Skip to main content
Log in

Structure, function and regulation of the tricarboxylate transport protein from rat liver mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Recent progress is summarized on the structure, function, and regulation of the tricarboxylate (i.e., citrate) transport protein (CTP) from the rat liver mitochondrial inner membrane. The transporter has been purified and its reconstituted function characterized. A cDNA clone encoding the CTP has been isolated and sequenced, thus enabling a deduction of the complete amino acid sequence of this 32.6 kDa transport protein. Dot matrix analysis and sequence alignment indicate that based on structural considerations the CTP can be assigned to the mitochondrial carrier family. Hydropathy analysis of the transporter sequence indicates six putative membrane-spanning α-helices and has permitted the development of an initial model for the topography of the CTP within the inner membrane. The questions as to whether more than one gene encodes the CTP and whether more than one isoform is expressed remain unanswered at this time. Studies documenting a diabetes-induced alteration in the function of several mitochondrial anion transporters, which can be reversed by treatment with insulin, provide a physiologically/pathologically relevant experimental system for studying the molecular mechanism(s) by which mitochondrial transporters are regulated. Potential future research directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aquila, H., Misra, D., Eulitz, M., and Klingenberg, M. (1982).Hoppe-Seyler's Z. Physiol. Chem. 363 345–349.

    PubMed  Google Scholar 

  • Aquila, H., Link, T.A., and Klingenberg, M. (1985).EMBO J. 4 2369–2376.

    PubMed  Google Scholar 

  • Aquila, H., Link, T.A., and Klingenberg, M. (1987).FEBS Lett. 212 1–9.

    PubMed  Google Scholar 

  • Bisaccia, F., De Palma, A., and Palmieri, F. (1989).Biochim. Biophys. Acta 977 171–176.

    PubMed  Google Scholar 

  • Bisaccia, F., De Palma, A., Prezioso, G., and Palmieri, F. (1990).Biochim. Biophys. Acta 1019 250–256.

    Google Scholar 

  • Bonner-Weir, S., Trent, D. F., Honey, R. N., and Weir, G. C. (1981).Diabetes 30 64–69.

    PubMed  Google Scholar 

  • Bouillaud, F., Casteilla, L., and Ricquier, D. (1992).Mol. Biol. Evol. 9 970–975.

    PubMed  Google Scholar 

  • Bradford, A.P., and Yeaman, S. J. (1986).Adv. Prot. Phosphatases III 73–106.

    Google Scholar 

  • Brunengraber, H., and Lowenstein, J. M. (1973).FEBS Lett. 36 130–132.

    PubMed  Google Scholar 

  • Bryla, J. (1980).Pharmacol. Ther. 10 351–397.

    PubMed  Google Scholar 

  • Burns, B. J., and Elwood, J. C. (1969).Biochim. Biophys Acta 187 307–318.

    PubMed  Google Scholar 

  • Claeys, D., and Azzi, A. (1989).J. Biol. Chem. 264 14627–14630.

    PubMed  Google Scholar 

  • Cohen, S. M. (1987).Biochemistry 26, 563–572.

    PubMed  Google Scholar 

  • Conover, T. E. (1987).Trends Biochem. Sci. 12 88–89.

    Google Scholar 

  • Denton, R. M., and Halestrap, A. P. (1979).Essays Biochem. 15 37–77.

    PubMed  Google Scholar 

  • DiMarco, J. P., and Hoppel, C. (1975).J. Clin. Invest. 55 1237–1244.

    PubMed  Google Scholar 

  • Dulin, W. E. and Soret, M. G. (1977). InThe Diabetic Pancreas (Volk, B. W., and Wellmann, K. F., eds.), Plenum Press, New York, pp. 425–465.

    Google Scholar 

  • Elwood, J. C., Marco, A., and Van Bruggen, J. T. (1960).J. Biol. Chem. 235 573–577.

    PubMed  Google Scholar 

  • Endemann, G., Goetz, P. G., Edmond, J., and Brunengraber, H. (1982).J. Biol. Chem. 257 3434–3440.

    PubMed  Google Scholar 

  • Exton, J. H., Corbin, J. G., and Harper, S. C. (1972).J. Biol. Chem. 247 4996–5003.

    PubMed  Google Scholar 

  • Ferrari, S., Moret, V., and Siliprandi, N. (1990).Mol. Cell. Biochem. 97 9–16.

    PubMed  Google Scholar 

  • Ferreira, G. C., Pratt, R. D., and Pedersen, P. L. (1989).J. Biol. Chem. 264 15628–15633.

    PubMed  Google Scholar 

  • Fonyo, A. (1979).Pharmacol. Ther. 7 627–645.

    PubMed  Google Scholar 

  • Foster, D. W., and Siperstein, M. D. (1960).Am. J. Physiol. 198 25–28.

    PubMed  Google Scholar 

  • Foster, D. W. (1984).Diabetes 33 1188–1199.

    PubMed  Google Scholar 

  • Freed, L. E., Endemann, G., Tomera, J. F., Gavino, V. C., and Brunengraber, H. (1988).Diabetes 37 50–55.

    PubMed  Google Scholar 

  • Giroix, M.-H., Portha, B., Kergoat, M., Bailbe, D., and Picon, L. (1983).Diabetes 32 445–451.

    PubMed  Google Scholar 

  • Glerum, D. M., Claeys, D., Mertens, W., and Azzi, A. (1990).FEBS Lett. 194 681–684.

    Google Scholar 

  • Greville, G. D. (1969). InCitric Acid Cycle Control and Compartmentation (Lowenstein, J. M., ed.), Marcel Dekker, New York, pp. 1–136.

    Google Scholar 

  • Gribskov, M., and Devereux, J. (1991).Sequence Analysis Primer, Stockton Press, New York, p. 233.

    Google Scholar 

  • Halestrap, A. P., Scott, R. D., and Thomas, A. P. (1980).Int. J. Biochem. 11 97–105.

    PubMed  Google Scholar 

  • Kaplan, R. S., and Pedersen, P. L. (1985).J. Biol. Chem. 260 10293–10298.

    PubMed  Google Scholar 

  • Kaplan, R. S., Pratt, R. D., and Pedersen, P. L. (1986).J. Biol. Chem. 261 12767–12773.

    PubMed  Google Scholar 

  • Kaplan, R. S., Mayor, J. A., Oliveira, D. L., and Johnston, N. (1989). InAnion Carriers of Mitochondrial Membranes (Azzi, A., Nalecz, K. A., Nalecz, M. J., and Wojtczak, L., eds.), Springer-Verlag, New York, pp. 59–69.

    Google Scholar 

  • Kaplan, R. S., Mayor, J. A., Johnston, N., and Oliveira, D. L. (1990a).J. Biol. Chem. 265 13379–13385.

    PubMed  Google Scholar 

  • Kaplan, R. S., Oliveira, D. L., and Wilson, G. L. (1990b).Arch. Biochem. Biophys. 280 181–191.

    PubMed  Google Scholar 

  • Kaplan, R. S., Mayor, J. A., Blackwell, R., Maughon, R. H., and Wilson, G. L. (1991a).Arch. Biochem. Biophys. 287 305–311.

    PubMed  Google Scholar 

  • Kaplan, R. S., Mayor, J. A., Blackwell, R., Wilson, G. L., and Schaffer, S. W. (1991b).Mol. Cell. Biochem. 107 79–86.

    PubMed  Google Scholar 

  • Kaplan, R. S., Mayor, J. A., and Wood, D. O. (1993).J. Biol. Chem.,268 13682–13690.

    PubMed  Google Scholar 

  • Kemp, B. E., and Pearson, R. B. (1990).Trends Biochem. Sci. 15 342–346.

    PubMed  Google Scholar 

  • Klingenberg, M. (1989).Arch. Biochem. Biophys. 270 1–14.

    PubMed  Google Scholar 

  • Kozak, M. (1986).Cell 44 283–292.

    PubMed  Google Scholar 

  • Kramer, R., and Palmieri, F. (1989).Biochim. Biophys. Acta 974 1–23.

    PubMed  Google Scholar 

  • Kyte, J., and Doolittle, R. F. (1982).J. Mol. Biol. 157 105–132.

    PubMed  Google Scholar 

  • LaNoue, K. F., and Schoolwerth, A. C. (1979).Annu. Rev. Biochem,48 871–922.

    PubMed  Google Scholar 

  • Loewenstein, J., Scholte, H.R., and Wit-Peeters, E. M. (1970).Biochim, Biophys. Acta 223 432–436.

    Google Scholar 

  • Lundblad, R. L. (1991).Chemical Reagents for Protein Modification, CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  • McGarry, J. D., and Foster, D. W. (1979).Adv. Exp. Med. Biol. 111 79–96.

    PubMed  Google Scholar 

  • Meijer, A. J., and Van Dam, K. (1974).Biochim. Biophys. Acta 346 213–244.

    PubMed  Google Scholar 

  • Meijer, A. J., and Van Dam, K. (1981).New Comprehensive Biochem. 2 235–256.

    Google Scholar 

  • Muller, G., and Bandlow, W. (1987).Yeast 3 161–174.

    PubMed  Google Scholar 

  • Nalecz, K. A., Bolli, R., Wojtczak, L., and Azzi, A. (1986).Biochim. Biophys. Acta 851 29–37.

    PubMed  Google Scholar 

  • Palmieri, F., Stipani, I., Quagliariello, E., and Klingenberg, M. (1972).Eur. J. Biochem. 26 587–594.

    PubMed  Google Scholar 

  • Pande, S. V., and Parvin, R. (1978).J. Biol. Chem. 253 1565–1573.

    PubMed  Google Scholar 

  • Parks Jr., R. E., Adler, J., and Copenhaver Jr., J. H. (1955).J. Biol. Chem. 214 693–698.

    PubMed  Google Scholar 

  • Pedersen, P. L., Greenawalt, J. W., Reynafarje, B., Hullihen, J., Decker, G. L., Soper, J. W., and Bustamente, E. (1978).Methods Cell Biol. 20 411–481.

    PubMed  Google Scholar 

  • Pilkis, S. J., Park, C. R., and Claus, T. H. (1978).Vitam. Horm. 36 383–460.

    PubMed  Google Scholar 

  • Pilkis, S. J., El-Maghrabi, M. R., and Claus, T. H. (1988).Annu. Rev. Biochem. 57 755–783.

    PubMed  Google Scholar 

  • Rerup, C. C. (1970).Pharmacol. Rev. 22 485–518.

    PubMed  Google Scholar 

  • Robinson, B. H., Williams, G. R., Halperin, M. L., and Leznoff, C. C. (1971).J. Biol. Chem. 246 5280–5286.

    PubMed  Google Scholar 

  • Rogers, K. S., Friend, W. H., and Higgins, E. S. (1986).Proc. Soc. Exp. Biol. Med. 182 167–175.

    PubMed  Google Scholar 

  • Roise, D., and Schatz, G. (1988).J. Biol. Chem. 263 4509–4511.

    PubMed  Google Scholar 

  • Runswick, M. J., Powell, S. J., Nyren, P., and Walker, J. E. (1987).EMBO J. 6 1367–1373.

    PubMed  Google Scholar 

  • Runswick M. J., Walker, J. E., Bisaccia, F., Iacobazzi, V., and Palmieri, F. (1990).Biochemistry 29 11033–11040.

    PubMed  Google Scholar 

  • Saraste, M., and Walker, J. E. (1982).FEBS Lett. 144 250–254.

    PubMed  Google Scholar 

  • Schaffer, S. W., Artman, M. F., and Wilson, G. L. (1987). InPathogenesis of Myocarditis and Cardiomyopathy (Kawai, C., Abelmann, W. H., and Matsumori, A., eds.), University of Tokyo Press, Tokyo, pp. 149–162.

    Google Scholar 

  • Schein, P., Kahn, R., Gorden, P., Wells, S., and DeVita, V. T. (1973).Arch. Intern. Med. 132 555–561.

    PubMed  Google Scholar 

  • Schwoch, G., Trinczek, B., and Bode, C. (1990).Biochem. J. 270 181–188.

    PubMed  Google Scholar 

  • Sugden, M. C., and Williamson, D. H. (1982). InMetabolic Compartmentation (Sies, H., ed.), Academic Press, New York, pp. 287–315.

    Google Scholar 

  • Tuazon, P. T., and Traugh, J. A. (1991).Advances in Second Messenger and Phosphoprotein Research 23 123–164.

    PubMed  Google Scholar 

  • Watson, J. A., and Lowenstein, J. M. (1970).J. Biol. Chem. 245 5993–6002.

    PubMed  Google Scholar 

  • Williamson, J. R. (1976). InGluconeogenesis: Its Regulation in Mammalian Species (Hanson, R. W., and Mehlman, M. A., eds.), Wiley, New York, pp. 165–220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, R.S., Mayor, J.A. Structure, function and regulation of the tricarboxylate transport protein from rat liver mitochondria. J Bioenerg Biomembr 25, 503–514 (1993). https://doi.org/10.1007/BF01108407

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01108407

Key words

Navigation