Skip to main content
Log in

Insulin receptors in the brain: Structural and physiological characterization

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The present study was conducted to characterize insulin receptors and to determine the effects of insulin in synaptosomes prepared from adult rat brains. Binding of125I-insulin to synaptosome insulin receptors was highly specific and time dependent: equilibrium binding was obtained within 60 minutes, and a t1/2 of dissociation of 26 minutes. Cross-linking of125I-insulin to its receptor followed by SDS-PAGE demonstrated that the apparent molecular weight of the alpha subunit of the receptor was 122,000 compared with 134,000 for the liver insulin receptor. In addition, insulin stimulated the dose-dependent phosphorylation of exogenous tyrosine containing substrate and a 95,000 MW plasma membrane associated protein, in a lectin-purified insulin receptor preparation. The membrane associated protein was determined to be the β subunit of the insulin receptor. Incubation of synaptosomes with insulin caused a dose-dependent inhibition of specific sodium-sensitive [3H]norepinephrine uptake. Insulin inhibition of [3H]norepinephrine uptake was mediated by a decrease in active uptake sites without any effects in theK m, and was specific for insulin since related and unrelated peptides influenced the uptake in proportion to their structural similarity with insulin. These observations indicate that synaptosomes prepared from the adult rat brain possess specific insulin receptors and insulin has inhibitory effects on norepinephrine uptake in the preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Havrankova, J., Roth, J., and Brownstein, M. 1978. Insulin receptors are widely distributed in the central nervous system of the rat. Nature 272:827–29.

    PubMed  Google Scholar 

  2. Young, W. S., Kuhar, M. J., Roth, J., and Brownstein, M. J. 1980. Radiohistochemical localization of insulin receptors in the adult and developing rat brain. Neuropeptides 1:15–22.

    Google Scholar 

  3. Kappy, M. S., Sellinger, S., and Raizada, M. K. 1984. Insulin binding in four regions of the developing rat brain. J. Neurochem. 42:198–203.

    PubMed  Google Scholar 

  4. Gammeltoft, S. 1984. Insulin receptors: binding kinetics and structure-Function relationship of insulin. Physiological Reviews 64:1321–78.

    PubMed  Google Scholar 

  5. Barbaccia, M., Chuang, D., and Costa, E. 1982. Is insulin a neuromodulator? Adv. Biochem. Psychopharmacol. 33:511–18.

    PubMed  Google Scholar 

  6. Sauter, A., Goldstein, M., Engel, J., and Ueta, K. 1983. Effect of insulin on central catecholamines. Brain Research 260:330–33.

    PubMed  Google Scholar 

  7. Saller, C. F., and Chiodo, L. A. 1980. Glucose suppresses basal firing and haloperidol-induced increases in the firing rate of central dopaminergic neurons. Science 210:1269–71.

    PubMed  Google Scholar 

  8. Palovcik, R. A., Phillips, M. I., Kappy, M. S., and Raizada, M. K. 1984. Insulin inhibits pyramidal neurons in hippocampal slices. Brain Research 309:187–91.

    PubMed  Google Scholar 

  9. Lowe, W. L., Boyd, F. T., Clarke, D. W., Raizada, M. K., Hart, C., and LeRoith, D. 1986. Development of brain insulin receptors: structural and functional studies of insulin receptors from whole brain and primary cell cultures. Endocrinology 119:25–35.

    PubMed  Google Scholar 

  10. Boyd, F. T., Clarke, D. W., Muther, T. F., and Raizada, M. K. 1985. Insulin receptors and insulin modulation of norepinephrine uptake in neuronal cultures from rat brain. J. Biol. Chem. 260:15880–84.

    PubMed  Google Scholar 

  11. Clarke, D. W., Boyd F. T., Kappy, M. S., and Raizada, M. K. 1984. Insulin binds to specific receptors and stimulates 2-deoxy-d-glucose uptake in cultured glial cells from rat brain. J. Biol. Chem. 259:11672–75.

    PubMed  Google Scholar 

  12. Boyd, F. T., Clarke, D. W., and Raizada, M. K. 1986. Insulin inhibits specific norepinephrine uptake in neuronal cultures from rat brain. Brain Research, In Press.

  13. Sgaragli, G. P., Sen, I., Baba, A., Schulz, R. A., and Cooper, J. R. 1979. The mechanism of action of collagenase on the inhibition of release of acetylcholine from synaptosomal preparations. Brain Research 134:113–23.

    Google Scholar 

  14. Hedo, J. A., Harrison, L. C., and Roth, J. 1981. Binding of insulin receptors to lectins: evidence for common carbohydrate determinants on several membrane receptors. Biochemistry 20:3385–93.

    PubMed  Google Scholar 

  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with Folin-Phenol reagent. J. Biol. Chem. 93:265–275.

    Google Scholar 

  16. Hendricks, S. A., Agardh, C. D., Taylor, S. I., and Roth, J. 1984. Unique features of the insulin receptor in rat brain. J. Neurochem. 43:1302–07.

    PubMed  Google Scholar 

  17. Shemer, J., Penhos, J. C., and LeRoith, D. 1986. Insulin receptors in lizard brain and liver: structural and functional studies of α and β subunits demonstrate evolutionary conservation. Diabetologia 29:321–29.

    PubMed  Google Scholar 

  18. Laemmli, U. K. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–85.

    PubMed  Google Scholar 

  19. Zick, Y., Kasuga, M., Kahn, C. R., and Roth J. 1983. Characterization of insulin-mediated phosphorylation of the insulin receptor in a cell-free system. J. Biol. Chem. 258:75–78.

    PubMed  Google Scholar 

  20. Rees-Jones, R. W., Hendriks, S. A., Quarum, M., and Roth, J. 1984. The insulin receptor of rat brain is coupled to tyrosine kinase activity. J. Biol. Chem. 259:3470–3474.

    PubMed  Google Scholar 

  21. Zick, Y., Grunberger, G., Rees-Jones, R. W., and Comi, R. J. 1985. Use of tyrosine-containing polymers to characterize the substrate specificity of insulin and other hormone-stimulated tyrosine kinases. Europ. J. Biochem. 148:177–182.

    PubMed  Google Scholar 

  22. Kappy, M. A., and Raizada, M. K. 1982. Adult-level insulin binding is present in term fetal rat CNS membranes. Brain Research 249:390–92.

    PubMed  Google Scholar 

  23. Sara, V. R., Hall, K., Misaki, M., Fryklund, L., Christensen, N., and Wetterberg, L. 1983. Ontogenesis of somatomedin and insulin receptors in the human fetus. J. Clinical Invest. 71:1084–94.

    Google Scholar 

  24. Yip, C. C., Moule, M. L., and Yeung, C. W. T. 1980. Characterization of insulin receptor subunits in brain and other tissues by photoaffinity labeling. Biochem. Biophys. Res. Commun. 96:1671–78.

    PubMed  Google Scholar 

  25. Heidenreich, K. A., Zahniser, N. R., Berhanu, P., Brandenburg, D., and Olefsky, J. M. 1983. Structural differences between insulin receptors in the brain and peripheral target tissues. J. Biol. Chem. 258:8527–30.

    PubMed  Google Scholar 

  26. Scatchard, G. 1949. The attraction of protein for small molecules and ions. Ann. N.Y. Acad. Sci. 51:660–672.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raizada, M.K., Shemer, J., Judkins, J.H. et al. Insulin receptors in the brain: Structural and physiological characterization. Neurochem Res 13, 297–303 (1988). https://doi.org/10.1007/BF00972477

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00972477

Key Words

Navigation