotrophic factor on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in monkeys. Neurosurg 37: 733–739

    Google Scholar 

  • Turrens JF, Boveris A (1980) Generation of Superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J 19: 421–427

    Google Scholar 

  • Turski L, Bressler K, Rettig K-J, Löschmann P-A, Wachtel H (1991) Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-d-aspartate antagonists. Nature 349: 414–418

    Google Scholar 

  • Ueki A, Chong N, Albanese A, Rose S, Chivers JK, Jenner P, Marsden CD (1989) Further treatment with MPTP does not produce Parkinsonism in marmosets showing behavioural recovery from motor deficits induced by an earlier exposure to the toxin. Neuropharmacology 28: 1089–1099

    Google Scholar 

  • Ungerstedt U (1968) 6-Hydroxydopamine-induced degeneration of central monoamine neurons. Eur J Pharmacol 5: 107–110

    Google Scholar 

  • Ungerstedt U, Arbuthnott G (1970) Quantitative recording of rotational behavior in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res 24: 485–493

    Google Scholar 

  • Uretsky NJ, Iversen LL (1970) Effects of 6-hydroxydopamine on catecholamine containing neurons in the rat brain. J Neurochem 17: 269–278

    Google Scholar 

  • Vaux DL (1993) Toward an understanding of the molecular mechanism of physiological cell death. Proc Natl Acad Sci USA 90: 786–789

    Google Scholar 

  • Wachtel H, Kunow M, Löschmann P-A (1992) NBQX (6-nitro-sulfamoyl-benzo-quinoxaline-dione) and CPP (3-carboxy-piperazin-propyl phosphonic acid) potentiate dopamine agonist induced rotations in substantia nigra lesioned rats. Neurosci Lett 142: 179–182

    Google Scholar 

  • Wagner GC, Seiden LS, Schuster CR (1979) Methamphetamine-induced changes in brain catecholamines in rats and guinea pigs. Drug Alcohol Depend 4: 435–438

    Google Scholar 

  • Wagner GC, Ricaurte GA, Seiden LS, Schuster CR, Miller RJ, Westley J (1980) Long-lasting depletions of striatal dopamine and loss of dopamine uptake sites following repeated administration of methamphetamine. Brain Res 181: 151–160

    Google Scholar 

  • Wang Y, Hamburger M, Cheng CHK, Costall B, Naylor RJ, Jenner P, Hostettman K (1991) Neurotoxic sesquiterpenoids from the yellow star thistle Centaurea solstitialis L. (Asteraceae). Helv Chim Acta 74: 117–123

    Google Scholar 

  • Weihmuller FB, Hadjiconstantinou M, Bruno JP (1989) Dissociation between biochemical and behavioral recovery in MPTP-treated mice. Pharmacol Biochem Behav 34: 113–117

    Google Scholar 

  • Wesemann W, Blaschke S, Clement H-W, Grote CHR, Weiner N, Kolasiewicz W, Sontag KH (1993) Iron and neurotoxin intoxication: comparative in vitro and in vivo studies. In: Riederer P, Youdim MBH (eds) Iron in central nervous system disorders. Springer, Wien New York, pp 79–86 (Key Topics in Brain Research)

    Google Scholar 

  • Wesemann W, Blaschke S, Solbach M, Grote C, Clement H-W, Riederer P (1994) Intranigral injected iron progressively reduces striatal dopamine metabolism. J Neural Transm [P-D Sect] 8: 209–214

    Google Scholar 

  • Wüllner U, Kupsch A, Arnold G, Renner P, Scheid C, Scheid R, Oertel W, Klockgether T (1992) The competitive NMDA antagonist CGP40.116 enhances L-DOPA response in MPTP-treated marmosets. Neuropharmacology 31: 713–715

    Google Scholar 

  • Zang LY, Misra HP (1992) EPR kinetic studies of Superoxide radicals generated during the autoxidation of 1-methyl-4-phenyl-2,3-dihydropyridinium, a bioactivated intermediate of Parkinsonian-inducing neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Biol Chem 267: 23601–23608

    Google Scholar 

  • Zetterström T, Sharp T, Collin AK, Ungerstedt U (1988) In vivo measurement of extracellular DA and DOPAC in rat striatum after various DA-releasing drugs: implications for the origin of extracellular DOPAC. Eur J Pharmacol 148: 327–334

    Google Scholar 

  • Zigmond MJ, Stricker EM (1989) Animal models of Parkinsonism using selective neuro-toxins: clinical and basic implications. In: Smythies JR, Bradley RJ (eds) International review of neurobiology, vol 31. Academic Press, San Diego New York Berkely Boston London Sydney Tokyo Toronto, pp 10–79

    Google Scholar 

  • Zuddas A, Vaglini F, Fornai F, Corsini GU (1992) Selective lesion of the nigrostriatal dopaminergic pathway by MPTP and acetaldehyde or diethyldithiocarbamate. Neurochem Int [Suppl] 20: 287S-293S

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerlach, M., Riederer, P. Animal models of Parkinson's disease: An empirical comparison with the phenomenology of the disease in man. J. Neural Transmission 103, 987–1041 (1996). https://doi.org/10.1007/BF01291788

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01291788

Keywords

Navigation