Skip to main content
Log in

Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: Extrapolation of data to benzodiazepines and phenytoin

Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

The literature was reviewed to obtain data from 11 mammalian species on liver weight, hepatic blood flow, and antipyrine intrinsic clearance. It was demonstrated that liver weight and hepatic blood flow in all species could be readily related to body weight by a simple equation. Additionally, hepatic blood flow in all species was directly proportional to liver weight. With the exception of man, antipyrine intrinsic clearance was also directly proportional to liver weight. Man's intrinsic clearance was approximately one-seventh of that which would be predicted from other species. Data on benzodiazepines and phenytoin showed a similar pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. L. B. Mellett. Comparative drug metabolism.Prog. Drug Res. 13:136–169 (1969).

    CAS  PubMed  Google Scholar 

  2. M. Weib, W. Sziegoleit, and W. Förster. Dependence of pharmacokinetic parameters on the body weight.Int. J. Clin. Pharmacol. 15:572–575 (1977).

    Google Scholar 

  3. K. B. Bishoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).

    Article  Google Scholar 

  4. U. Klotz, K.-H. Antonin, and P. R. Bieck. Pharmacokinetics and plasma binding of diazepam in man, dog, rabbit, guinea pig and rat.J. Pharmacol. Exp. Ther. 199:67–73 (1976).

    CAS  PubMed  Google Scholar 

  5. B. B. Brodie. Of mice, microsomes and man.Pharmacologist 6:12–26 (1964).

    Google Scholar 

  6. R. H. Wickramasinghe and C. A. Villee. Early role during chemical evolution for cytochrome P450in oxygen detoxification.Nature 256:509–511 (1975).

    Article  CAS  Google Scholar 

  7. R. H. Wickramasinghe and C. A. Villee. Possible similar role of cytochrome P450 in primordial evolution of species and in chemical carcinogenesis.Persp. Biol. Med. 19:473–475 (1976).

    Article  CAS  Google Scholar 

  8. J. R. Mitchell and D. J. Jollows. Metabolic activation of drugs to toxic substances.Gastroenterology 68:392–411 (1975).

    CAS  PubMed  Google Scholar 

  9. G. R. Wilkinson and D. G. Shand. A physiological approach to hepatic drug clearance.Clin. Pharmacol. Ther. 18:377–390 (1975).

    CAS  PubMed  Google Scholar 

  10. M. Rowland, T. F. Blaschke, P. J. Meffin, and R. L. Williams. Pharmacokinetics in disease states modifying hepatic and metabolic function. In L. Z. Benet (ed.),The Effect of Disease States on Drug Pharmacokinetics, Am. Pharm. Assoc., Acad. Pharm. Sci., Washington, D.C., 1976, Chap. 4, pp. 53–75.

    Google Scholar 

  11. E. F. Adolph. Quantitative relations in the physiological constitutions of mammals.Science 109:579–585 (1949).

    Article  CAS  PubMed  Google Scholar 

  12. B. B. Brodie and J. Axelrod. The fate of antipyrine in man.J. Pharmacol. Exp. Ther. 98:97–104 (1950).

    CAS  PubMed  Google Scholar 

  13. H. Yoshimura, H. Shimeno, and H. Tsukamoto. Metabolism of drugs. LIX. A new metabolite of antipyrine.Biochem. Pharmacol. 17:1511–1516 (1968).

    Article  CAS  PubMed  Google Scholar 

  14. H. Yoshimura, H. Shimeno, and H. Tsukamoto. Metabolism of drugs. LXX. Further study on antipyrine metabolism.Chem. Pharm. Bull. 19:41–45 (1971).

    Article  CAS  PubMed  Google Scholar 

  15. J. D. Baty and D. A. Price Evans. Norphenazone, a new metabolite of phenazone in human urine.J. Pharm. Pharmacol. 25:83–84 (1973).

    Article  CAS  PubMed  Google Scholar 

  16. O. M. Bakke, M. Bending, J. Aabakke, and D. S. Davies.14C-Antipyrine as a model compound in the study of drug oxidation and enzyme induction in individual surviving rats.Acta Pharmacol. Toxicol. 35:91–97 (1974).

    Article  CAS  Google Scholar 

  17. M. Stafford, G. K. Mann, R. N. Stillwell, and M. G. Horning. Metabolism of antipyrine by the epoxide-diol pathway in the rat, guinea pig and human.Res. Commun. Chem. Pathol. Pharmacol. 8:593–606 (1974).

    CAS  PubMed  Google Scholar 

  18. E. Mayr.Populations, Species, and Evolution, Chap. 9: Storage and protection of genetic variation, Belknap Press, Cambridge, Mass., 1970, pp. 129–161.

    Google Scholar 

  19. Data on file. Hoffmann-La Roche, Nutley, N.J.

  20. R. W. Lucek and C. B. Coutinho. The role of substituents in the hydrophobic binding of the 1,4-benzodiazepines by human plasma proteins.Mol. Pharmacol. 12:612–619 (1976).

    CAS  PubMed  Google Scholar 

  21. S. A. Kaplan, M. L. Jack, R. E. Weinfeld, W. Glover, L. Weissman, and S. Cotler. Biopharmaceutical and clinical pharmacokinetic profile of bromazepam.J. Pharmacokin. Biopharm. 4:1–16 (1976).

    Article  CAS  Google Scholar 

  22. I. Bekersky, A. C. Maggio, V. Mattaliano, Jr., H. G. Boxenbaum, D. E. Maynard, P. D. Cohn, and S. A. Kaplan. Influence of phenobarbital on the disposition of clonazepam and antipyrine in the dog.J. Pharmacokin. Biopharm. 5:507–512 (1977).

    Article  CAS  Google Scholar 

  23. A. Berlin and H. Dahlström. Pharmacokinetics of the anticonvulsant drug clonazepam evaluated from single oral and intravenous doses and by repeated oral administration.Eur. J. Clin. Pharmacol. 9:155–159 (1975).

    Article  CAS  PubMed  Google Scholar 

  24. H. G. Boxenbaum, K. A. Geitner, M. L. Jack, W. R. Dixon, H. E. Spiegel, J. Symington, R. Christian, J. D. Moore, L. Weissman, and S. A. Kaplan. Pharmacokinetic and biopharmaceutic profile of chlordiazepoxide HC1 in healthy subjects: Single-dose studies by the intravenous, intramuscular, and oral routes.J. Pharmacokin. Biopharm. 5:3–23 (1977).

    Article  CAS  Google Scholar 

  25. S. A. Kaplan, M. Lewis, M. A. Schwartz, E. Postma, S. Cotler, C. W. Abruzzo, T. L. Lee, and R. E. Weinfeld. Pharmacokinetic model for chlordiazepoxide-HCl in the dog.J. Pharm. Sci. 59:1569–1574 (1970).

    Article  CAS  PubMed  Google Scholar 

  26. M. A. Schwartz, E. Postma, S. J. Kolis, and A. S. Leon. Metabolites of bromazepam, a benzodiazepine, in the human, dog, rat, and mouse.J. Pharm. Sci. 62:1776–1779 (1973).

    Article  CAS  PubMed  Google Scholar 

  27. H. Sawada and A. Hara. Studies on metabolism of bromazepam. V. Identification of new urinary metabolites and their excretion pattern in various animal species.Yakugaku Zasshi. 95:430–438 (1975).

    CAS  PubMed  Google Scholar 

  28. S. A. Kaplan, K. Alexander, M. L. Jack, C. V. Puglisi, J. A. F. deSilva, T. L. Lee, and R. E. Weinfeld. Pharmacokinetic profiles of clonazepam in dog and humans and flunitrazepam in dog.J. Pharm. Sci. 63:527–532 (1974).

    Article  CAS  PubMed  Google Scholar 

  29. T. F. Blaschke, P. J. Meffin, K. L. Melmon, and M. Rowland. Influence of acute viral hepatitis on phenytoin kinetics and protein binding.Clin. Pharmacol. Ther. 17:685–691 (1975).

    CAS  PubMed  Google Scholar 

  30. P. G. Dayton, S. A. Cucinell, M. Weiss, and J. M. Perel. Dose-dependence of drug plasma level decline in dogs.J. Pharmacol. Exp. Ther. 158:305–316 (1967).

    CAS  PubMed  Google Scholar 

  31. Y. Saitoh, K. Nishihara, F. Nakagawa, and T. Suzuki. Improved microdetermination of diphenylhydantoin in blood by UV spectrophotometry.J. Pharm. Sci. 62:206–210 (1973).

    Article  CAS  Google Scholar 

  32. J. D. Baggot and L. E. Davis. Comparative study of plasma protein binding of diphenylhydantoin.Comp. Gen. Pharmacol. 4:399–404 (1973).

    Article  CAS  PubMed  Google Scholar 

  33. A. Yacobi and G. Levy. Intraindividual relationships between serum protein binding of drugs in normal human subjects, patients with impaired renal function, and rats.J. Pharm. Sci. 66:1285–1288 (1977).

    Article  CAS  PubMed  Google Scholar 

  34. G. Levy and J. J. Ashley. Effect of an inhibitor of glucuronide formation on elimination kinetics of diphenylhydantoin in rats.J. Pharm. Sci. 62:161–162 (1973).

    Article  CAS  PubMed  Google Scholar 

  35. D. W. Shoeman, R. E. Kauffman, D. L. Azarnoff, and B. M. Boulos. Placental transfer of diphenylhydantoin in the goat.Biochem. Pharmacol. 21:1237–1243 (1972).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boxenbaum, H. Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: Extrapolation of data to benzodiazepines and phenytoin. Journal of Pharmacokinetics and Biopharmaceutics 8, 165–176 (1980). https://doi.org/10.1007/BF01065191

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01065191

Key words

Navigation