Skip to main content
Log in

Monoamine neurons in aging and Alzheimer's disease

  • Full Papers
  • Published:
Journal of Neural Transmission / General Section JNT Aims and scope Submit manuscript

Summary

The integrity of dopaminergic, noradrenergic and serotonergic neurons in normal aging and Alzheimer's disease is reviewed. Loss of dopaminergic innervation of the neostriatum is a prominent age-related change, which corresponds with the age-related loss of dopaminergic cell bodies from the substantia nigra. This change is regionally specific, since dopaminergic innervation of the neocortex and the neostriatum are not affected. Altough there is an age-related loss of noradrenergic cell bodies from the locus coeruleus, most studies indicate normal concentrations of noradrenaline in target areas. There is also evidence for reduced serotonergic innervation of the neocortex and, less convincingly, the neostriatum. Alzheimer's disease is associated with more pronounced noradrenergic and serotonergic denervation but, unlike normal aging, dopaminergic innervation of neostriatum is intact; although dopamine neurons are probably dysfunctional in this region. Studies relating neuronal markers to the symptomatology of Alzheimer's disease indicate that dysfunction of monoamine neurons is more closely linked to non-cognitive than to cognitive changes in behavior. In addition, monoaminergic therapies have been successful in ameliorating affective and psychotic behaviors along with sleep disturbances in both Alzheimer's disease and senescence. It seems likely that monoaminergic therapies (developed as we learn more about alterations in dopamine, noradrenaline and serotonin) will continue to be necessary to treat such behavioral disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adolfsson R, Gottfries C-G, Roos B E, Winblad B (1979) Post-mortem distribution of dopamine and homovanillic acid in human brain, variations related to age, and a review of the literature. J Neural Transm 45: 81–105

    Google Scholar 

  • Adolfsson R, Gottfries CG, Roos BE, Winblad B (1979) Changes in the brain catecholamines of patients with dementia of the Alzheimer type. Br J Psychiatry 135: 216–223

    Google Scholar 

  • Adolfsson R, Gottfries CG, Oreland L, Wiberg A, Winblad B (1980) Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci 27: 1029–1034

    Google Scholar 

  • Alexopoulos GS, Liberman KW, Young RC (1984) Platelet MAO activity in primary degenerative dementia. Am J Psychiatry 141: 97–99

    Google Scholar 

  • Aizenman E, White WF, Loring RH, Rosenberg PA (1990) A 3,4-dihydroxyphenylalanine oxidation product is a non-N-methyl-D-aspartate glutamatergic agonist in rat cortical neurons. Neurosci Lett 116: 168–171

    Google Scholar 

  • Allard P, Marcusson JO (1989) Age-correlated loss of dopamine uptake sites labeled with [3 H]GBR-12935 in human putamen. Neurobiol Aging 10: 661–664

    Google Scholar 

  • Barnes R, Veitch R, Okimoto J (1982) Efficacy of antipsychotic medications in behaviorally disturbed dementia patients. Am J Psychiatry 139: 1170–1175

    Google Scholar 

  • Beaudet A, Descarries L (1984) Fine structure of monoamine axon terminals in cerebral cortex. In: Descarries L, Reader TR, Jaspar HH (eds) Monoamine innervation of cerebral cortex. Alan R Liss, New York, pp 77–93

    Google Scholar 

  • Blennow K, Wallin A, Gottfries CG, Lekman A, Karlss I, Skoo I, Svennerholm L (1991) Significance of decreased lumbar CSF levels of HVA and 5-HIAA in Alzheimer's disease. Neurobiol Aging 13: 107–113

    Google Scholar 

  • Brion JP, Cheetham ME, Couck AM, Flament-Durand J, Hanger DP, Anderton BH (1990) Characterization of a partial cDNA specific for the high molecular weight microtubule-associated protein MAP2 that encodes epitopes shared with paired helical filaments of Alzheimer's disease. Dementia 1: 304–315

    Google Scholar 

  • Brody H (1976) An examination of cerebral cortex and brainstem aging. In: Terry RD, Gershon S (eds) Neurobiology of aging. Raven Press, New York, pp 177–181

    Google Scholar 

  • Byerley WH, Risch SC (1985) Depression and serotonin metabolism: rational for neurotransmitter precursor treatment. J Clin Psychopharmacol 5: 191–206

    Google Scholar 

  • Calne DB, Langston JW (1983) Aetiology of Parkinson's disease. Lancet ii: 1457–1459

    Google Scholar 

  • Carlsson A, Winblad B (1976) Influence of age and time interval between death and autopsy on dopamine and 3-methoxytyramine levels in human basal ganglia. J Neural Transm 38: 271–276

    Google Scholar 

  • Carlsson A, Adolfsson R, Aquilonius SM, Gottfries CG, Oreland L, Svennerholm L, Winblad B (1980) Biogenic amines in human brain in normal aging, senile dementia, and chronic alcoholism. Adv Biochem Psychopharmacol 23: 295–304

    Google Scholar 

  • Cross AJ, Crow TJ, Johnson JA, Joseph MH, Perry EK, Perry RH, Blessed G, Tomlinson BE (1983) Monoamine metabolism in senile dementia of Alzheimer type. J Neurol Sci 60: 383–392

    Google Scholar 

  • Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Markakis D (1984) Striatal dopamine receptors in Alzheimer-type dementia. Neurosci Lett 52: 1–6

    Google Scholar 

  • Cummings JL, Miller B, Hill MA, Neshkes R (1987) Neuropsychiatric aspects of multiinfarct dementia and dementia of the Alzheimer type. Arch Neurol 44: 389–393

    Google Scholar 

  • D'Amato RJ, Zweig RM, Whitehouse PJ, Wenk GC, Singer HS, Mayeux R, Price DL, Snyder SH (1987) Aminergic systems in Alzheimer's disease and Parkinson's disease. Ann Neurol 22: 229–236

    Google Scholar 

  • DeKeyser J, De Backer JP, Vauquelin G, Ebinger G (1990) The effect of aging on the D 1 dopamine receptors in human frontal cortex. Brain Res 528: 308–310

    Google Scholar 

  • DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex in Alzheimer's disease: correlation with cognitive severity. Ann Neurol 27: 457–464

    Google Scholar 

  • DeKosky ST, Palmer AM (1993) Neurochemistry of aging. In: Albert ML, Knoefel J (eds) Clinical neurology of aging. Oxford University Press, New York (in press)

    Google Scholar 

  • DeKosky ST, Harbaugh RE, Schmitt FA, Bakay RAE, Chiu HC, Knopman DS, Reeder TM, Shetter AG, Senter HJ, Marksbery WR, Intraventricular Bethanecol Study Group (1992) Cortical biopsy in Alzheimer's disease: diagnostic accuracy and neurochemical, neuropathological and cognitive correlations. Ann Neurol 32: 625–632

    Google Scholar 

  • Devanand DP, Sackeim HA, Brown RP, Mayeux R (1989) A pilot study of haloperidol treatment of psychosis and behavioral disturbance in Alzheimer's disease. Arch Neurol 46: 854–857

    Google Scholar 

  • Dexter DT, Carter CL, Wells FR, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD (1990) Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem 520: 381–389

    Google Scholar 

  • Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Hebert LE, Hennekens CH, Taylor JO (1989) Prevelence of Alzheimer's disease in a community population of older persons. J Am Med Assoc 262: 2551–2556

    Google Scholar 

  • Esch FS, Helm PS, Beattie EC, Blancher RW, Culwell AR, Oltersdorf T, McClure D, Ward PJ (1990) Cleavage of amyloid β peptide during constitutive processing of its precursor. Science 248: 1122–1124

    Google Scholar 

  • Finch CE (1980) The relationship of aging changes in the basal ganglia to manifestations of Huntington's chorea. Ann Neurol 7: 406–411

    Google Scholar 

  • Foote SL, Aston-Jones G, Bloom FE (1980) Impulse activity of locus coeruleus neurons in awake rats and monkeys as a function of sensory stimulation and arousal. Proc Natl Acad Sci USA 77: 3033–3037

    Google Scholar 

  • Fowler CJ, Wiber A, Oreland L, Marcusson J, Winblad B (1980) The effect of age on the activity and molecular properties of human brain. J Neural Transm 49: 1–20

    Google Scholar 

  • Francis PT, Palmer AM, Sims NR, Bowen DM, Davison AN, Esiri MM, Neary D, Snowden JS, Wilcock GK (1985) Neurochemical studies in early-onset Alzheimer's disease: possible influence of treatment. N Engl J Med 313: 7–11

    Google Scholar 

  • Giorguieff MF, LeHoc'k MC, Glowinski J, Besson MJ (1977) Involvement of cholinergic presynaptic receptors in nicotinic and muscarinic types in the control of the spontaneous release of dopamine from striatal dopaminergic terminals. J Pharmacol Exp Ther 200: 535–544

    Google Scholar 

  • Goate A, Charteir-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Gioffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance M, Roses A, Williamson R, Rossor M, Owen M, Hardy JA (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349: 704–706

    Google Scholar 

  • Gottfries CG, Gottfries I, Roos BE (1969) Homovanillic acid and 5-hydroxyindoleacetic acid in the cerebrospinal fluid of patients with senile dementia, presenile dementia and Parkinsonism. J Neurochem 16: 1341–1345

    Google Scholar 

  • Gottfries CG, Gottfries I, Roos BE (1970) Homovanillic acid and 5-hydroxyindoleacetic acid in cerebrospinal fluid related to rated mental impairment in senile and presenile dementia (Alzheimer's disease). Acta Psychiatr Scand 49: 257–263

    Google Scholar 

  • Gottfries CG, Adolfsson R, Aquilonius SM, Carlsson A, Eckernas SA, Nordberg L, Oreland L, Svennerholm L, Wiberg A, Winblad B (1983) Biochemical changes in dementia disorders of Alzheimer type (AD/SDAT). Neurobiol Aging 4: 261–271

    Google Scholar 

  • Hajimohammadreza I, Brammer M (1990) Brain membrane fluidity and lipid peroxidation in Alzheimer's disease. Neurosci Lett 112: 333–337

    Google Scholar 

  • Hardy A, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer's disease. Trends Pharmacol Sci 12: 383–388

    Google Scholar 

  • Hardy J, Dodd PR (1983) Metabolic and functional studies on post-mortem human brain. Neurochem Int 5: 253–266

    Google Scholar 

  • Harman D (1984) Free radical theory of aging: the ‘free radical’ diseases. Age 7: 111–131

    Google Scholar 

  • Hales RE, Silver JM, Yudofsky SC (1990) Beta blocking agents and the treatment of aggression. In: Cummings JL, Biller BL (eds) Alzheimer's disease: treatment and long term management. Marcel Dekker, New York, pp 109–124

    Google Scholar 

  • Iversen LL, Rossor MN, Reynolds GP, Hills R, Roth M, Mountjoy CQ, Foote JH, Morrisson JH, Bloom FE (1984) Loss of dopamine-β-hydroxylase positive cells from locus coeruleus in senile dementia of Alzheimer type. Neurosci Lett 39: 95–100

    Google Scholar 

  • Kang J, Lemarie HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer's disease A 4 protein resembles a cell surface receptor. Nature 325: 733–736

    Google Scholar 

  • Khachaturian Z (1992) Editorial: the five-five, ten-ten plan of Alzheimer's disease. Neurobiol Aging 13: 197–198

    Google Scholar 

  • Kish SJ, Shannak K, Rajput A, Deck JHN, Hornykiewicz O (1992) Aging produces a specific pattern of striatal loss: implications for the etiology of idiopathic Parkinson's disease. J Neurochem 58: 642–648

    Google Scholar 

  • Koh J-Y, Yang LL, Cotman CW (1990) β-Amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res 533: 315–320

    Google Scholar 

  • Lazarus LW, Newton N, Cohler B, et al (1987) Frequency and presentation of depressive symptoms in patient with primary degenerative dementia. Am J Psychiatry 144: 41–45

    Google Scholar 

  • Lindvall O, Björklund A (1984) General organization of cortical monoamine systems. In: Descarries L, Reader TR, Jusper HH (eds) Monoamine innervation of cerebral cortex. Alan R Liss, New York, pp 9–40

    Google Scholar 

  • Lowenstein RJ, Weingartner H, Gillin JC, Kaye W, Ebert M, Mendelson W (1982) Disturbances of sleep and cognitive functioning in patients with dementia. Neurobiol Aging 3: 371–377

    Google Scholar 

  • Mann DMA (1988) Neuropathological and neurochemical aspect of Alzheimer's disease. In: Iversen LL, Iversen SD, Snyder SH (eds) Psychopharmacology of the aging nervous system. Plenum Press, New York, pp 1–67

    Google Scholar 

  • Mann DMA, Yates PO, Marcyniuk B (1984 a) Monoaminergic neurotransmitter systems in presenile Alzheimer's disease and in senile dementia of Alzheimer type, Clin Neuropathol 3: 199–205

    Google Scholar 

  • Mann DMA, Yates PO, Marcyniuk B (1984 b) Relationship between pigment accumulation and age in Alzheimer's. Acta Neuropathol (Berl) 63: 72–77

    Google Scholar 

  • Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE (1992) β-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulneable to excitotoxicity. J Neurosci 12(2): 376–389

    Google Scholar 

  • Mazziotta JC, Gilman S (1992) Clinical brain imaging: principles and applications. F A Davis, Philadelphia

    Google Scholar 

  • McGeer EG, McGeer PL (1976) Neurotransmitter metabolism in the aging brain. In: Terry RD, Gershon S (eds) Neurobiology of aging. Raven Press, New York, pp 389–404

    Google Scholar 

  • McGeer EG, McGeer PL (1981) Neurotransmitters in the aging brain. In: Thompson RHS, Davison AN (eds) The molecular basis of neuropathology. Igaku-Shoin, Tokyo, pp 631–648

    Google Scholar 

  • Morgan D, Marcusson JO, Nyberg P, Wester P, Winblad B, Gordon MN, Finch CE (1987) Divergent changes in D1 and D2 dopamine binding sites in human brain during aging. Neurobiol Aging 8: 195–201

    Google Scholar 

  • Neary D, Snowden JS, Bowen DM, Sims NR, Mann DMA, Yates PO, Davison AN (1986 a) Cerebral biopsy in the investigation of presenile dementia due to cerebral atrophy. J Neurol Neurosurg Psychiatry 49: 157–162

    Google Scholar 

  • Neary D, Snowden JS, Mann DMA, Bowen DM, Sims NR, Northen B, Yates PO, Davison AN (1986 b) Alzheimer's disease: a correlative study. J Neurol Neurosurg Psychiatry 49: 229–237

    Google Scholar 

  • Olney JM, Zorumski CF, Stewart GR, Price MT, Wang G, Labruyere J (1990) Excitotoxicity of L-DOPA and 6-OH-DOPA: implications for Parkinson's and Huntington's diseases. Exp Neurol 108: 269–272

    Google Scholar 

  • Palmer AM, Bowen DM (1985) 5-Hydroxyindoleacetic acid and homovanillic acid in the cerebrospinal fluid and caudate nucleus of histologically verified examples of Alzheimer's disease. Biochem Soc Trans 13: 167–168

    Google Scholar 

  • Palmer AM, Bowen DM (1991) Neurochemical approaches to cognitive disorders. In: Weingartner HJ, Lister RG (eds) Cognitive neuroscience. Oxford University Press, Oxford, pp 436–466

    Google Scholar 

  • Palmer AM, Sims NR, Bowen DM, Neary D, Palo J, Wikstrom J, Davison AN (1984) Monoamine metabolite concentrations in lumbar cerebrospinal fluid of patients with histologically verified Alzheimer's dementia. J Neurol Neurosurg Psychiatry 47: 481–484

    Google Scholar 

  • Palmer AM, Francis PT, Benton JS, Sims NR, Mann DMA, Neary D, Snowden JS, Bowen DM (1987 a) Presynaptic serotonergic dysfunction in patients with Alzheimer's disease. Brain Res 48: 8–15

    Google Scholar 

  • Palmer AM, Francis PT, Bowen DM, Benton JS, Neary D, Mann DMA, Snowden SJ (1987 b) Catecholaminergic neurons assessed ante-mortem in Alzheimer's disease. Brain Res 414: 365–375

    Google Scholar 

  • Palmer AM, Wilcock GK, Esiri MM, Francis PT, Bowen DM (1987 c) Monoaminergic innervation of the frontal and temporal lobes in Alzheimer's disease. Brain Res 401: 21–238

    Google Scholar 

  • Palmer AM, Lowe SL, Francis PT, Bowen DM (1988 a) Are biochemical studies of post-mortem human brain worthwhile? Biochem Soc Trans 16: 472–475

    Google Scholar 

  • Palmer AM, Stratmann GC, Procter AW, Bowen DM (1988 b) Possible neurotransmitter basis of behavioral changes in Alzheimer's disease. Ann Neurol 23: 616–620

    Google Scholar 

  • Palmer AM, Hutson PH, Lowe SL, Bowen DM (1989) Extracellular concentrations of aspartate and glutamate in rat neostriatum following chemical stimulation of frontal cortex. Exp Brain Res 75: 659–663

    Google Scholar 

  • Parkinson Study group (1989) Effect of deprenyl on the progression of disability in early Parkinson's disease. N Engl J Med 321: 1364–1371

    Google Scholar 

  • Pearce BR, Palmer AM, Bowen DM, Wilcock GK, Esiri MM, Davison AN (1984) Neurotransmitter dysfunction and atrophy of the caudate nucleus in Alzheimer's disease. Neurochem Pathol 2: 221–232

    Google Scholar 

  • Pearson RCA, Esiri MM, Hiorns RW, Wilcock GK, Powell TPS (1985) Anatomical correlates of the distribution of the pathological changes in the neocortex in Alzheimer's disease. Proc Natl Acad Sci (USA) 82: 4531–4534

    Google Scholar 

  • Perry EK, Blessed G, Tomlinson BE, Perry RH, Crow TJ, Cross AJ, Dockray GJ, Dimeline R, Arregui A (1981) Neurochemical activity in human temporal lobe related to aging and Alzheimer type changes. Neurobiol Aging 2: 251–256

    Google Scholar 

  • Petrie WM, Ban TA (1981) Propanolol in organic agitation. Lancet i: 324

    Google Scholar 

  • Petrie WM, Ban TA, Berney S (1982) Loxapine in psychogeriatrics: a placebo and standard controlled clinical investigation. J Clin Psychopharmacol 2: 122–126

    Google Scholar 

  • Prinz PN, Vitalino PP, Viriello MV, Bakan J, Raskind M, Peskind E, Gerber C (1982) Sleep, EEG and mental function changes in senile dementia of the Alzheimer type. Neurobiol Aging 3: 361–370

    Google Scholar 

  • Procter AW, Palmer AM, Francis PT, Lowe SL, Neary D, Murphy E, Doshi R, Bowen DM (1988) Evidence of glutamatergic denervation and possible altered metabolism in Alzheimer's disease. J Neurochem 50: 790–803

    Google Scholar 

  • Reding M, Haycox J, Blass J (1985) Depression in patients referred to a dementia clinic: a three year prospective study. Arch Neurol 42: 894–896

    Google Scholar 

  • Reifler BV, Larson E, Hanley R (1982) Coexistence of cognitive impairment and depression in geriatric outpatients. Am J Psychiatry 139: 623–626

    Google Scholar 

  • Reifler BV, Teri L, Raskind M, Veith R, Barnes R, White E, McLean P (1989) Double blind trial of imipramine in Alzheimer's disease patients with and without depression. Am J Psychiatry 146: 45–49

    Google Scholar 

  • Reinikainen KJ, Paljarvi L, Halonen T, Malminen O, Kosma V-M, Laakso M, Riekkinen PJ (1988) Dopaminergic system and monoamine oxidase-B activity in Alzheimer's disease. Neurobiol Aging 9: 245–252

    Google Scholar 

  • Reinikainen KJ, Paljarvi L, Huuskonen M, Soininen H, Laakso M, Riekkinen PJ (1988) A post mortem study of noradrenergic, serotonergic and GABAergic neurons in Alzheimer's disease. J Neurol Sci 84: 101–116

    Google Scholar 

  • Reynolds GP, Arnold L, Rossor MN, Iversen LL, Mountjoy CQ, Roth M (1984) Reduced binding of [3 H] ketanserin to cortical 5HT2 receptors in senile dementia of Alzheimer type. Neurosci Lett 44: 47–51

    Google Scholar 

  • Reynolds CF, Kupfer DJ, Taska LS, Hoch CC, Spiker DG, Sewitch DE, Zimmer B, Martin JP, Martin M, Morycz R (1985) EEG sleep in elderly depressed, demented and healthy subjects. Biol Psychiatry 20: 431–442

    Google Scholar 

  • Reynolds CF, Perl JM, Kupfer DJ, Zimmer B, Stack JA, Hoch CC (1987) Open trial response to anti-depressant treatment in elderly patients with mixed depression and cognitive impairment. Psychiatry Res 21: 111–122

    Google Scholar 

  • Rinne JO, Sako E, Paljorn L, Molsa PK, Rinne UK (1986) Brain dopamine D-2 receptors in senile dementia. J Neural Transm 65: 51–62

    Google Scholar 

  • Roberts PJ, Anderson SD (1979) Stimulatory effect of L-glutamate and related amino acids on [3 H] dopamine release from the rat striatum: an in vitro model of glutamate actions. J Neurochem 32: 1539–1545

    Google Scholar 

  • Rogers J, Morrison JH (1985) Quantitative morphology and regional laminar distributions of senile plaques in Alzheimer's disease. Neuroscience 5: 2801–2808

    Google Scholar 

  • Rosenberg PA (1988) Catecholamine toxicity in cerebral cortex in dissociated cell culture. J Neurosci 8: 2887–2894

    Google Scholar 

  • Rosenberg PA, Loring R, Xie Y, Zaleskas V, Aizenman E (1991) 1,4,5-Trihydroxyphenylaline in solution forms a non-N-methyl-D-aspartate glutamatergic agonist and neurotoxin. Proc Natl Acad Sci USA 88: 4865–4869

    Google Scholar 

  • Saggu H, Cooksey J, Dexter D, Wells FR, Lees A, Jenner P, Marsden CD (1989) A selective increase in particulate Superoxide dismutase activity in Parkinsonian substantia nigra. J Neurochem 53: 692–697

    Google Scholar 

  • Scherman D, Desnos C, Darchen F, Pollak P, Javoy-Agid F, Agid Y (1989) Striatal dopamine deficiency in Parkinson's disease: role of aging. Ann Neurol 26: 551–557

    Google Scholar 

  • Schneider LS, Severson JA, Chiu H, Pollock VE, Sloane RB, Frederickson ER (1988) Platelet tritiated imipramine binding and MAO activity in Alzheimer's patients with agitation and delusions. Psychiatry Res 25: 311–322

    Google Scholar 

  • Schneider LS, Pollock VE, Zemansky MF, Gleason RP, Palmer S, Sloane RB (1991) A pilot study of low-dose L-deprenyl in Alzheimer's disease. J Geriatr Psychiatry Neurol 4: 143–148

    Google Scholar 

  • Schreier HA (1979) Use of propranolol in the treatment of postencephalitic psychosis. Am J Psychiatry 136: 840–841

    Google Scholar 

  • Severson JA, Marcusson JO, Osterburg HH, Finch CE, Winblad B (1985) Elevated density of [3H] imipramine binding in aged human brain. J Neurochem 45: 1382–1389

    Google Scholar 

  • Soininen H, MacDonald E, Rekonen M, Riekkinen PJ (1981) Homovanillic acid and 5-hydroxyindoleacetic acid levels in cerebrospinal fluid of patients with senile dementia of Alzheimer type. Acta Neurol Scand 64: 101–107

    Google Scholar 

  • Subbarao KV, Richardson S, Ang LC (1990) Autopsy samples of Alzheimer cortex show increased peroxidation in vitro. J Neurochem 55: 342–345

    Google Scholar 

  • Sullivan JP, McDonnell L, Hardiman OM, Farrell MA, Phillips JP, Tipton KF (1986) The oxidation of tryptamine by the two forms of monoamine oxidase in human tissues. Biochem Pharmacol 35: 3255–3260

    Google Scholar 

  • Tariot PN, Sunderland T, Weingartner H, Murphy DL, Welkowitz JA, Thompson K, Cohen RM (1987) Cognitive effects of L-deprenyl in Alzheimer's disease. Psychopharmacology 91: 489–495

    Google Scholar 

  • Tariot PN, Cohen RM, Sunderland T, Newhouse PA, Yount D, Mellow AM, Weingartner H, Mueller EA, Murphy DL (1987) L-Deprenyl in Alzheimer's disease: preliminary evidence for behavioral change with monoamine oxidase B inhibition. Arch Gen Psychiatry 44: 427–433

    Google Scholar 

  • Terry RD, Masliah E, Sulmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alteration in Alzheimer's disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30: 572–580

    Google Scholar 

  • Tetrud JW, Langston JW (1989) The effect of deprenyl (selegiline) on the natural history of Parkinson's disease. Science 245: 519–522

    Google Scholar 

  • Trulson ME, Jacobs BL (1979) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163: 135–150

    Google Scholar 

  • VanGool WA, Bolhuis PA (1991) Cerebrospinal fluid markers of Alzheimer's disease. J Geriatr Sci 39: 1024–1039

    Google Scholar 

  • Van Dongen PAM (1981) The human locus coerulens in neurology and psychiatry. Prog Neurobiol 17: 97–139

    Google Scholar 

  • Vitiello MV, Bokan JA, Kakull WA, Muniz RL, Smallwood RG, Prirz PN (1984) Rapid eye movements sleep measures of Alzheimer's type dementia and optimally healthy individuals. Biol Psychiatry 19: 721–734

    Google Scholar 

  • Volicer L, Crino PB (1989) Involvement of free radicals in dementia of the Alzheimer type: a hypothesis. Neurobiol Aging 11: 567–571

    Google Scholar 

  • Wilkins RH, Brody IA (1969) Alzheimer's disease. Arch Neurol 21: 109–110

    Google Scholar 

  • Williams D, Menl R, Yudofsky S, Adams D, Roseman B (1982) The effect of propranolol on uncontrolled rage outburst in children and adolescents with organic brain dysfunction. J Am Acad Child Psychiatry 21: 129–135

    Google Scholar 

  • Yanker BA, Dawes LR, Fisher S, Villa-Komaroff L, Oster-Granite M, Neve RL (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease. Science 23: 417–420

    Google Scholar 

  • Yates CM, Simpson J, Gordon A, Maloney AFJ, Allison Y, Ritchie IM, Urquhart A (1983) Catecholamines and cholinergic enzymes in the presenile and senile Alzheimer's type dementia and Down's syndrome. Brain Res 280: 119–126

    Google Scholar 

  • Yufodsky S, Williams D, Gorman J (1981) Propranolol in the treatment of patients with chronic brain syndrome. Am J Psychiatry 138: 218–220

    Google Scholar 

  • Zelnick N, Angel I, Paul SM, Kleinman JE (1986) Decreased density of human striatal dopamine uptake sites with age. Eur J Pharmacol 126: 175–176

    Google Scholar 

  • Zubenko GS, Moossy J (1988) Major depression in primary dementia: clinical and neuropathologic correlates. Arch Neurol 45: 1182–1186

    Google Scholar 

  • Zubenko GS, Moossy J, Kopp U (1990) Neurochemical correlates of major depression in primary dementia. Arch Neurol 47: 209–214

    Google Scholar 

  • Zweig RM, Ross CA, Hedreen JC, Steele C, Cardillo JE, Whitehouse PJ, Folstein MF, Price DL (1988) The neuropathology of aminergic nuclei in Alzheimer's disease. Ann Neurol 24: 233–242

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, A.M., DeKosky, S.T. Monoamine neurons in aging and Alzheimer's disease. J. Neural Transmission 91, 135–159 (1993). https://doi.org/10.1007/BF01245229

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01245229

Keywords

Navigation