Skip to main content
Log in

Effect of phenobarbital andp-hydroxyphenobarbital glucuronide on acetaminophen metabolites in isolated rat hepatocytes: Use of a kinetic model to examine the rates of formation and egress

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Conventional analysis of initial uptake and egress rates in isolated hepatocytes is limited in the ability to distinguish between rates of metabolite formation and egress, and to separate basolateral and canalicular transport processes. The present study examined the applicability of kinetic modeling in describing acetaminophen glucuronide (AG) and acetaminophen sulfate (AS) formation and egress in hepatocytes after acute exposure to phenobarbital or p-hydroxyphenobarbital glucuronide p-OHPBG) in vitro,or in vivophenobarbital pretreatment. A significant pretreatment effect on AG and AS disposition was seen based on initial rates of egress. In vivophenobarbital pretreatment decreased the initial egress rate of AG compared to vehicle pretreatment, and the initial egress rate of AS compared to all other treatments. A pharmacokinetic model incorporating AG and AS formation in hepatocytes as well as egress processes (including diffusional and active transport components) was fit to the data. Parameter estimates derived from model fits to the data showed the expected increase in acetaminophen glucuronidation and decrease in sulfation after phenobarbital pretreatment;in addition, an increase in the AG diffusional rate constant and a decrease in the AS diffusional rate constant was apparent. The excretion Vmax for AG was decreased statistically after acute phenobarbital exposure in vitro,and in vivophenobarbital pretreatment, with a concomitant statistical increase in the KmforAG excretion. In vitroacute p-OHPBG exposure also decreased significantly the excretion Vmax for AG. These data are consistent with the hypothesis that phenobarbitalimpaired biliary excretion of AG is a function of impaired canalicular transport due to the presence of p-OHPBG. They further suggest that the mechanism may not be simple competitive inhibition. This work demonstrates the utility of a kinetic modeling approach to differentiate metabolic and transport processes when analyzing data from isolated hepatocyte studies. Additional information may be gained that would not be apparent by conventional methods of analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. O. Seglen. Preparation of isolated rat liver cells.Meth. Cell. Biol. 13:29–83 (1976).

    Article  CAS  Google Scholar 

  2. M. H. Wisher and W. H. Evans. Enzymes of the hepatocyte plasma membrane. In H. Popper (ed.),Membrane Alterations as Basis of Liver Injury, MTP Press, Lancaster, 1977, pp. 127–141.

    Google Scholar 

  3. G. M. M. Groothuis, C. E. Hulstaert, D. Kalicharan, and M. Hardonk. Plasma membrane specialization and intracellular polarity of freshly isolated rat hepatocytes.Eur. J. Cell. Biol. 26:43–51 (1981).

    CAS  PubMed  Google Scholar 

  4. S. Kato, K. Aoyama, T. Nakamura, and A. Ichihara. Biochemical studies on liver func-tions in primary cultured hepatocytes of adult rats. III. Changes of enzyme activities on cell membranes during culture.J. Biochem. 86:1419–1425 (1979).

    CAS  PubMed  Google Scholar 

  5. A. Blom, A. H. Scaf, and D. K. F. Meijer. Hepatic drug transport in the rat. A comparison between isolated hepatocytes, the isolated perfused liver and the liverin vivo.Biochem. Pharmacol. 31:1553–1565 (1982).

    Article  CAS  PubMed  Google Scholar 

  6. A. L. Hubbard, D. A. Wall, and A. Ma. Isolation of rat hepatocyte plasma membranes. I. Presence of the three major domains.J. Cell Biol. 96:217–229 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. T. Coche, X. Deroubarx, E. Depiereux, and E. Feytmans. Compartmental analysis of steady-state taurocholate transport kinetics by isolated rat hepatocytes.Hepatology 13:1203–1214 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. S. Iida, T. Mizuma, N. Sakuma, M. Hayashi, and S. Awazu. Transport of acetaminophen conjugates in isolated rat hepatocytes.Drug Metab. Dispos. 17:341–344 (1989).

    CAS  PubMed  Google Scholar 

  9. M. H. DeVries, G. M. M. Groothuis, G. J. Mulder, H. Nguyen, and D. K. F. Meijer. Secretion of the organic anion harmol sulfate from liver into blood. Evidence for a carriermediated mechanism.Biochem. Pharmacol. 34:2129–2135 (1985).

    Article  CAS  Google Scholar 

  10. R. Grafstrom, K. Ormstad, P. Moldeus, and S. Orrenius. Paracetamol metabolism in the isolated perfused rat liver with further metabolism of a biliary paracetamol conjugate by the small intestine.Biochem. Pharmacol. 28:3573–3579 (1979).

    Article  CAS  PubMed  Google Scholar 

  11. K. L. R. Brouwer and J. A. Jones. Altered hepatobiliary disposition of acetaminophen metabolites after phenobarbital pretreatment and renal ligation: Evidence for impaired biliary excretion and a diffusional barrier.J. Pharmacol. Exp. Ther. 252:657–664 (1990).

    CAS  PubMed  Google Scholar 

  12. S. D. Studenberg and K. L. R. Brouwer. Phenacetin and acetaminophen metabolism in the isolated perfused rat liver. Precursor concentration influences the selection of kinetic parameters to assess hypoxic impairment.Drug Metab. Dispos. 19:423–429 (1991).

    CAS  PubMed  Google Scholar 

  13. C. D. Klaassen and J. B. Watkins. Mechanisms of bile formation, hepatic uptake and biliary excretion.Pharmacol. Rev. 36:1–67 (1984).

    CAS  PubMed  Google Scholar 

  14. M. H. Nathanson and J. L. Boyer. Mechanisms and regulation of bile secretion.Hepatology 14:551–566 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. W. Loeser and C.-P. Siegers. Effects of phenobarbital, phorone and carbon tetrachloride pretreatment on the biliary excretion of acetaminophen in rats.Arch. Int. Pharmacodyn. Ther. 275:180–188 (1985).

    CAS  PubMed  Google Scholar 

  16. Z. Gregus, C. Madhu, and C. D. Klaassen. Effect of microsomal enzyme inducers on biliary and urinary excretion of acetaminophen metabolites in rats. Decreased hepatobiliary and increased hepatovascular transport of acetaminophen-glucuronide after microsomal enzyme induction.Drug Metab. Dispos. 18:10–19 (1990).

    CAS  PubMed  Google Scholar 

  17. S. D. Studenberg and K. L. R. Brouwer. Impaired biliary excretion of acetaminophen glucuronide in the isolated perfused rat liver after acute phenobarbital treatment andin vivo phenobarbital pretreatment.J. Pharmacol. Exp. Ther. 261:1022–1027 (1992).

    CAS  PubMed  Google Scholar 

  18. G. J. Mulder. The rate-limiting step in the biliary elimination of some substrates of uridine diphosphate glucuronyltransferase in the rat.Biochem. Pharmacol. 22:1751–1763 (1973).

    Article  CAS  PubMed  Google Scholar 

  19. S. D. Studenberg, K. L. R. Brouwer, D. L. Price-Raybuck, and R. Spreen. Characterization of p-hydroxyphenobarbital glucuronide from immobilized rat hepatic UDP-glucuronyltransferase.Toxicologist 12:386 (1512) (1992).

    Google Scholar 

  20. W. J. Brock and M. Vore. Characterization of uptake of steroid glucuronides into isolated male and female rat hepatocytes.J. Pharmacol. Exp. Ther. 229:175–181 (1984).

    CAS  PubMed  Google Scholar 

  21. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275 (1951).

    CAS  PubMed  Google Scholar 

  22. H. Baur, S. Kasperek, and E. Pfaff. Criteria of viability of isolated liver cells.Hoppe-Seylers Z. Physiol. Chem. 356:827–838 (1975).

    Article  CAS  PubMed  Google Scholar 

  23. W. Bolanowska and T. Gessner. Drug interactions with acetaminophen: Effects of phenobarbital, prednisone, and 5-fluorouracil in normal and tumor-bearing rats.Biochem. Pharmacol. 29:1167–1175 (1980).

    Article  CAS  PubMed  Google Scholar 

  24. M. Davies and I. J. Whitting. A modified form of Levenberg's correction. InNumerical Methods for Non-Linear Optimization, Academic Press, New York, 1972.

    Google Scholar 

  25. H. O. Hartley. The modified Gauss-Newton method for the fitting of nonlinear regression functions by least squares.Technometrics 3:269–280 (1961).

    Article  Google Scholar 

  26. P. Moldeus, B. Andersson, A. Norling, and K. Ormstad. Effect of chronic ethanol administration on drug metabolism in isolated hepatocytes with emphasis on paracetamol activation.Biochem. Pharmacol. 29:1741–1745 (1980).

    Article  CAS  PubMed  Google Scholar 

  27. D. J. Sweeney and L. A. Reinke. Effect of ethanol feeding on hepatic microsomal UDP-glucuronyltransferase activity.Biochem. Pharmacol. 36:1381–1383 (1987).

    Article  Google Scholar 

  28. G. S. Yost and B. L. Finley. Ethanol as an inducer of UDP-glucuronyltransferase: A comparison with phenobarbital and 3-methylcholanthrene induction in rabbit hepatic microsomes.Biochem. Biophys. Res. Comm. 111:219–223 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. N. Watari, M. Iwai, and N. Kaneniwa. Pharmacokinetic study of the fate of acetaminophen and its conjugates in rats.J. Pharmacokin. Biopharm. 11:245–272 (1983).

    Article  CAS  Google Scholar 

  30. T. Mizuma, M. Hayashi, and S. Awazu. Factors influencing drug sulfate and glucuronic acid conjugation rates in isolated rat hepatocytes.Biochem. Pharmacol. 34:2573–2575 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Studenberg, S.D., Brouwer, K.L.R. Effect of phenobarbital andp-hydroxyphenobarbital glucuronide on acetaminophen metabolites in isolated rat hepatocytes: Use of a kinetic model to examine the rates of formation and egress. Journal of Pharmacokinetics and Biopharmaceutics 21, 175–194 (1993). https://doi.org/10.1007/BF01059769

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059769

Key words

Navigation