Skip to main content
Log in

Moment analysis of drug disposition in kidney. V:In Vivo transepithelial transport ofp-aminohippurate in rat kidney

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A new method that can assess the kinetics of in vivotransepithelial transport in rat kidney has been established. The method is based upon a multiple-indicator dilution experiment and the moment analysis theory. After simultaneous bolus injections of p-aminohippurate (PAH) and inulin into the right renal artery, blood samples were taken from the carotid artery and urine was separately collected from right and left ureters. The characteristic response for the first passage of drugs through the right kidney was evaluated by taking blood circulation into consideration. To determine the mean artery-tovein transit time and the extraction ratio in the kidney, an intravenous injection was also performed as a reference experiment for deconvolution. The urinary excretion curve corresponding to the first passage was obtained as the difference between both kidneys. The mean artery-tolumen transit time (mean transepithelial transit time, ¯T cell )was computed by subtracting the mean urinary transit time of inulin from that of secreted PAH. Sinc transport across the luminal membrane into the lumen from tubular epithelial cells can influence the cellular residence time of drugs, ¯ Tcell and the single-pass mean residence time in epithelial cells (¯T cell.sp )can be thought of describing luminal membrane transport. The value of ¯T cell obtained for 0. t mM PAH was 22 sec and it was prolonged to 61 sec in the presence of probenecid, suggesting an inhibitory effect on transport across the luminal membrane. On the other hand, antiluminal membrane transport into cells from blood is characterized by the volume of distribution in the kidney (Vd PAH ). Vd PAH was remarkably decreased by treatment with probenecid, indicating an inhibitory effect on antiluminal membrane transport. The effects of probenecid on both sides of epithelial cell membrane transport were first demonstrated in vivo.The present method is useful for the analysis of in vivotransepithelial transport including antiluminal and luminal membrane transport for drugs excreted via tubular secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. M. Weiner. Transport of weak acids and bases. In J. Orloff and R. W. Berliner (eds.),Renal Physiology, American Physiological Society, Washington, DC, 1973, pp. 521–554.

    Google Scholar 

  2. R. Hori, M. Takano, T. Okano, S. Kitazawa, and K. Inui. Mechanisms ofp-aminohippurate transport by brush-border and basolateral membrane vesicles isolated from rat kidney cortex.Biochim. Biophys. Acta 692:97–100 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. M. Takano, K. Inui, T. Okano, H. Saito, and R. Hori. Carrier-mediated transport systems of tetraethylammonium in rat renal brush-border and basolateral membrane vesicles.Biochim. Biophys. Acta 773:113–124 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. R. Hori, K. Sunayashiki, and A. Kamiya. Pharmacokinetic analysis of renal handing of sulfamethizole.J. Pharm. Sci. 65:463–465 (1976).

    Article  CAS  PubMed  Google Scholar 

  5. R. Hori, K. Okumura, A. Kamiya, H. Nihira, and H. Nakano. Ampicillin and cephalexin in renal insufficiency.Clin. Pharmacol. Ther. 34:792–798 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. R. Hori, Y. Ishikawa, M. Takano, T. Okano, S. Kitazawa, and K. Inui. The interaction of cephalosporin antibiotics with renal cortex of rats: accumulation to cortical slices and binding to purified plasma membranes.Biochem. Pharmacol. 31:2267–2272 (1982).

    Article  CAS  PubMed  Google Scholar 

  7. H. Saito, K. Inui, and R. Hori. Mechanisms of gentamicin transport in kidney epithelial cell line (LLC-PK1).J. Pharmacol. Exp. Ther. 238:1071–1076 (1986).

    CAS  PubMed  Google Scholar 

  8. R. Hori, H. Maegawa, M. Kato, T. Katsura, and K. Inui. Inhibitory effect of diethyl pyrocarbonate on the H+/organic cation antiport system in rat renal brush-border membranes.J. Biol. Chem. 264:12232–12237 (1989).

    CAS  PubMed  Google Scholar 

  9. R. Hori, A. Kamiya, Y. Saito, and Y. Tanigawara. Kidney perfusion systems in drug disposition studies, in D. D. Breimer and P. Speiser (eds.),Topics in Pharmaceutical Sciences 1987, Elsevier, Amsterdam, 1987, pp. 211–219.

    Google Scholar 

  10. R. Hori, Y. Tanigawara, Y. Saito, Y. Hayashi, T. Aiba, K. Okumura, and A. Kamiya. Moment analysis of drug disposition in kidney: transcellular transport kinetics ofp- aminohippurate in isolated perfused rat kidney.J. Pharm. Sci. 77:471–476 (1988).

    Article  CAS  PubMed  Google Scholar 

  11. A. Kamiya, Y. Tanigawara, Y. Saito, Y. Hayashi, T. Aiba, K. Inui, and R. Hori, Moment analysis of drug disposition in kidney. II: urinep H dependent tubular secretion of tetraethylammonium in the isolated perfused rat kidney.J. Pharm. Sci. 79:692–697 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Y. Tanigawara, Y. Saito, T. Aiba, K. Ohoka, A. Kamiya, and R. Hori. Moment analysis of drug disposition in kidney. III: transport ofp-aminohippurate and tetraethylammonium in the perfused kidney isolated from uranyl nitrate-induced acute renal failure rats.J. Pharm. Sci. 79:249–256 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. J. H. Zar.Biostalistical Analysis, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1984, pp. 139–141.

    Google Scholar 

  14. A. D. Bains, C. W. Gottschalk, and W. E. Lassiter. Microinjection study ofp-aminohippurate excretion by rat kidneys.Am. J. Physiol. 214:703–709 (1968).

    Google Scholar 

  15. M. L. MacDougall and T. B. Wiegmann, Excretion of p-aminohippurate in the isolated perfused rat kidney: net secretion and net reabsorption.J. Physiol. 397:459–469 (1988).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. K. Yamaoka, T. Nakagawa, and T. Uno. Statistical moments in pharmacokinetics.J. Pharmacokin. Biopharm. 6:547–558 (1978).

    Article  CAS  Google Scholar 

  17. K. O. Stumpe, H.-D. Lowitz, and B. Ochwadt. Function of juxtamedullary nephrons in normotensive and chronically hypertensive rats.Pflügers Arch. 313:43–52 (1969).

    Article  CAS  PubMed  Google Scholar 

  18. J. Schnermann, M. Wahl, G. Liebau, and H. Fischbach. Balance between tubular flow rate and net fluid reabsorption in the proximal convolution of the rat kidney. I. Dependency of reabsorptive net fluid flux upon proximal tubular surface area at spontaneous variations of filtration rate.Pflügers Arch. 304:90–103 (1968).

    Article  CAS  PubMed  Google Scholar 

  19. K. M. Koch, H. S. Aynedjian, and N. Bank. Effect of acute hypertension on sodium reabsorption by the proximal tubule.J. Clin. Invest. 47:1696–1709 (1968).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. J. E. Lewy and E. E. Windhager. Peritubuiar control of proximal tubular fluid reabsorption in the rat kidney.Am. J. Physiol. 214:943–954 (1968).

    CAS  PubMed  Google Scholar 

  21. M. Silverman, M. A. Aganon, and F. P. Chinard. D-Glucose interactions with renal tubule cell surfaces.Am. J. Physiol. 218;735–742 (1970).

    CAS  PubMed  Google Scholar 

  22. M. Silverman, P. Vinay, L. Shinobu, A. Gougoux, and G. Lemieux. Luminal and antiluminal transport of glutamine in dog kidney: effect of metabolic acidosis.Kidney Int. 20:359–365 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. M. Siverman, C. Whiteside, C. J. Lumsden, and H. Steinhart. In vivo indicator dilution kinetics of PAH transport in dog kidney.Am. J. Physiol. 256:F255-F265 (1989).

    Google Scholar 

  24. M. Weiss. Moments of physiological transit time distributions and the time course of drug disposition in the body.J. Math. Biol. 15:305–318 (1982).

    Article  CAS  PubMed  Google Scholar 

  25. S. Riegelman and P. Collier. The application of statistical moment theory to the evaluation of in vivo dissolution time and and absorption time.J. Pharmacokin. Biopharm. 8:509–534 (1980).

    Article  CAS  Google Scholar 

  26. W. F. Ganong.Review of Medical Physiology, 14th ed., Prentice-Hall, Englewood Cliffs, NJ, 1989, pp. 596–597.

    Google Scholar 

  27. K. Munger and C. Baylis. Sex differences in renal hemodynamics in rats.Am. J. Physiol. 254:F223-F231 (1988).

    CAS  PubMed  Google Scholar 

  28. N. Itoh, Y. Sawada, Y. Sugiyama, T. Iga, and M. Hanano. Kinetic analysis of rat renal tubular transport based on multiple-indicator dilution method.Am. J. Physiol. 251:F103-F114 (1986).

    CAS  PubMed  Google Scholar 

  29. G. W. Roberts, K. B. Larson, and E. E. Spaeth. The interpretation of mean transit time measurements for multiphase tissue systems.J. Theoret. Biol. 39:447–475 (1973).

    Article  CAS  Google Scholar 

  30. N. A. Lassen and W. Perl.Tracer Kinetic Methods in Medical Physiology, Raven Press, New York, 1979, p. 98.

    Google Scholar 

  31. T. G. Steffens, P. D. Holohan, and C. R. Ross. Operational modes of the organic anion exchanger in canine renal brush-border membrane vesicles.Am. J. Physiol. 256:F596-F609 (1989).

    CAS  PubMed  Google Scholar 

  32. F. P. Chinard. Relative renal excretion patterns ofp-aminohippurate (PAH) and glomerular substances.Am. J. Physiol. 185:413–417 (1956).

    CAS  PubMed  Google Scholar 

  33. C. A. Goresky, G. G. Bach, and B. E. Nadeau. On the uptake of materials by intact liver.J. Clin. Invest. 52:991–1009 (1973).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. E. C. Foulkes. Movement of p-aminohippurate between lumen and cells of renal tubule.Am. J. Physiol. 232:F424-F428 (1977).

    CAS  PubMed  Google Scholar 

  35. C. A. Goresky, W. H. Zieglei, and G. G. Bach. Capillary exchange modeling.Circ. Res. 27:739–764 (1970).

    Article  CAS  PubMed  Google Scholar 

  36. C. J. Lumsden and M. Silverman. Exchange of multiple indicators across renal-like epithelia: a modeling study of six physiological regimes.Am. J. Physiol. 251:F1073-F1089 (1986).

    CAS  PubMed  Google Scholar 

  37. T. Kakutani, K. Yamaoka, M. Hashida, and H. Sezaki. A new method for assessment of drug disposition in muscle: application of statistical moment theory to local perfusion systems.J. Pharmacokin. Biopharm. 13:609–631.

  38. E. C. Foulkes. Tubular reabsorption delay of amino acids in the rabbit kidney.Am. J. Physiol. 249:F878-F883 (1985).

    CAS  PubMed  Google Scholar 

  39. E. C. Foulkes. Role of basolateral cell membranes in organic solute reabsorption in rabbit kidneys.Am. J. Physiol. 252:F1042-F1047 (1987).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hori, R., He, YL., Saito, Y. et al. Moment analysis of drug disposition in kidney. V:In Vivo transepithelial transport ofp-aminohippurate in rat kidney. Journal of Pharmacokinetics and Biopharmaceutics 19, 51–70 (1991). https://doi.org/10.1007/BF01062192

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062192

Key words

Navigation